
Annals of Software Engineering 7 (1999) 25–45 25

Modeling concurrent real-time processes
using discrete events

Edward A. Lee
Department of EECS, University of California, Berkeley, CA 94720, USA

We give a formal framework for studying real-time discrete-event systems. It describes
concurrent processes as sets of possible behaviors. Compositions of processes are processes
with behaviors in the intersection of the behaviors of the component processes. The inter-
action between processes is through signals, which are collections of events. Each event
is a value-tag pair, where the tags denote time. Zeno conditions are defined and methods
are given for avoiding them. Strict causality ensures determinacy under certain technical
conditions, and delta-causality ensures the absence of Zeno conditions.

1. Introduction

Discrete-event systems, where atomic events occur along a physical time line,
provide a useful abstraction for many real-time digital systems. This paper gives a
formal framework for talking about such systems. Unlike temporal logics that focus
on “eventually” and “always” [Manna and Pnueli 1991] this methodology focuses on
“when.” Unlike models based on transition systems [Alur and Henzinger 1994], this
one is input/output oriented, and is more concerned with simulation than with verifica-
tion. A major motivation is to make precise the properties of languages and simulators
for discrete-event systems, including, for example, hardware description languages
and languages for concurrent real-time systems. As such, the focus of the paper is on
definability and determinism (existence and uniqueness of solutions), although hints
are given at extensions that support nondeterminism. Some aspects of the modeling
technique are inspired by Yates [1993] and Broy [1992]. The mathematical framework
that is used here was introduced in [Lee and Sangiovanni-Vincentelli 1998], but we
have repeated the essential material in order to make this paper self-contained.

2. Discrete-event systems

2.1. Signals

2.1.1. Values and tags
Given a set of values V and tags T = R, the reals, we define an event e to be

a member of E = T × V . I.e., an event has a tag and a value. We use tags to model

 J.C. Baltzer AG, Science Publishers

26 E.A. Lee / Modeling real-time processes using discrete events

time. The values can represent the operands and results of computation. For some
applications, |V | = 1, in which case the events are said to be pure. They carry no
value (of interest). Sometimes it is useful to construct models with an earliest time,
in which case we use T = [0,∞).

2.1.2. Signals and tuples of signals
We define a signal s ∈ S to be a set of events, so the set of all signals is S = ℘(E)

(the powerset, or the set of all subsets of E). Note that by this definition, a signal
cannot contain two identical events. They are modeled as a single event.1 A functional
signal is a partial function from T to V . By “partial function” we mean a function
that is defined for a subset of T . By “function” we mean that if e1 = (t, v1) ∈ s and
e2 = (t, v2) ∈ s, then v1 = v2.

Given a tag t ∈ T and signal s ∈ S, we define s(t) ⊆ s to be the subset of events
with tag t. A signal is functional if and only if |s(t)| 6 1 for all t ∈ T .

It is often useful to form a tuple s of N signals, written s = [s1, . . . , sN]. The set
of all such tuples will be denoted by SN . Position in the tuple serves the same purposes
as naming of signals in process calculi [Hoare 1978; Milner 1989]. Reordering of the
tuple serves the same purposes as renaming. A similar use of tuples is found in the
interaction categories of Abramsky et al. [1995]. We define s(t) = [s1(t), . . . , sN (t)].

The empty signal (one with no events) will be denoted by λ, and the N -tuple
of empty signals by ΛN . These are signals like any other, so λ ∈ S and ΛN ∈ SN .
For any signal s, s ∪ λ = s (ordinary set union). For any tuple, s ∈ SN , s ∪ ΛN = s,
where by the notation s ∪ ΛN we mean the pointwise union of the sets in the tuple.

Following Birkhoff and Mac Lane [1977], we define S0 to be a set with a single
element, which we denote by σ.

2.1.3. Continuous-time, discrete, and Zeno signals
Let T (s) ⊆ T denote the set of distinct tags in a signal s. A continuous-time

signal s satisfies T (s) = T . A discrete-event signal or discrete signal is one where
T (s) is order-isomorphic to a subset of the integers.2 The set of discrete signals is
denoted by Sd ⊂ S. We explain this now in more detail.

A map f :A → B from one ordered set A to another B is order-preserving or
monotonic if a < a′ implies that f (a) < f (a′), where the ordering relations are the
ones for the appropriate set. A map f :A→ B is a bijection if f (A) = B (the image of
the domain is the range) and a 6= a′ implies that f (a) 6= f (a′). An order isomorphism
is an order-preserving bijection. Two sets are order-isomorphic if there exists an order
isomorphism from one to the other.

This definition of discrete-event signals corresponds well with intuition. It says
that the tags that appear in any signal can be enumerated in chronological order. Note
that it is not sufficient to just be able to enumerate the tags (the ordering is important).

1 An alternative is to define a signal as a multiset, as done by Pratt [1986].
2 This elegant definition is due to Wan-Teh Chang.

E.A. Lee / Modeling real-time processes using discrete events 27

It captures the intuitively appealing concept that between any two finite tags there will
be a finite number of tags. Mazurkiewicz gives a considerably more complicated but
equivalent notion of discreteness in terms of relations [Mazurkiewicz 1984].

Let T (s) denote the set of tags appearing in any signal in the tuple s. Clearly
T (s) ⊆ T . A discrete-event tuple or discrete tuple s is one where T (s) is order-
isomorphic with a subset of the integers. Let S(N)

d denote the set of all discrete N
tuples. Note that S(N)

d 6= SNd (hence the paretheses in the superscript). Consider, for
example, the two signals

s1
{

(t, v): t = 0, 1, 2, . . .
}

, s2

{
(t, v): t =

1
2

,
2
3

,
3
4

, . . .

}
. (1)

While each is a member of Sd, the tuple s = [s1, s2] /∈ S(2)
d . Such a tuple, called

a Zeno tuple, can cause major difficulties in simulation because the mere presence
of signal s2 implies a need to process an infinite number of events before time can
advance beyond t = 1, assuming events are processed in chronological order.

In some communities, notably the control systems community, a discrete-event
model also requires that the set of values V be countable, or even finite [Cassandras
1993; Ho 1992]. This helps to keep the state space finite in certain circumstances,
which can be a big help in formal analysis. Nonetheless, we adopt the broader use of
the term, and will refer to a system as a discrete-event system whether V is countable,
finite, or neither.

2.1.4. Merging signals
The merge of m signals is defined to be

M (s1, s2, . . . , sm) = s1 ∪ s2 ∪ · · · ∪ sm. (2)

The merge of an m tuple is the merge of its component signals,

M (s) = M
(
[s1, s2, . . . , sm]

)
= M (s1, s2, . . . , sm). (3)

Note that M (s1, s2), where s1 and s2 are given by (1), is not discrete, despite the fact
that s1 and s2 are discrete. M (s1, s2) is called a Zeno signal.

Note further that if s1 and s2 are functional signals, that does not imply that
M (s1, s2) is a functional signal. It could have two values for the same tag. Define the
two-way biased merge by

M2b(s1, s2) = s1 ∪
(
s2 − ŝ2

)
, (4)

where ŝ2 is the largest subset of s2 such that T (ŝ2) ⊆ T (s1). In other words, if s1 and
s2 have events with the same tag, the biased merge includes only the event from s1.
The m way biased merge for m > 2 is

Mb(s) = s, (5)

Mb(s1, s2, . . . , sm) = M2b
(
s1,Mb(s2, . . . , sm)

)
. (6)

28 E.A. Lee / Modeling real-time processes using discrete events

Figure 1. Composition of independent processes.

The biased merge of a tuple is the biased merge of its component signals. The biased
merge of functional signals is functional.

2.2. Processes

A process P is a subset of SN for some N . A particular s ∈ SN is said to satisfy
the process if s ∈ P . An s that satisfies a process is called a behavior of the process.
Thus a process is a set of possible behaviors. For N > 2, the process may also be
viewed as a relation between the N signals in s.3 The merge and biased merge are
processes with N = m+ 1, where m is the number of signals being merged.

2.2.1. Composing processes
Since a process is a set of behaviors, a composition of processes should be

simply the intersection of the behaviors of each of the processes. A behavior of
the composition process should be a behavior of each of the component processes.
However, we have to use some care in forming this intersection. Before we can form
such an intersection, each process to be composed must be defined as a subset of the
same set of signals SN , called by some researchers its sort [Benveniste 1998].

Consider, for example, the two processes P1 and P2 in figure 1. These are each
subsets of S4, but they are of different sorts. P1 relates an entirely different set of
signals than P2. The composition involves eight signals, so to form the composition,
we must first augment P1 and P2 to define them in terms of subsets of S8. Let

P̂1 = P1 × S4, P̂2 = S4 × P2. (7)

We call these transformations of sort augmentation. Below we will give a notation

3 A relation between sets A and B is simply a subset of A×B.

E.A. Lee / Modeling real-time processes using discrete events 29

Figure 2. An interconnection of processes.

for such transformations in general. Since P̂1 and P̂2 are now of the same sort, and
composition is simply their intersection,

Q = P̂1 ∩ P̂2 =
(
P1 × S4) ∩ (S4 × P2

)
. (8)

This can be simplified to

Q = P1 × P2. (9)

This parallel composition of non-interacting processes is simply the cross product4 of
the sets of behaviors. Since there is no interaction between the processes, a behavior
of the composite process consists of any behavior of P1 together with any behavior
of P2. A behavior of Q is an 8-tuple, where the first 4 elements are a behavior of P1

and the remaining 4 elements are a behavior of P2.

2.2.2. Interacting processes
More interesting systems have processes that interact. Consider figure 2. A con-

nection C ⊂ SN is a particularly simple process where two (or more) of the signals
in the N -tuple are constrained to be identical. For example, in figure 2, C4,5 ⊂ S8

where

s = [s1, s2, s3, s4, s5, s6, s7, s8] ∈ C4,5 if s4 = s5. (10)

C2,7 can be given similarly as s2 = s7. There is nothing special about connections as
processes, but they are useful to couple the behaviors of other processes. For example,
in figure 2, the composite process may be given as

Q = (P1 × P2) ∩ C4,5 ∩ C2,7, (11)

where the first set is given by (9).

4 The tensor product is used in the interaction categories of Abramsky et al. [1995] for the same
composition. Here it follows from the intersection of behaviors.

30 E.A. Lee / Modeling real-time processes using discrete events

Given M processes in SN of the same sort (some of which may be connections),
a process Q composed of these processes is given by

Q =
⋂
Pi⊂P

Pi, (12)

where P is the collection of processes Pi ⊆ SN , 1 6 i 6M .

2.2.3. Projection
As suggested by the gray outline in figure 2, often it makes little sense to expose

all the signals of a composite process. In figure 2, for example, since signals s2 and
s5 are identical to s7 and s4, respectively, it would make more sense to “hide” two
of these signals and to model the composition as a subset of S6 rather than S8. This
changes the sort of the composite, which may make it easier to compose it again.

Let I = [i1, . . . , iM] be an ordered set of M distinct indexes in the range 1 6
i 6 N , and define the projection πI (s) of s = [s1, . . . , sN] ∈ SN onto SM by

πI (s) = [si1 , . . . , siM]. (13)

Thus, the ordered set of indexes defines the signals that are part of the projection and
the order in which they appear in the resulting tuple. If I = ∅, define πI (s) = σ ∈ S0.

The projection can be generalized to processes. Given a process P ⊆ SN , define
the projection onto SM by

πI(P) =
{

s ∈ SM : ∃ ŝ ∈ P where πI
(

ŝ
)

= s
}
. (14)

Thus, in figure 2, we can define the composite process

Q′ = πI
(
(P1 × P2) ∩ C4,5 ∩ C2,7

)
⊆ S6, (15)

where I = [1, 3, 4, 6, 7, 8]. Projection then facilitates composition of this process with
others, since the others will not need to be augmented to involve irrelevant signals.

If the two signals in a connection are associated with the same process, as shown
in figure 3, then the connection is called a self-loop. For the example in figure 3,
Q = πI (P ∩C1,3), where I = {2, 3, 4}. For simplicity, we will often denote self-loops
with only a single signal, obviating the need for the projection or the connection. This
is simply a syntactic shorthand; if two signals are constrained to be identical, we lose
nothing by considering only one of the signals.

2.2.4. Transformations of sort
Composition is set intersection. Augmentation and projection are syntactic op-

erations that merely give process definitions the right sort to enable composition by
intersection. They play no semantic role in composition. Moreover, they can be unified
and generalized, providing a notation for arbitrary transformations of sort.

Let H be a map H : {1, . . . ,N}→ {1, . . . ,M} such that

H(n) = H(m)⇒ n = m. (16)

E.A. Lee / Modeling real-time processes using discrete events 31

Figure 3. A self-loop.

Define the transformation of sort based on H by

πH(s) =
{̂

s ∈ SM : H(j) = i⇒ ŝi = sj
}
. (17)

Augmentation is now a special case where M > N and H is a total function, in which
case condition (16) is equivalent to H being one-to-one. Projection is the special case
where M < N and H is an onto partial function. We can also define permutation,
where M = N and H is a bijective total function.

Because of condition (16), H can be represented compactly by a tuple
[h1, . . . ,hM], where hi ∈ {ε, 1, 2, . . . ,N}. The symbol hi = ε indicates that there is
no j ∈ {1, 2, . . . ,N} such that H(j) = i. Otherwise, H(hi) = i.

Note that this sort transformation operator is really quite versatile. There are
several other ways we could have used it to define the composition in figure 2, even
avoiding connection processes altogether. In other process calculi, where names are
used instead of indexes, scope is analogous to our sort. Condition (16) is equivalent to
the requirement for unique names within a scope. The sort transformation accomplishes
the same end as renaming and hiding in other process calculi.

Some basic examples are shown in figure 4. Note that the indexing of signals
(vs. names) affects the manipulation of processes to give them compatible sorts. Note,
further, that figure 4d shows that the connection processes are easily replaced by more
carefully constructed intersections.

2.2.5. Inputs, outputs, and functional processes
Consider processes that have input and output signals, where the output signals

are given as a function of the input signals. Such processes are called functional.
Intuitively, input signals are not constrained by the process, while output signals are.
Because of the need to compose processes of the same sort, process definitions will
typically involve some unconstrained signals that have no effect on the outputs. For
convenience, we consider these distinct from the input signals and call them irrelevant
signals.

32 E.A. Lee / Modeling real-time processes using discrete events

Figure 4. Examples of composition of processes.

Formally, we can partition the index set {1, . . . ,N} of its sort into disjoint subsets
I , O, and R such that

{1, . . . ,N} = I ∪O ∪R. (18)

I is an ordered set of indexes of the input signals, O is an ordered set of indexes of
the output signals, and R is an ordered set of indexes of the irrelevant signals. The
union here is interpreted as an ordered merge. Given an input tuple, u ∈ S|I|, where
|I| is the number of input signals, let

U =
{

s ∈ SN : πI(s) = u
}
. (19)

Then B = U ∩ P is the set of behaviors consistent with this input. Equivalently,
B ⊆ P satisfying

πI (B) = {u}, πR(B) = S|R|, πO(B) =
{
F (u)

}
, (20)

where F :S|I| → S|O| is a function relating the output signals to the input signals.
A functional process therefore is completely characterized by the tuple

(F , I ,O,R). (21)

E.A. Lee / Modeling real-time processes using discrete events 33

Figure 5. A partitioning of the signals in figure 1 into inputs and outputs.

In figures 2–4, there is no indication of which signals might be inputs and which
might be outputs. Figure 5 modifies figure 2 by adding arrowheads to indicate inputs
and outputs. In this case, P1 might be a functional process with (F , I ,O,R) =
(F , {1, 2}, {3, 4, }, {5, 6, 7, 8}) for some function F :S2 → S2.

2.2.6. Nondeterminacy
A process is determinate if given the inputs it has exactly one behavior. Other-

wise, it is nondeterminate. Thus, whether a process is determinate or not depends on
how we define inputs. A functional process is obviously determinate. The same struc-
ture as that of a functional process can be used for some nondeterminate processes.
We define a quasi-functional process to be one given by

(Φ, I ,O,R), (22)

where Φ is a set of functions of the form F :S|I| → S|O|. Given an input tuple
u ∈ S|I|, the set of behaviors is B ⊆ P such that

πI (B) = {u},

πR(B) =S|R|, (23)

πO(B) =
{

s ∈ S|O|: ∃F ∈ Φ where s = F (u)
}
.

2.2.7. Source processes
A slightly more subtle situation involves source processes (processes with outputs

but no inputs), like P2 in figure 6. There, if P2 is functional, then it would be
characterized by

(F , I ,O,R) =
(
F ,∅, {4, 5}, {1, 2, 3}

)
, (24)

where F :S0 → S2. Since S0 is a set with a single element, the function F always
returns the same signal pair. Thus, a functional source is simply a determinate source.

34 E.A. Lee / Modeling real-time processes using discrete events

Figure 6. Composition of a functional process with a source process.

Of course, we can also define a process that is a sink, where O = ∅. A sink
process is trivially determinate and functional.

3. Composition of functional processes

In section 2.2.1, where we composed processes according to equation (12), tags,
inputs, outputs, and functions played no evident role. Composition was treated there
as combining constraints. However, set intersection gives us no direct way to answer
certain key questions about composition, such as whether the composition of two
functional processes is functional. We develop in this section a framework within
which we can answer this and several other compositionality questions. In particular,
we will focus on the notion of causality in discrete-event systems and the role that
causality plays in compositionality.

Intuition alone is sufficient to be convinced that the compositions in figure 4
result in functional processes if the component processes are functional. A more
complicated situation involves feedback, as illustrated by the example in figure 7.
Whether the composition is functional depends on the tag system and more details
about the process. Most interesting discrete-event systems include feedback.

3.1. Causality in discrete-event systems

Causality is a key concept in discrete-event systems. Intuitively, it means that
output events do not have time stamps less than the inputs that caused them. By
studying causality rigorously, we can address a family of problems that arise in the
design of discrete-event models and simulators. These problems center around how to
deal with synchronous events (those with identical tags) and how to deal with feedback
loops. But causality comes in subtly different forms that have important consequences.

3.1.1. The Cantor metric
Assume the discrete-event tag system where T = R, the reals. Consider an n-

tuple of signals s = [s1, . . . , sn] ∈ Sn. Let s(t) = [s1(t), . . . , sn(t)], where si(t) ⊆ s1

E.A. Lee / Modeling real-time processes using discrete events 35

Figure 7. Feedback (a directed self-loop).

is the subset of events in signal si with tag t. Thus, si(t) = λ means that t /∈ T (si)
(there are no events with tag t). We can define a metric on the set Sn of n-tuples of
signals as follows:5

d
(
s, s′
)

= sup

{
1
2t

: s(t) 6= s′(t), t ∈ T
}
. (25)

If we define τ such that

d
(
s, s′
)

=
1
2τ

(26)

then τ is the smallest tag where s and s′ differ (if such a tag exists), or the greatest
lower bound on the tags where they differ (if there is no smallest tag). Such a smallest
tag always exists if s and s′ are not identical and are discrete. For identical signals,
we define

d(s, s) = 0, (27)

a sensible extrapolation from (25) (let τ →∞ in (26)). The metric is always finite if
T has a finite lower bound, i.e. if there is an earliest time.

It is easy to verify that (25) is a metric. In fact, it is an ultrametric, meaning that
instead of the triangle inequality,

d
(
s, s′
)

+ d
(
s′, s′′

)
> d
(
s, s′′

)
, (28)

it satisfies the stronger condition

max
{
d
(
s, s′
)
, d
(
s′, s′′

)}
> d
(
s, s′′

)
. (29)

This metric is sometimes called the Cantor metric.6

The Cantor metric converts our set of n-tuples of signals into a metric space. In
this metric space, two signals are “close” (the distance is small) if they are identical
up to a large tag. The metric induces an intuitive notion of an open neighborhood. An
open-neighborhood of radius r > 0 is the set of all signals that are identical at least
up to and including the tag log2(r−1).

5 Reed and Roscoe [1987] use an infimum over times where the two signals are identical. For discrete
signals, the two metrics are identical.

6 The applicability of this metric in this context was pointed out to me by Gerard Berry.

36 E.A. Lee / Modeling real-time processes using discrete events

3.1.2. Causal, strictly causal, and delta causal functions
We can use this metric to classify three different forms of causality. A function

F :Sm → Sn is causal if for all s, s′ ∈ Sm,

d
(
F (s),F

(
s′
))
6 d
(
s, s′
)
. (30)

In other words, two possible outputs differ no earlier than the inputs that produced
them. A causal function is said to be non-expansive in this metric space.

A function F :Sm → Sn is strictly causal if for all s, s′ ∈ Sm,

d
(
F (s),F

(
s′
))
< d
(
s, s′
)
. (31)

In other words, two possible outputs differ later than the inputs that produced them
(or not at all).

A function F :Sm → Sn is delta causal if there exists a real number δ < 1 such
that for all s, s′ ∈ Sm,

d
(
F (s),F

(
s′
))
6 δd

(
s, s′
)
. (32)

Intuitively, this means that there is a delay of at least ∆ = log2(δ−1), a strictly positive
number, before any output of a process can be produced in reaction to an input event.
Inequality (32) is recognizable as the condition satisfied by a contraction mapping.

The merge function, defined in (3), satisfies

d
(
M (s),M

(
s′
))

= d
(
s, s′
)
. (33)

Hence, merge is causal, but not strictly or delta causal. The baised merge, defined
in (6), satisfies

d
(
Mb(s),Mb

(
s′
))
6 d
(
s, s′
)
, (34)

and thus is also causal.
Consider a source, like P2 :S0 → S2 in figure 6. Since S0 has only one element,

all s, s′ ∈ S0 are equal. Thus, every functional (determinate) source is delta causal
with δ = 0.

3.1.3. Fixed points
Causality turns out to play a central role in the existence and uniqueness of

behaviors under feedback composition. To understand this, we review some basic
properties of metric spaces.

A metric space is complete if every Cauchy sequence of points in the metric
space that converges, converges to a limit that is also in the metric space. It can be
verified that the set of signals S in a discrete-event system is complete. The Banach
fixed point theorem (see, for example, [Bryant 1985]) states that if F :X → X is
a contraction mapping and X is a complete metric space, then there is exactly one
x ∈ X such that F (x) = x. This is called a fixed point. Moreover, the Banach fixed

E.A. Lee / Modeling real-time processes using discrete events 37

point theorem gives a constructive way (sometimes called the fixed point algorithm)
to find the fixed point. Given any x0 ∈ X, x is the limit of the sequence

x1 = F (x0), x2 = F (x1), x3 = F (x2), . . . (35)

Consider a feedback loop like that in figure 7 in a discrete-event tag system.
The Banach fixed point theorem tells us that if the process P is functional and delta
causal, then the feedback loop has exactly one behavior (i.e., it is determinate). This
determinacy result was also proved by Yates [1993], although he used somewhat
different methods. Moreover, the Banach fixed point theorem gives us a constructive
way to find that behavior. Start with any guess about the signals (most simulators
start with an empty signal), and iteratively apply the function corresponding to the
process. This is exactly what VHDL, Verilog, and other discrete-event simulators
do. It is their operational semantics, and the Banach fixed point theorem tells us that
if every process in any feedback loop is a delta-causal functional process, then the
operational semantics match the denotational semantics.7 I.e., the simulator delivers
the right answer. We will study the operational semantics of simulators in more detail
below.

The contraction mapping condition prevents so-called Zeno conditions where
between two finite tags there can be an infinite number of other tags. Such Zeno
conditions are not automatically prevented in VHDL, for example.

The constraint that processes be delta causal is fairly severe. We can slightly
relax the delta causal condition by observing that it is sufficient that there exists a
finite N such that FN is delta causal. I.e., N cycles around a feedback loop introduce
at least ∆ delay. This is still not ensured by VHDL simulators, for example, nor by
many other discrete-event simulators in practical use.

It is possible to reformulate things so that VHDL processes are correctly modeled
as strictly causal (not delta causal) (see [Lee and Sangiovanni-Vincentelli 1998] for
details). Fortunately, a closely related theorem (see [Bryant 1985, chapter 4]) states
that if F :X → X is a strictly causal function and X is a complete metric space,
then there is at most one fixed point x ∈ X, F (x) = x. Thus, the “delta” delays in
VHDL are sufficient to ensure determinacy, but not enough to ensure that a feedback
system has a behavior, nor enough to ensure that the constructive procedure in (35)
will work.

If the metric space is compact rather than just complete, then strict causality is
enough to ensure the existence of a fixed point and the validity of the constructive
procedure (35) [Bryant 1985]. In general, the metric space of discrete-event signals is
not compact, although it is beyond the scope of this paper to show this. Thus, to be
sure that a simulation will yield the correct behavior, without further constraints, we
must ensure that the function or a finite power of the function within any feedback
loop is delta causal.

7 This is sometimes called the full abstraction property.

38 E.A. Lee / Modeling real-time processes using discrete events

Figure 8. Generalized acyclic composition of two functional processes.

3.2. Compositionality

We can now formulate precisely what conditions we wish the composition of
processes to satisfy. We denote a composition of two processes P1 ⊆ SN and P2 ⊆ SN
of the same sort by a function

φ :℘
(
SN
)
× ℘

(
SN
)
→ ℘

(
SN
)
, (36)

where

φ(P1,P2) = P1 ∩ P2 ∩ C, (37)

where C is the intersection of any number of connections of the same sort. We say
that φ is compositional if is satisfies the following four conditions:

1. If P1 and P2 are functional, then φ(P1,P2) is functional.

2. If P1 and P2 are causal, then φ(P1,P2) is causal.

3. If P1 and P2 are strictly causal, then φ(P1,P2) is strictly causal.

4. If P1 and P2 are delta causal, then φ(P1,P2) is delta causal.

3.2.1. Acyclic compositions
First we address the easy case of acyclic compositions of two processes. The

general form of these is shown in figure 8. In that figure, the arcs that are shown
represent an arbitrary number of signals (including zero) with indexes given by the
sets adjacent to the arcs. These sets satisfy the following constraints:

(1) they are disjoint,

(2) |O3| = |I3|, and

(3) their union is {1, . . . ,N}.

The composition is given by

φ(P1,P2) = P1 ∩ P2 ∩ C, C =
{

s: πO3(s) = πI3(s)
}
. (38)

E.A. Lee / Modeling real-time processes using discrete events 39

Figure 9. General form of feedback composition.

This composition generalizes the ones shown in figures 1, 4, and 6, which are all the
acyclic compositions we have considered. We wish to show that if P1 and P2 are
functional then φ(P1,P2) is functional. Let s, s′ ∈ φ(P1,P2). φ is functional if

πI1∪I2(s) = πI1∪I2

(
s′
)
⇒ πO1∪O2(s) = πO1∪O2

(
s′
)
. (39)

The left-hand side implies

πI1(s) = πI1

(
s′
)
, πI2(s) = πI2

(
s′
)
. (40)

Since P1 is functional,

πO3(s) = πO3

(
s′
)
, πO1(s) = πO1

(
s′
)
. (41)

Since P2 is functional, (40) and (41) imply

πO2(s) = πO2

(
s′
)

(42)

which together with (41) implies the right-hand side of (39), completing the proof.
Similar methods can be used to show that causality properties are preserved. For

example, to show that if P1 and P2 are causal then φ(P1,P2) is causal, we need to
show that

d
(
πO1∪O2(s),πO1∪O2

(
s′
))
6 d
(
πI1∪I2(s),πI1∪I2

(
s′
))
. (43)

To do this, we use the observation that for any two sets A,B ⊆ {1, . . . ,N}, and
s, s′ ∈ SN ,

d
(
πA∪B(s),πA∪B

(
s′
))

= max
{
d
(
πA(s),πA

(
s′
))

, d
(
πB(s),πB

(
s′
))}

. (44)

We leave the details of the proof as an excercise for the reader. Similar proofs
work for strict and delta causality, so compositionality follows.

3.2.2. Feedback compositions
Consider a general form of feedback composition, shown in figure 9. We have

omitted the irrelevant signals. We wish to show that if P1 is functional and delta

40 E.A. Lee / Modeling real-time processes using discrete events

Figure 10. Temporary construction to analyze the feedback composition.

causal, then ψ(P1) is functional and strictly causal. To show that it is functional, we
need to show that

πI1(s) = πI1

(
s′
)
⇒ πO1(s) = πO1

(
s′
)
. (45)

In order to show this, we have to construct an appropriate delta causal functional
process with associated function F :SM → SM , and then invoke the Banach fixed
point theorem. This can be done for a particular input tuple πI1(s) = q. In figure 10, we
redraw the feedback composition, inserting a source process Q to produce the constant
signal q, and looping back the outputs with indexes Q1, so that they become inputs to
the composition ϕ(P1,Q). Although they are inputs, they are ignored. But this device
allows us to observe that since the composition ϕ(P1,Q) is similar to those represented
by figure 8, then if P1 is delta causal, the composition will be functional and delta
causal, and therefore can be described by a contraction mapping F :SM → SM , where
M = |O1|+ |O2|. Thus, it has a unique fixed point s and πO1(s) = πO1(s′) as desired
in (45).

Note that in this case, it is not sufficient for P1 to be merely strictly causal,
because in this case we would not be assured of the existence of a fixed point. If it is
merely causal, then we are not assured of either existence or uniqueness. As a result,
it may be that ψ(P1) is not even functional.

We conclude that discrete-event systems are compositional under acyclic com-
position, but not under cyclic composition. Under cyclic composition, they are only
compositional if the process in the feedback loop is delta causal, or some finite power
of its function is delta causal.

4. Simulation

The discrete-event model of computation is frequently used in simulators for
such real-time applications as circuit design, communication network modeling, trans-
portation systems, etc. A typical discrete-event simulator operates by keeping a list of
events sorted by time stamp. The event with the smallest time stamp is “processed”
and removed from the list. What we mean by “processed” is that any process that sees
that event on any of its input signal fires, performing some computation in reaction to

E.A. Lee / Modeling real-time processes using discrete events 41

the event. In the course of processing the event, new events may be generated. This
simulation procedure provides an operational semantics for discrete-event systems. We
are interested in whether the operational semantics matches the denotational semantics
we have been studying.

4.1. Sequences of firings

Formally, the operational semantics is given in terms of a firing function for
each process (we assume all processes are functional). The set of firing functions for
m-input, n-output processes has the form

Γ =
{
f :Sm × T → Sn × Γ

}
. (46)

That is, a firing function f takes as arguments a tuple of signals and a time stamp,
and returns a tuple of signals as a new firing function (called a continuation). When
m > 0, it is required to satisfy the following stuttering condition:

f (Λm, t) = (Λn, f) for all t ∈ T. (47)

This condition states simply that nothing changes if no input events are offered to the
firing.

We can relate the firing function f to the process function F as follows. Let
s ∈ Sm be the input. Construct s′ = F (s), s′ ∈ Sn, according to the following
sequential procedure:

s′ = Λn
while (s 6= Λm) {

let τ = min
(
T
(
M (s)

))
let (s, f) = f

(
s(τ), τ

)
let s = s− s(τ)
let s′ = s′ ∪ s
}

(48)

The first statement initializes an empty result. The while loop processes pending
events. Within the while loop, the first statement uses the merge operator to identify
the smallest pending time stamp τ . The second line fires the process, offering as input
events s(τ), the events with time stamp τ . The third line uses set subtraction to remove
processed events, and the fourth line uses set union to append resulting events to the
result.

4.2. Relationship between the firing function and the process function

This procedure can be viewed as a functional that, given f , returns F . Consider
the simple special case where

f (s, τ) =
(
s′, f

)
. (49)

42 E.A. Lee / Modeling real-time processes using discrete events

Figure 11. A self loop used to realize a source.

I.e., the continuation is always the same firing function. In this case, it is easy to see
that if f is causal, strictly causal, or delta causal, then so is F .

For the more general case, given a firing function f , define its closure

f ⊆ Γ (50)

to be the set of all firing functions reachable from f . Then F is causal or strictly
causal if all functions in f are causal, strictly causal.

Delta causality is slightly trickier in this case because we need a uniform con-
traction. F is delta causal if there exists a δ < 1 such that for all f ′ ∈ f , s, s′ ∈ Sm,
and τ ∈ T ,

d
(
q, q′

)
6 d
(
s, s′
)
,

(
q, f ′′

)
= f ′(s, τ),

(
q′, f ′′′

)
= f ′

(
s′, τ

)
. (51)

4.3. Sources

Procedure (48) can be adapted for sources (where m = 0) as follows:

s′ = Λn
τ = 0
while (true) {

let (s, f) = f (σ, τ)
let τ = min

(
T
(
M (s)

))
let s′ = s′ ∪ s
}

(52)

Notice that the time stamp is tracking the output events rather than the input events
now.

It is fairly common in discrete-event simulators to disallow sources, requiring
them instead to be implemented using feedback loops like that in figure 11. We
assume for simplicity in the sequel that this is the case.

4.4. Operational semantics

Procedure (48) can now be used as a basis for an operational semantics for a
network of discrete-event processes. Suppose there are N signals and M actors with
firing functions f1, . . . , fM , with non-empty input index sets I1, . . . , IM and output

E.A. Lee / Modeling real-time processes using discrete events 43

index sets O1, . . . ,OM . Let s ∈ SN denote the events initially present (note that there
must be some to get things started in this semantics). The procedure is

while (s 6= ΛN) {
s′ = ΛN
let τ = min

(
T
(
M (s)

))
for each i ∈ {1, . . . ,M} {

let (s, fi) = fi
(
πI1

(
s(τ)

)
, τ
)

let s′ = s′ ∪AOi,N (s)
}
let s =

(
s− s(τ)

)
∪ s′

}

(53)

where

AOi,N
(

ŝ
)

= [p1, . . . , pN] ∈ SN , (54)

where

pj =

{
λ if j /∈ Oi = [o1, . . . , om],
π[h]
(

ŝ
)

if oh = j. (55)

Although notationally difficult, the operator AOi,N (s) is conceptually simple. It change
the sort of s, augmenting it to dimension N by inserting empty signals into the tuple.

4.5. Discussion

If the firing functions or a finite power are all delta causal, then the operational
semantics matches the denotational semantics (the simulation procedure does “the right
thing”). If there is a firing function or interconnection of firing functions that is only
strictly causal in a feedback loop, then Zeno signals become a possibility. In this case,
a simulator may fail to progress beyond a finite point in time. If there is a firing
function that is only causal in a feedback loop, then we have no assurance of their
being a denotational solution, much less an operational one.

In the latter case, lessons could be taken from the synchronous languages [Ben-
veniste and Berry 1991] to define a fixed-point semantics at each time stamp. This
could be done with functional signals and firing functions that are monotonic over a
Scott order on the event values. Efficient procedures exist for finding such fixed points
at run time [Edwards 1997], so this is by no means a far-fetched approach.

5. Conclusions

We have given a formal framework for a class of models of real-time systems
based on tagging events with the time at which they occur. The framework supports
answering questions of compositionality and correctness of an operational semantics.

44 E.A. Lee / Modeling real-time processes using discrete events

Discrete-event models are popular and intuitive, since events must occur at a
particular time. If we accept that time is uniform (neglecting relativistic effects), then
our model reflects the global ordering of events intrinsic in an interleaving semantics.
However, when modeling a large concurrent system, the model should probably reflect
the inherent difficulty in maintaining a consistent view of time in a distributed system
[Ellingson and Kulpinski 1973; Lamport 1978; Messerschmitt 1990; Raynal and Sing-
hal 1996]. This difficulty appears even in relatively small systems, such as VLSI chips,
where clock distribution is challenging. If an implementation cannot maintain a con-
sistent view of time across its subsystems, then it may be inappropriate for its model
to do so (it depends on what questions the model is expected to answer). Timed mod-
els based on branching time and partial orders may be more appropriate [Pratt 1986;
Lamport 1978; Fidge 1991; Mattern 1989]. Some preliminary steps have been taken
by Mathews towards unifying partial order methods with metric space methods like
the ones used here [Matthews 1994, 1995].

It is assumed above that when defining a system, the sets T and V include all
possible tags and values. In some applications, it may be more convenient to partition
these sets and to consider the partitions separately. For instance, V might be naturally
divided into subsets V1, V2, . . . according to a standard notion of data types. Similarly,
T might be divided, for example, to separately model parts of a heterogeneous system
that includes continuous-time, discrete-event, and dataflow subsystems. This suggests a
type system that focuses on signals rather than values. Of course, processes themselves
can then also be divided by types, yielding a process-level type system that captures the
semantic model of the signals that satisfy the process, something like the interaction
categories of Abramsky et al. [1995].

Acknowledgements

This research is part of the Ptolemy project, which is supported by the Defense
Advanced Research Projects Agency (DARPA), the Air Force Research Laborarory, the
State of California MICRO program, and the following companies: Cadence Design
Systems, Hewlett Packard, Hitachi, Hughes Space and Communications, Motorola,
NEC, and Philips.

References

Abramsky, S., S.J. Gay, and R. Nagarajan (1995), “Interaction Categories and the Foundations of Typed
Concurrent Programming,” In Deductive Program Design: Proceedings of the 1994 Marktoberdorf
International Summer School, M. Broy, Ed., NATO ASI Series F, Springer, Berlin.

Alur, R. and T.A. Henzinger (1994), “Real-Time System = Discrete System + Clock Variables,” Proc.
of the First AMAST Workshop on Real Time, In Theories and Experiences for Real-Time System
Development, T. Rus and C. Rattray, Eds., AMAST Series in Computing 2, World-Scientific, pp.
1–29.

Benveniste, A. (1998), “Compositional and Uniform Modeling of Hybrid Systems,” to appear, IEEE
Transactions on Automatic Control.

E.A. Lee / Modeling real-time processes using discrete events 45

Benveniste, A. and G. Berry (1991), “The Synchronous Approach to Reactive and Real-Time Systems,”
Proceedings of the IEEE 79, 9, 1270–1282.

Birkhoff, G. and S. MacLane (1977), A survey of Modern Algebra, 4th ed., Macmillan, New York.
Broy, M. (1992), “Functional Specification of Time Sensitive Communicating Systems,” In Programming

and Mathematical Method, M. Broy, Ed., NATO ASI Series, Springer, Berlin.
Bryant, V. (1985), Metric Spaces, Cambridge University Press, Cambridge.
Cassandras, C. (1993), Discrete Event Systems, Modeling and Performance Analysis, Irwin, Homewood,

IL.
Edwards, S.A. (1997), “The Specification and Execution of Heterogeneous Synchronous Reactive Sys-

tems,” Ph.D. thesis, UCB/ERL M97/31, University of California, Berkeley, CA. http://ptolemy.
eecs.berkeley.edu/papers/97/sedwardsThesis/.

Ellingson, C. and R.J. Kulpinski (1973), “Dissemination of System-Time,” IEEE Transactions on Com-
munications 23, 5, 605–624.

Fidge, C.J. (1991), “Logical Time in Distributed Systems,” Computer 24, 8, 28–33.
Ho, Y.-C., Ed. (1992), Discrete Event Dynamic Systems: Analyzing Complexity and Performance in the

Modern World, IEEE Press, New York.
Hoare, C.A.R. (1978), “Communicating Sequential Processes,” Communications of the ACM 21, 8.
Lamport, L. (1978), “Time, Clocks, and the Ordering of Events in a Distributed System,” Communications

of the ACM 21, 7.
Lee, E.A. and A. Sangiovanni-Vincentelli (1998), “A Denotational Framework for Comparing Models of

Computation,” to appear in IEEE Transactions on CAD. http://ptolemy.eecs.berkeley.
edu/papers/98/framework.

Manna, Z. and A. Pnueli (1991), The Temporal Logic of Reactive and Concurrent Systems, Springer,
Berlin.

Mattern, F. (1989), “Virtual Time and Global States of Distributed Systems,” In Parallel and Distributed
Algorithms, M. Cosnard and P. Quinton, Eds., North-Holland, Amsterdam, pp. 215–226.

Matthews, S.G. (1994), “Partial Metric Topology,” In General Topology and Its Applications, S. Andima
et al., Eds., Annals of the New York Academy of Science, Vol. 728, New York Academy of Sci., pp.
183–197.

Matthews, S.G. (1995), “An Extensional Treatment of Lazy Dataflow Deadlock,” Theoretical Computer
Science 151, 195–205.

Mazurkiewicz, A. (1984), “Traces, Histories, Graphs: Instances of a Process Monoid,” in Proc. Conf. on
Mathematical Foundations of Computer Science, M.P. Chytil and V. Koubek, Eds., Lecture Notes in
Computer Science, Vol. 176, Springer, New York.

Messerschmitt, D. G. (1990), “Synchronization in Digital System Design,” IEEE Journal on Selected
Areas in Communications 8, 8, 1404–1419.

Milner, R. (1989), Communication and Concurrency, Prentice-Hall, Englewood Cliffs, NJ.
Pratt, V.R. (1986), “Modeling Concurrency with Partial Orders,” International Journal of Parallel Pro-

gramming 15, 1, 33–71.
Raynal, M. and M. Singhal (1996), “Logical time: Capturing Causality in Distributed Systems,” Com-

puter, 29, 2.
Reed, G.M and A.W. Roscoe (1987), “Metric Spaces as Models for Real-Time Concurrency,” Mathemat-

ical Foundations of Programming Language Semantics, 3rd Workshop, New Orleans, Lecture Notes
in Computer Science, Vol. 298, Springer, New York, pp. 331–343.

Yates, R.K. (1993), “Networks of Real-Time Processes,” In Concur ’93, Proc. of the 4th Int. Conf. on
Concurrency Theory, E. Best, Ed., Lecture Notes in Computer Science, Vol. 715, Springer, New York.

