
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 3.5. NO. 5 .  MAY 1990 535 

Hybrid Dynamical Systems Theory and the 
SIGNAL Language 

Abstract- We study the logic and synchronization characteristics of 
general dynamical systems called Hybrid Dynamical Systems. Our the- 
ory is related to discrete event dynamical system theory, hut handles 
numerics as well as symbolics. It is supported by the programming lan- 
guage SIGNAL and a mathematical model of general implicit dynamical 
systems. The core of the theory is the notion of HDS resolution which 
is based on a coding of any HDS into a “dynamical graph” which con- 
sists of a skew product of a polynomial dynamical system on the finite 
field of integers modulo 3 ( to  describe the transitions of the underlying 
automaton) and directed graphs (to describe how data dependencies 
dynamically evolve). The resolution algorithms are then based on the 
study of this dynamical system. 

I. INTRODUCTION 
A .  Requirements from Applications: Hybrid Dynamical 
Systems (HDS) 

As recognized in [21] and [15], most modern applications in- 
volving dynamical systems are very complex in nature; think of 
the following: 

real-time complex control or signal processing systems in 
avionics, aeronautics, and in C3-military systems; 

automation handling man-machine interfaces of control sys- 
tems (monitoring, trouble shooting, visual aids in avionics, re- 
mote manipulation. . .); 

vision- and sensory-based control in robotics; 
complex pattern recognition applications such as continuous 

speech recognition 

to mention just a few. Some particular features of these applica- 
tions are the following: 

1) the mixed continuous/discontinuous nature of time because 
of the simultaneous presence of familiar differentiaVdifference dy- 
namical subsystems and discrete event systems relating these sub- 
systems; 

2) the presence of dynamics; 
3) a large combinatorial complexity as far as logic and syn- 

chronization is concerned (there is no concise model to describe 
precisely such applications), hence the need for modularity. 

Discrete event dynamical systems (DEDS) have been intro- 
duced as a theoretical framework for the study of flexible man- 
ufacturing and related systems by Wonham and Ramadge [28], 
[29], and have been widely studied since their introduction [25], 
[24], [17]. Roughly speaking, DEDS are finite state transition 
systems which are observed and can be controlled by the lan- 
guage generated by the labels that are attached to each transition, 
regardless of the precise meaning of these labels. However, in 
most of the above-mentioned applications, the mutual interaction 
between numerical computations and the enabling or disabling of 
transitions is very complex and should be considered within a 
theory of such dynamical systems: this point will be discussed 
qeveral times throughout this paper. 
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On the other hand, past research in computer science has re- 
sulted in the development of a large set of tools to handle such 
complex dynamical systems in the context of real-time systems 
and languages. More precisely communicating systems theo- 
ries were developed, with CSP (communicating sequential pro- 
cesses) [16], [9] and CCS (a calculus of communicating sys- 
tems) [22], [23] as most famous examples. More recently, the 
new approach of synchronous programming has been introduced 
and developed around the languages ESTEREL [8], [12], LUS- 
TRE [7], [lo], and SIGNAL [20], [5], [4], [19] to specify, pro- 
gram, and analyze the kind of complex dynamical system we 
described above. This is the direction we want to pursue and 
further discuss from a control viewpoint in this paper. 

In the sequel, hybrid dynamical systems (HDS) theory will 
refer to a theory handling synchronization, logic, and their inter- 
connections with the numerical behavior of dynamical systems. 
As the reader will understand while reading this paper, the mixed 
nature of HDS justifies the development of a new theory and 
paradigm. 

B .  A New Paradigm, Some Fruitful Remarks 
1) Building complex objects requires the use of strongly 

modular languages. Our first remark was about the highly com- 
binatorial complexity of HDS. Such a complexity faces us with 
a new problem which was not considered before in the control 
community, namely the difficulty of simply describing, specifu- 
ing, or constructing HDS. Such a formal specification must be 
based on the use of an unambiguous syntax (which can be text-, 
mathematics-, or even graphics-oriented), that is to say a speci- 
fication or programming language. 

2) Why relational dynamical systems? A second claim is 
that a HDS should be described via a set of relations or con- 
straints, rather than as a complicated input-output map as it is 
usually done in control science. This issue has also been brought 
up by J .  C. Willems [30] in the context of the theory of linear 
dynamical systems. The advantage is that both dynamics and ob- 
jectives of the system can be stated within a single framework, 
unlike to classical control theory where they are separated into 
the dynamics and some performance criterion. 

3) The basic problem: HDS resolution. An immediate con- 
sequence of this relational framework is that such HDS specifi- 
cations cannot be effective, i.e., it is not immediately possible to 
compute the outputs of a so-specified HDS in response to some se- 
quences of inputs. The control scientist will recognize a standard 
situation when handling descriptor or implicit linear dynamical 
systems. By HDS resolution, we have in mind a procedure to 
transform any relational HDS specification into a machine which 
can execute the desired behaviors, and thus represents the desired 
equivalent input-output map. 

4) What is the nature of time for HDS? Complex appli- 
cations such as mentioned above are inherently distributed in na- 
ture. Hence, every subsystem possesses its own time reference, 
namely the ordered collection of all the communications or ac- 
tions this subsystem performs: in sensory based control systems, 
each sensor possesses its own digital processing with proper sam- 
pling rate, actuators generally have a slower sampling rate than 
sensors, and moreover the software devoted to monitoring only 
reacts to various kinds of alarms that are triggered internally or 
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externally. Hence, the nature of time in HDS is by no means 
universal, but rather local to each subsystem, and consequently 
multiform. A fundamental consequence is that communications 
between subsystems impose relative constraints on the timing of 
these subsystems: an alarm can be sent by an actuator or a sen- 
sor to the supervisor which in turn is designed to react on ac- 
tuators: the whole result is a synchronization constraint between 
these subsystems. Hence, handling these multiform time refer- 
ences and reasoning about them is one of the fundamental tasks 
we have to perform. 

C. Organization of the Paper 
Section I1 is devoted to an introduction to the topic of HDS. 

For this purpose, we begin with a point of view which we think to 
be as natural as possible to the control audience, and show step- 
by-step how the SIGNAL language naturally comes out from this 
discussion. ’ A mathematical model corresponding to this infor- 
mal presentation is given in Appendix A. In Section 111, HDS 
resolution is informally presented and discussed. It is shown how 
the previously mentioned mutual interaction between synchro- 
nization and computation is handled via dynamical graphs, a 
notion which combines both advantages of signal flow graphs and 
automata. An algebraic coding of dynamical graphs using poly- 
nomial dynamical systems over the finite field of integers modulo 
3 is introduced, and its use is illustrated on the sketchy analysis 
of properties such as observability and deadlock. Finally, HDS 
resolution is informally presented on an example. Formal models 
and methods supporting these examples are found in [SI and [3]. 

11. THE SIGNAL PROGRAMMING LANGUAGE; SOME EXAMPLES 
A.  Connecting the Topic to a Control Formulation 

The purpose of this section is to motivate the notion of hybrid 
dynamical system we shall consider throughout this paper. A 
simple mathematical model is presented in Appendix A.1, where 
the notions and objects we shall informally introduce in the sequel 
are formally defined. 

I )  Specifring Hybrid Dynamical Systems: Consider a 
discrete-time dynamical system described by a set of dynamical 
plus algebraic equations 

0 = g ( F n ,  Y n )  (1) 

where the variables En and y n  are both vector valued and n = 
1,2,  3 . . . . We can define some of the components in y,, to be 
input variables, and some as output variables and investigate the 
resulting input-output behavior of this system. Clearly, depend- 
ing on the peculiarity of the functions f and g ,  at a given instant, 
the output may not exist for a given input and state, or multiple 
solutions may exist. In this sense, this is a relational dynamical 
system. 

Now, assume that all the vectors above have a mixture of com- 
ponents such as real, integer, logic, symbolic,. , .. Therefore, f 
and g may look unusual. In this sense, this is a hybrid dynamical 
system, and we shall see later what the consequences of this prop- 
erty are when handling such systems. All this is quite familiar 
and not really novel in a control formulation. 

What is new is a certain kind of restricted asynchronism. This 
is explained next. Assume that each variable, in addition to the 
normal values it takes in its range, can also take a special value 
representing the absence of data at that instance. The symbol 
used for absence is 1. Therefore, an infinite time sequence of an 
integer variable (we shall refer to as a signal in the sequel) may 
look like 

1, -4, I, I , 4 ,  2, I , . . .  (2) 

‘ This discussion is related to social science, but we could have selected an 
example from control science as well. 
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which is interpreted as the signal being absent at the instants 
n = 3, 4, 7 ,  . . , etc. The following questions are immediate from 
this definition. 

(1) If a single signal is observed, should we distinguish the 
following samples from each other? 

1,-4, i, 1 , 4 , 2 ,  1, 

1 , 1 ,  L , - 4 ,  1 , 4 ,  1 , 2 ,  1, 

1, - 4 , 4 , 2 , . . . .  

Consider an “observer”’ who monitors this single signal and 
does nothing else. Since he is assumed to observe only present 
values, there is no reason to distinguish the samples above. In 
fact, the symbol I is simply a tool to specify the relative pres- 
ence or absence of a signal, given an environment, i.e., other sig- 
nals that are also observed (cf. Appendix A.1). Jointly observed 
signals taking the value i simultaneously for any environment 
will be said to possess the same clock, and they will be said 
to possess different clocks otherwise (cf. Appendix A.1). Hence, 
clocks can be considered as equivalence classes of signals that are 
present simultaneously. As a first consequence, we prefer to omit 
the time index n when referring to signals since clocks are only 
relative rather than absolute notions. In the sequel, signals will 
be denoted by names such as x,  y, zap; . ., without mentioning 
the time index. 

(2) How to extend usual functions to the special value 
I? For instance, what does 2 + 1 mean? Several choices are 
possible. For reasons that will be apparent later, we decided that 
2 + I has no meaning, so that + appears as a partial function 
giving, for instance, 2 + 3 = 5 ,  I + I = I , but being 
undefined when only one of its arguments takes the special value 
I. With this convention, usual functions are easily extended to 
signals possessing the same clock. For instance, we shall write 
equations such as 

water := rain - evaporation 
help := (water > max-level) 

The first equation requires that both signals rain and evaporation 
possess the same clock, and this equation delivers the difference 
of these inputs when they are present. The second one delivers 
the boolean help exactly when the level of water is measured, 
with the value true or false according to whether the mentioned 
condition is satisfied or not (max-level is assumed to be a constant 
threshold and is therefore permanently available). Consequently, 
while the usual + is certainly a function, our + on signals is not, 
since requiring the clocks of the inputs to be equal is a constraint 
on the input signals. To help for the present discussion, we shall 
for the moment use the (naive) notation 

clock( rain) = clock(evaporation) = clock(water) = clock( help) 

to refer to the equality of clocks. 
(3) How to produce signals with new clocks from exist- 

ing signals? For example, how can we perform undersampling, 
oversampling, both at data-dependent rates? The simplest idea is 
to select the instants at which some boolean signal takes the value 
true. For instance, we shall write formulas such as 

exceptional-funds := (500 flooded-acre) when help 

to mean that the exceptional-funds must be delivered to the farm- 
ers precisely when help occurs and takes the value true (cf. above) 
and, then, are (in billion $) 500 times the flooded acreage. To 
simplify, we assume that flooded-acre is measured exactly when 
help occurs and is true. A new clock was created by this way, 
which is less frequent than the clock of the boolean signal help. 

In the common sense, no mathematical definition is referred to here. 
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help. We shall write (cf. Appendix A.1 for a formal definition of 
5 )  

clock(exceptiona1-funds) 5 clock( help) 

Are other ways needed to transform clocks? 
(4) How to combine signals with different clocks? Since 

usual functions cannot do it, what kind of new operator on signals 
is needed for this purpose? For instance, we may write 

funds := exceptional-funds default exportation-aid 

to indicate that regular funds are: Ist/(i.e., with priority) 
exceptional-funds whenever needed, or 2nd/(i.e., by default) 
evaporation-aid in other cases. The clock we created in this way 
is the supremum of the clocks of the signals lying on the right- 
hand side. In particular, we have 

clock( exceptional-funds) 5 clock( funds) 
Is anything else needed? 

(5) How to define clock-dependent delay operators? Re- 
ferring to (2), the two following ways to define the corresponding 
delayed signal could be considered: 

delayed signal (1st idea): so -4 _L _L . , 
original signal: 1 -4 I 1 4 2 1 . . 

delayed signal (2nd idea): ’ 0  -4 . . 
where so is some initial condition. The first idea is to define the 
delayed signal 6s as 6s, = s,-l, which seems at a 6rst glance 
reasonable. Unfortunately, this definition makes explicit use of 
the time index n which is not desirable for the above discussed 
reasons. In the second idea, present values are shifted while keep- 
ing the clock unchanged: the notion of delay is clock-dependent 
and is local to each signal. This second idea is nothing but a 
mathematical model of the shift register: this is the definition we 
chose. To denote shift registers, we may for instance write 

forecasted-funds := funds $ 5000 

to mean that the current value of forecasted-funds is, according to 
the second idea above, the delayed (denoted by $)3 value of funds 
with initial condition 5000 (bruteforce extrapolation is performed 
when the budget is voted). Consequently, we have 

clock(forecasted-funds) = clock(funds) 

(6) How to interconnect hybrid dynamical systems? This 
will be extremely easy because we decided to handle the time 
indexes in an implicit way. Here follows an example: 

FARM E RS- L OV E- RA I N = 
I water := rain - evaporation 
I help := (water > max-level) 
1 exceptional-funds := (500 flooded-acre) when help 
I funds := exceptional-funds default exportation-aid 
I forecasted-funds := funds $ 5000 
This is just a system of (dynamical) equations, where the symbol 
‘ ‘ I ”  is used to denote linking. We provided it with a name for the 
sake of convenience. Three different “master” clocks are involved 
in this system: the clocks of the signals water, exceptional-funds, 
exportation-aids: while other clocks are derived from these. 
Try to write this with explicit time indexes as in ( l ) !  Let us 
emphasize that, despite the apparent explicit form of this system, 
it is an implicit one, due to the various constraints on the clocks 
we have imposed. This simple example justifies the relational 
form we started with in (1) for our hybrid dynamical systems 
(cf. Appendix A.11 for a formal definition of HDS). 

Time is money. 
There is no reason to believe that exportation aids are delivered as fre- 

quently as the level of water is measured. 

In the Appendixes A.1-A.11, a formal definition is given for the 
various objects (“signals, I, I”)  we introduced here informally, 
and this model is also used there as a mathematical model for the 
SIGNAL language. 

2) Hybrid Dynamical Systems Resolution: A First Discus- 
sion: The constructive thrust of HDS theory is the resolution sys- 
tem. This problem reduces to that of investigating the existence 
and uniqueness of solutions to a set of equations. Here “solu- 
tion” means an input-output map producing the same behaviors 
as the specified system. Here follow a few remarks. 

A difference between hybrid- and discrete event dyn- 
amical systems theories. Consider again the system FARM- 
ERS-LOVE-RAIN. As we said before, it involves three dif- 
ferent master clocks. The clocks of the signals water and 
exportation-aids are not constrained by the considered system 
of equations: these were specified as inputs, and their clocks as 
well as their values are free. However, the clock of the signal 
exceptional-funds is constrained by the value of the boolean sig- 
nal help, which turns out to depend on the value of water. This 
possible dependency of clocks on values of other (nonboolean) 
signals is a special feature of HDS theory; since on the other hand 
the presence of signals can depend on clocks, tricky signal/clock 
interdependences have to be taken into account when HDS 
resolution is considered. This is a special feature of HDS com- 
pared to DEDS where transformations on integer (or real, etc.) 
values are considered as “hidden actions” performed when state 
transitions occur. The skeptical reader is urged to analyze care- 
fully the Gonthier and MUX examples in Sections IIIA3 and IIIB. 

HDS resolution and control problems. Up to year 19**, 
FARMERS-LOVE-RAIN was the law governing the delivery of 
funds for agriculture. At this time, W. W. LeGuen, a repre- 
sentative of the (French) middlewest, suggested to replace the 
FARMERS-LOVE-RAIN law by the following slightly different 
one: 

FARM ERS-LOVE-LEGU EN = 
I water := rain - evaporation 
1 help := (water > max-level) 
I exceptional-funds := (500 flooded-acre) when help 
I f u n d s  := exceptional-funds default forecasted-funds 
1 forecasted-funds := funds $ 5000 

This was voted, and the immediate consequence was the following 
trouble: funds had to be provided at least when exceptional-funds 
were requested, but could be delivered as frequently as requested! 
In fact, the last two equations impose only the constraints 

clock( exceptional-funds) 5 clock(funds) 

= clock( forecasted-funds) 

This left an unexpected degree of freedom. Farmers immediately 
proposed to maximize their income (a basic control problem) and 
proposed to receive funds as frequently as possible: 

c/ock(funds) ‘I 

(the clock which is more frequent than any other one). On the 
other hand, the national budget proposed to minimize the out- 
come (another basic control problem) and wanted to never deliver 
funds: 

clock(funds) z I 

(the clock with no presence at all). This latter pro- 
posal was recognized as being in contradiction to the 
FARMERS-LOVE-LEGUEN law and was rejected. Finally, the 
compromise was to deliver f u n d s  as scarcely as possible, 

clock(funds) = clock(exceptiona1-funds) 

i.e., only when a flood occurred, so that farmers got angry. 
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This little story illustrates how the relational nature of HDS 
could be exploited based on the following philosophy. 

Describe the constraints imposed by the "physics" of the 
system (both rain and evaporation occur). 

Specify some additional constraints you wish to be satisfied 
by your system (a kind of model reference). 

Verify whether the whole is consistent, and/or free from 
ambiguity. In this case, construct the executable machine (it must 
be some I/O map) that can produce the specified behavior: this 
is what we called resolution. 

On the other hand, questions have been raised such as: did we 
propose the right tools to model hybrid dynamical systems? Such 
questions can only be answered by some fundamental investiga- 
tion involving formal mathematical models of HDS. This work 
is beyond the scope of the present paper and was, for instance, 
discussed in [2 ]  and [3]. Incidentally, what we introduced was an 
outline of the SIGNAL5 programming language. 

B .  SIGNAL -Kernel 
To be concise, we shall introduce only the primitives of the 

SIGNAL language, and drop any reference to typing, modular 
structure, and various declarations; the interested reader is re- 
ferred to [l 11. As we have shown, SIGNAL handles (possibly 
infinite) sequences of data with time implicit: such sequences 
will be referred to as signals. At a given instant, signals may 
have the status absent (denoted by I) and present. If x is a sig- 
nal, we shall denote by { ~ ~ } ~ 2 ~  the sequence of its values when 
it is present. Signals that are present simultaneously are said to 
have the same clock, so that clocks are equivalence classes of 
simultaneously present signals (a formal definition is given in the 
Appendix A.1). Instructions of SIGNAL are intended to relate 
clocks as well as values of the various signals involved in a given 
system. We shall term a system of such relations program; pro- 
grams can be used as modules and further combined as indicated 
later. 

A basic principle in SIGNAL is that a single name is as- 
signed to every signal, so that in the sequel (and unless explicitly 
stated), identical names refer to identical signals. The kernel- 
language SIGNAL possesses 5 instructions, the fxst of them be- 
ing a generic one. 

i) R(x1, . . . ,xp) 
ii) y : = x $ x O  

1 1 1 )  y : = x  when b 
iv) y := U default v 

Their intuitive meaning is as follows (for a formal definition, see 
Appendix A.111). 

i) Direct extension of instantaneous relations into relations act- 
ing on signals: 

... 

4 P I Q  

R( x l ,  . . . , xp) @ 'in : R(  xl, , . . . , xp,) holds 

where R ( .  .) denotes a relation and the index n enumerates the 
instants at which the signals xi are present. Examples are func- 
tions such as z := x+y  (Vn:z, = x, +yn) or statements such as (a 
and b) or c =true (Vn:(an and bn) or Cn = true). A byproduct 
of this instruction is that all referred signals must be present 
simultaneously, i.e., they must have the same clock. This is 
a generic instruction, i.e., we assume a family of relations is 
available. If one chooses an instantaneous relation accepting any 
p-uple, the resulting SIGNAL instruction only constrains the in- 
volved signals to have the same clock: this is the way we derive 
the instruction written synchro x, y, . . . which only forces the 
listed signals to have the same clock. 

ii) Shift register. 

y : = x $ x O @ V n > l :  yn =xn- l ,y ,  1 x 0  

SIGNAL is a joint trademark of CNET and INRlA 

Recall that the index n refers to the values of the signals when 
they are present. Again this instruction forces the input and output 
signals to have the same clock. 

iii) Condition (b is boolean): y equals x when the signal x and 
the boolean b are available and b is true; otherwise, y is not 
emitted; the result is an event-based undersampling of signals. 
Here follows a table summarizing this instruction: ITTI 

( I I  I I 

ITTI 
( I I  I I 

iv) y merges U and v, with priority to U when both signals are 
simultaneously present; this instruction is the key to oversam- 
pling as we shall see later. Here follows a table summarizing this 
instruction: 

The instructions i)-iv) specify the elementary programs. 
v) combination of already defined programs: signals with com- 

mon names in P and Q are considered as identical. For example 

I y := zy + a 

denotes the system of recurrent equations 

/ z y : = y  $ xo 

Yn =ZYn +an 

ZY,  = ~ ~ - I , z Y I  =d. 

We shall say that the smallest set of HDS containing the el- 
ementary systems specified by the instructions i)-iv) and closed 
under the interconnection operation I is the algebra of SIGNAL 
programs. A formal definition of this set of instructions is pre- 
sented in Appendix A.111. 

111. HDS RESOLUTION: AN INFORMAL PRESENTATION 
In the preceding section, we have informally presented the SIG- 

NAL language, and gave a first illustration to specify HDS. A 
corresponding formal model is found in the Appendix. The next 
section will be devoted to an informal presentation of HDS reso- 
lution, and investigation of examples that are tailored to illustrate 
the features of our theory. A formal presentation of HDS resolu- 
tion is beyond the scope of this paper. The interested reader is 
referred to [5] for such a presentation. 

A .  Encoding SIGNAL Programs: A Tool for  Resolution 
HDS resolution aims at transforming implicit dynamical sys- 

tems of the form ( 1 )  into an equivalent explicit I/O form. If no 
restriction is imposed on the nature off,  g, this will be gener- 
ally impossible. To overcome this difficulty, we shall 6rst define 
a map (or coding) from the algebra of SIGNAL programs onto a 
smaller algebra where resolution is possible. The idea behind this 
coding is the following. There are two basic types of tools for 
transforming and analyzing how computations are organized in 
general dynamical systems. The first one is the signal flow graph 
showing data dependencies; this may be sufficient for very reg- 
ular algorithms such as those encountered in basic digital signal 
processing. The second one is the class of finite state automata 
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describing the scheduling, the branching, and related features of 
the dynamical system. We show next how to handle signal flow 
graphs which evolve dynamically under the control of an automa- 
tion: the algebra of dynamical graphs we shall obtain in this way 
will be the subalgebra where we shall be able to perform reso- 
lution. 

I )  Dynamical Graphs: What we must handle jointly are the 
special value 1, booleans, and nonboolean data dependencies. 
We shall first provide an algebra with a convenient calculus where 
the pairs {I, booleans} can be represented. What we want to 
encode are the following status: absent, present, true, false, 
the last two for boolean signals only. These are encoded onto the 
finite field 53 = Z / Z  of integers modulo 3 as follows 

true U + 1 

false tf ~ I 

absent - 0 

present U * 1 

whcre * 1  denotes a nondeterminate choice of +1 or - 1 ;  i.e., we 
handle in the same way nonboolean signals and boolean ones that 
possess a nondeterminate value. HDS involving only boolean data 
types will be encoded via dynamical systems over Sf for some 
integer p .  Such dynamical systems will be generally denoted by 
the letter A ,  and are of the following form: 

4 f l + I  = P(4fl, Y f l )  

This form deserves some comment. In (3), ([, y )  E Sq, [ is the 
state vector, y is the vector of the observed signals, and P ,  Q 
are polynomial vectors. Hence, the observation equation of usual 
dynamical systems is here a relation instead of a function: this is 
just a particular case of the general form (1)  of HDS we intro- 
duced. In (3), we shall denote by { y ( i ) } l j ; ~ ~  the components of 
the vector y (so that we must have Z 5 p ) .  

Let us now introduce dynamical graphs. A dynamical graph 
is a triple { A ,  r, y } where: 

A is a dynamical system of the form (3). The purpose of 
A is to encode the logic and synchronization of the considered 
HDS. 

r is a directed graph with the symbols {y ( i ) }15 ;5 ,  as its 
set of vertices. The graph r summarizes potential (nonboolean) 
data dependencies, as in signal flow graphs. 

y is a function mapping Sf into the set of the subgraphs 
of r. This map y plays a key role in specifying the actual data 
dependencies at each instant (for this purpose, instants may be 
characterized by points in St). 

Notice that the map y is equally well-defined as follows: for 
each branch y ( i )  + y ( j )  E r, specify the subset of Sg composed 
of the points x such that ~ ( x )  contains the considered branch. This 
is denoted by 

where V is the considered subset of Sq. 
Hence, dynamical graphs are skew products of dynamical sys- 

tems and graphs. The dynamical system is intended to encode 
the underlying automaton within a program, while the directed 
graphs will encode the way dependencies evolve during an exe- 
cution: the dependencies at a given instant will only depend on 
the set of signals that are present in this instant. 

2) Encoding SIGNAL Programs: Here follows the intuitive 
description of our method. Recall that SIGNAL is obtained by 
extending to multiple clocked dynamical systems a given “alge- 

bra” of instantaneous relations. This remark is the keystone of 
the method we present next to encode SIGNAL programs. 

Step I :  Among the relations of this algebra, select the sub- 
family of relations and corresponding data types for which you 
accept to solve systems of equations (and are supposed to be able 
to!). 

Step 2: Other instantaneous relations must be functions, 
and are encoded into their dependency graphs; hence correspond- 
ing data types are handled as sets of labels for which dependency 
graphs summarize all the possible rewritings or substitutions 

y =  f(xl,...,xp)isencodedas{xI + y , . . . ,  xp - y } .  

This defines our map; its ability to reason about dynamical sys- 
tems as well as its complexity relies on the choice we have done 
in Step 1.  Here we shall select the boolean variables together 
with the boolean relations generated by {:=, and, or, not} and 
the constants true, false; this choice is motivated by the particular 
role played by the booleans in the instruction when. 

Based on these remarks, the algebraic coding of SIGNAL pro- 
grams into dynamical graphs is derived next. For this purpose, 
we shall use the following notations. For a signal with SIGNAL 
name zap, we shall write zap to denote its value at the considered 
instant (here, “value” means 1 or the actual value if the signal is 
present), and we shall also write zap to denote the image of zap 
in the dynamical system over S t  :6 Using these notations, we first 
show how presencelabsence of signals of any type is encoded 

x =  1 + + x * = o  

x f  I - x 2 = 1  ( 5 )  

Only squares appear since the value of booleans plays no role 
here. The following formulas concern (present) boolean values: 

b = true c-f b = 1 

b =false ti b = - 1  

b = n o t a + + b = - a  

c = a a n d b + + c = l - ( a b + a + b )  (6 )  

Let us illustrate how the coding works on the instruction y := x 
when b in the nonboolean case. Four cases occur according to 
the presence/absence of the various involved signals 

i): b2 = 0, x2 = 0,  y 2  = 0 

ii): b2 = 0, x2 = 1, y 2  = 0 

iii): b2 = 1, x2 = 0, y 2  = 0 

i u ) :  b = - 1 , ~ ’  = 1 ,  y2  = O  

U): b = +1, x2 = 1 ,  y2  = 1 ,  x + y .  

Case v) is the only one where the output y is present. In this 
case, its value depends on the value of x: this is indicated with 
the - in v).  These four cases can be summarized as the double 
coding 

’1 ( 7 )  [ y 2 : x - y  
y 2  = x2( -b - b2 

y := x when b c-f 

where the first field of this coding is the equation of the dy- 
namical system over 5 3  (it is static here). In the second field 
of this coding, “y2:” means that the dependency holds exactly 
when y 2  = 1. A systematic application of this method yields the 
algebraic coding of programs that we present next. 

‘ No confusion should result in the sequel from this common notation. 
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y := U default v c) 

The following notation will be used for this coding into dy- 
namical graphs: 

y2 = u2 + u 2 ( 1  - u2) . 
(15) u 2 : u i y  

1 clock calculus 
conditional dependency graph 

program cf 

where 
program denotes the program to be encoded; 
“clock calculus” denotes the set of algebraic equations en- 

coding the constraints on synchronization or logic as we discussed 
above; these equations defme dynamical systems over 5;;  

“conditional dependency graph” denotes the set of possibly 
occurring dependencies together with the instants where these 
dependencies are in force. 

Instruction i): Relation or Function: 
Boolean Relation: The coding of all boolean relations is easily 

derived from the coding of the following instructions and the 
coding of the composition we shall see below: 

of signal. Notice that the state takes +1 or - I  as only values, 
i.e., states are persistent. The state is modified when a new input 
is received, and at the same instant the old state is delivered at 
the output. Again no dependency graph is necessary. 

Nonboolean Register: 

The fist field expresses that clocks must be identical; the second 
field is empty even if we consider nonboolean types, since the 
current value of y does not depend on the current value of x,  but 
on the content of the memory (which has been lost in the coding). 

Instruction iii): The when: 
when with boolean output. 

[‘ - b 2 )  c := awhen b e-i 

when with nonboolean output. 

] . (13) [ y 2 :  x + y 
y 2  = x2(-b - b 2 )  

y := x when b ++ 

a :=true c--) 

b = -a 
b := not a ++ 

The second field expresses that x influences y when y is produced. 
Instruction iv): The default. 1 default with boolean output. a2 = b 2  r 

c = a 2 - ( a b + a + b )  l 0  c := a and b cf 

L 

The algebraic equation of the first formula possesses a = 1, 
a = 0 as only solutions, which means that a is either absent or 
true. The second equation is obvious. To derive the last one, note 
that its first component encodes the fact that both signals a and b 
must have the same clock (they are either both present or absent, 
which is encoded as a2 = 1 and a2 = 0, respectively). Then it 
is straightforward to verify that the last equation maps the pairs 

-1, respectively. Since only booleans are involved, no coding of 
dependencies is required, hence the symbol 8 in the second field. 

(0, 01, (1, 11, (-1, 11, (1, -11, (-1, -1) onto 0, 1, -1, -1, 

Nonboolean Function: 

The 6rst field encodes the constraints on clocks (equality), while 
the second one encodes the data dependencies. The second field 
means “the listed dependencies hold when y 2  = 1 .” Notice that 
a := ( U  < v) produces a boolean, but it is a nonboolean function. 

Instruction ii): The Register: 
Boolean Register: This is the key case where dynamical sys- 

tems in 53 are used. 

default with nonboolean output. 

1 

L U2(1 -u2) :  U + y  J 
The second field expresses the fact that U influences y when it is 
present, while U influences y when it is present and U is absent. 

Instruction v): The Composition: The fields of P and Q have 
to be merged to produce a single clock field and a single condi- 
tional dependency graph field. 

The General Form of Coding for a SIGNAL Program: By 
combining the elementary codings (8)-( 15), we derive the fol- 
lowing form of dynamical graph to encode an arbitrary SIGNAL 
program (cf. (3) and (4) for the undetined notations): 

< ’ = ( I  - ~ ~ ) [ + a , < ~  = U  
where h( i ,  j )  is a polynomial expression involving the variables 
y ( k )  in 5 3  which specifies when the considered dependency 

C .  Examples 

b:=a$u e--* [ b=t2E 1 (10) holds. 

I )  A Synchronized Memory: The output y returns either the 
present value of x (when the latter is present), or the last received 
value of when b is present and true. we call the corresponding 
program CELL: 

where t’ is the current state Of the system, its pre- 
vious state, and U its initial condition ( f 1-valued). The corre- 
sponding explicit form of this dynamical system is 

CELL (input: x,b output: y) = 
I zy := y $ yo 
1 y := x default zy 
1 synchro y, (x default (true when b)) 

6 ,  = ai<,, 
where n is any time index fast enough to capture every presence 
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When encoding this program, we shall make a distinction between 
two cases: x boolean, and x nonboolean. 

Encoding the Boolean CELL into its Clock Calculus. 

t ’=(1-Y2)4+Y,FI  = Y o  

ZY = Y2F 

y = x + z y ( l  - x 2 )  

y 2  = x2 + (-b - b2)( 1 - x’). 

Eliminating z y  and rewriting t’ as a function of the input x yields 

F’ = ( 1  - X 2 ) E  + x ,  E ,  =yo 

y = x + (-b - b2)( 1 - x2)( 

which reflects exactly the meaning of the program CELL: the 
memory is refreshed when x is received (first equation), and y 
delivers the current value of x when x is received, or its last value 
when b is received and true. 

Encoding the Nonboolean CELL into its Clock Calculus and 
Conditional Dependency Graph. 

Clock calculus: 

zy2  = y 2  = x2 + zy2 (  1 - x 2 )  

y 2  = X *  + (-b - b2)( 1 - x*) 

which yields 

ZY’ = y 2  =X2+(-b -b2) (1 -X2) .  

Conditional dependency graph: 

54 1 

$(I-X’)  X2 
z y  - y + x  

Here the dynamics has been lost; the clock calculus expresses 
only how the clocks of the signals are related. 

2) A n  Example of Deadlock: The following example is due to 
G. Gonthier (private communication). An if.. .then.. .else state- 
ment is provided as a macro in the full SIGNAL language. Using 
this macro, we can write the following SIGNAL instruction: 

if z > 0 then z := a else z := b 

The expansion of this program in terms of the primitive instruc- 
tions we have given in the following: 

I synchro a,b 
1 beta = (z > 0) 
I x := a when beta 
I y := b when not beta 
1 z := x default y 

Denoting by /3 the image of beta, the clock calculus is 

a* = b2 

x2  = a2(-P - P 2 )  

y 2  = b2(P - /3*) 

22  = x* + y2( 1 - x2) .  

Then, we set h = a2 = b2 ,  and, combining the above equations, 

we get 

X* = h( -0 - P 2 )  

y* = h(P - 0’) 
0’ = z 2  = x 2  +y2(1 -x*)  = h p 2 .  

Now, consider the last equation p2 = hP2. It is equivalent to 

P2 = @*h 

where is a free variable of 53, which we shall call aphantom. 
Hence, the clock calculus can be rewritten as follows (the deleted 
equation was redundant): 

a2 = b2 = h 

x2 = h(-/3 - P 2 )  

Y 2  = h(P - P 2 )  

P2 = z2 = @*h. (17) 

Notice that the presence of the phantom reflects the fact that the 
clock of the signals z and /3 is not completely determined by the 
inputs a,b. From this form of the clock calculus, it appears that 
h is the fastest clock, so that we can assume 

h 1. (18) 

Finally, using (18), (17)  is rewritten as 

Y 2  = +P - P2 

P* free. (19)  

Using again (18), the conditional dependency graph is 

-0 -02 a - x  

b+o--S2 + e o ’  -S2 - y ‘ z - P .  
In both cases, /3 appears both at the end of the last branch of the 
graph, and as a label of the first two branches. This is a sort of a 
cycle where both control and data dependencies are involved. 
This is handled with the following procedure we outline now 
(the reader is referred to [5] for a detailed presentation of this 
procedure and the formal model to support it). 

From the clock calculus (19), it is seen that the value of P 
does influence both clocks x2 and y 2 :  let us encode this via the 
following graph: 

B ’ X  

P ’ Y .  (21) 

Combining (20) and (21), we get the following labeled graph: 

--$ Y .  
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Two cycles are exhibited. The first cycle is effective when f l  = 
$1, while the second one is effective when /3 = - 1 .  Hence, 
to prevent both cycles we must enforce f12 = 0. Consequently, 
this program accepts the inputs (a,b), but refuses to produce any 
other signal. 

This illustrates informally how deadlocks can be detected and 
isolated by taking into account clocks and data dependencies. This 
example also reveals why taking into account only the dynam- 
ical system over 53 in the coding of SIGNAL programs may 
result in dramatic errors in deadlock detection: no deadlock 
is detected in this example from the inspection of the clock cal- 
culus only. This is perhaps the most illustrative example of the 
additional difficulty encountered in handling HDS as compared to 
DEDS. 

3) A Time-Multiplexer: Here follows a desired behavior of 
the program we shall write next: 

inputr: 2 I I 4  I I I I O  5 i . 

outputn.2 1 0 4  3 2 1 0 0 5 4  . . .  

The input r is a nonnegative integer. When r is read and takes 
the value r, r additional samples are produced for the output n 
before the next value of r is read: this is a (variable rate) time- 
multiplexer which is a basic tool to construct oversampling. Here 
follows the program: 

MUX (input: r, output: n )  = 
I n := r default ( z n  - 1) 
Izn:=n$O 
1 b := ( n  = 0 )  
I past-b := b $  true 
1 true-past-b :=true when past-b 
I synchro true-past-b, r 

The first two instructions deline a decreasing counter n with 
reset signal r. The boolean signal b tests for n = 0, past-b 
is the delayed signal b, while true-past-b extracts the instants 
where past-b is true. Therefore, when n reaches 0, the next 
time n is produced, a new sample of the input signal r must 
be read, due to the last instruction synchro which constrains 
the clocks of the listed signals to be equal. Notice that, in this 
way, we implemented an oversampling, so that both requests 
about clock changes that were expressed when introducing the 
FARMERS-LOVE-RAIN story are now satisfied: SIGNAL pro- 
vides tools for  both (variable rate) under- and over-sampling. 

We shall encode this program. Clock calculus and dependency 
graph will be written with the short signal names pb, tpb instead 
of the full names past-b, true-past-b. This coding is written 
instruction-by-instruction : 

zn2 = n2 

b2 = n2 ,  n c b  

\ p b  = b2C; 

tpb  = -pb - p b 2  

tpb2  = r2.  (23) 

The first two equations of the clock calculus are equivalent to 

n2 = zn2 = r2 + @ * ( I  - r 2 )  

where Q, is a phantom. This phantom reflects the fact that, in the 

first two instructions 

I n := r default ( z n  - 1) 
I zn  := n$O 

of the program, the clock of the output n is not completely de- 
termined by the clock of the input r alone: the only constraint on 
synchronization we get is that n must be more frequent than r. 

Using the last instruction synchro allows us to remove this 
phantom: the whole clock calculus can be rewritten as follows: 

E ’ = ( l - b * ) [ + b , E l  = O  

p b  = b2[ 

zn2 = n2 = pb2 b2 

i 
r2 = tpb2 = t pb  = -pb - p b 2  (24) 

while the corresponding conditional dependency graph is now 

(l-r2)b’ b’ r2 
r + n , z n  + n , n + b .  

Considering only the clock calculus (24), it looks like if b was 
the input (all other clocks are determined from 6) .  However, 
this boolean signal is not an input of the program: this paradox 
is due to the fact that, in considering the clock calculus alone, 
we just disregarded the dependencies encoded in the conditional 
dependency graph (25) .  This reveals again the intricate mutual 
interaction between graphs and automata in HDS theory. To fur- 
ther investigate this point, we shall now discuss in details on this 
example how HDS resolution is performed. 

B .  HDS Resolution: The Example of the Time-Multiplexer 
To show that the form (24), (25) corresponds to an already 

solved HDS, we shall simply show how the finite state machine 
works, which produces the desired behavior. This is described 
next. First, note that in (24), we are free to take b2 E 1. Here is 
a description of this finite state machine. 

Initial stage: a new instant begins. 
FOR EACH INSTANT DO: 

r2 = tpb2 = t pb  = -pb - 1. 

The initial stage is equivalent to (24), (25) if we take into account 
b2 s 1 .  Two cases may occur, depending on the value of the 
current state E .  

Case 1: = +l.  
Step 1: r2 is evaluated to 1. The branches labeled with a 0 

are removed (the corresponding dependency is not in force at the 
considered instant). Some branches remain with a label 1 (the 
corresponding dependency is in force), we remove this label 1 
for the sake of simplicity. Finally, the signals and clocks that have 
been evaluated and will not be used any more are removed. This 
yields 

[ ’ = b  

1 = n2 = b2 i r + n , n + b  

r2 = - 1  - 1 = 1 .  



BENVENISTE AND LE GUERNIC: HYBRID DYNAMICAL SYSTEMS THEORY 543 

Step 2: Since r’ = n2 = 1 and r + n ,  n can be evaluated 

( ’ = b  

1 = n2 = b2 

{ n + b .  

Step 3: b is ready to be evaluated 

(’ = b. 

Step 4: The next value of the state can be computed 

G1. 
This ends the considered instant. 
Case 2: 4 = - 1 .  Here follow the corresponding steps. 
Step I :  

Step 2: 

( ’ = b  

Step 3, Step 4, as before. 
This execution scheme revealed what really are the inputs of 

this HDS. Knowing that b2 E 1 is a first input (it is here a trivial 
information). Knowing this, it is possible to read the value of the 
current state 4 :  this indicates whether the input signal r should 
be read or not, and allows us to evaluate n,  then b, and finally 
to write the latter value in the next state. This shows that the 
input of this system is split into 1) its “internal clock’> 2) 
the values of the input reset signal r when the latter is read. 

C .  Discussion 
I )  On the “Graph Peeling” Mechanism: The MUX example 

did not really involve numerics, except for the zn - 1 instruction. 
But the mechanism of clock dependent graph peeling we pre- 
sented as a key step of the execution machine is obviously valid 
for numerical computations as well. The MUX example and the 
example of deadlock due to G. Gonthier illustrate best why the 
mixed nature of HDS makes their study more difficult than the 
study of DEDS. 

2) Solving HDS: A formal model supporting HDS resolution 
is presented in [5] using the technique of “conditional rewriting 
rules” borrowed from formal semantics of languages in computer 
science. 

3) Studying Dynamical Systems in 33: A systematic study 
of the dynamical systems of the form (3) is presented in 1181. 
This study is control oriented, and covers some of the classical 
topics of DEDS. It is entirely based on the tools of polynomial 
ideal theory. 

IV. CONCLUSION 
We have presented a brief account of HDS theory. Notice the 

following points. 
HDS involve both numerics and symbolics (logic and syn- 

chronization), which makes them of wide applicability, but also 
difficult to analyze. The reader interested in a formal presentation 

of the theory is referred to [3] for a control oriented presentation, 
and to (5) for a computer science oriented one. 

Our theory is supported by the SIGNAL programming lan- 
guage. A version of the SIGNAL compiler is currently experi- 
mented with in some universities, and a block-diagram oriented 
interface is available to specify systems in a control engineer- 
ing style. The compiler produces as an intermediate level code 
the pair clock calculus, conditional dependence graph; from this 
intermediate level code, executable Fortran code, but also dis- 
tributed OCCAM code (programming language of the “Trans- 
puter” by INMOS), is generated. Current applications to test 
the language are signal processing systems, radar systems, and a 
whole continuous speech recognition application. The existence 
of this programming language makes the treatment of real appli- 
cations really feasible, cf. [15]. A thorough discussion of SIG- 
NAL from the user’s viewpoint is presented in 161. 

Our approach is relational, which allows us to specify HDS 
via constraints involving logic and synchronization, to analyze 
them, and to execute them. This relational approach provides 
a “proof system” for these properties, similar to (but weaker 
than) temporal logic [26]. This point is further investigated in 
1181 using a control point of view and polynomial ideal theory. 
The main problem is then HDS resolution, i.e., transforming the 
implicit specification into an explicit input/output map. 

Our theory captures the notion of deadlock; a detailed dis- 
cussion of this and other properties is presented in [ 181. 

Finally, let us mention related work on synchronous languages: 
the declarative (but functional) language LUSTRE [7] [lo], the 
imperative language ESTEREL [8] 1121 the syntax of which pos- 
sesses some flavor of ADA. Loosely related to the same field are 
the STATECHARTS and STATEMATES developed by Hare1 and 
Pnueli 1131, 1141, which provide a graphical interface to specify 
in a hierarchical way states and transitions in automata. 

APPENDIX A 

A MATHEMATICAL MODEL FOR HDS A N D  THE SIGNAL LANGUAGE 
In this Appendix, a mathematical model for HDS is presented, 

and used to formally define SIGNAL. The reader is referred to 
Section I1 for the motivation of the following definitions. 

I .  Signals, Clocks 
Consider an alphabet ( h i t e  set) A of typed variables called 

ports. For each a E A ,  XIo is the domain of values (integers, 
reals, booleans. . .) that may be carried by a at every instant. 
Introduce 

S A  = U XIo, 9; = S A  U { 1 } 
a EA 

where the additional symbol I denotes the absence of the value 
associated with a port at a given instant. For two sets A and B,  
the notation A + B will denote the set of all maps defined from 
A into B .  Using this notation, we introduce the following objects. 

Events: Events specify the values carried by a set of ports at 
a considered instant. The set of the A-events (or “events” for 
short when no confusion is likely to occur) is defined as 

= A  -33;. 

Events will be generally denoted by E .  We shall denote by i the 
event E such that € ( a )  = I Va E A .  

2) Traces: Traces are infinite sequences of events. Let N denote 
the set of integers, then the set of A-traces (or simply “traces”) 
is defined as 

SA = N  + E A .  

3) Compressions: The compression of an A-trace T (deleting 
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the 1 ’ s )  is defined as the (unique) A-trace S such that 

S ( n )  = T(kn)  

where 

I I .  HDS 

ko = min {m 2 0 :  T ( m )  # I }, 
k ,  = min { m  > k,-l : T ( m )  # i }. 

The compression of a trace Twill be denoted by T 1 . 
4) Signals: The condition 

TL = T’J 

defmes an equivalence relation on traces we shall denote by 
T - T’. The corresponding equivalence classes are called mul- 
tiple signals, and simply signals when the set A is reduced to 
a singleton. The set of multiple signals on A will be denoted by 
S A ,  so that we have (’1- denotes here the quotient space by the 
relation -) 

SA = (%I/-. 
The notion of “signal” has been informally discussed in Section 
IIA1(1), where we motivated the formal definition of signals as 
equivalence classes with respect to the relation -. Clearly, the 
symbol I is useful when components of multiple signals are 
considered, such components are frequently simply referred to as 
“signals” in the informal discussion. 

5) Clocks: Extend the domain a>$ with another distinguished 
value T , intended to encode the status “present” regardless of 
any particular value, and write aiock = { 1 } U {T}. We define 
on aiock the order relation < by setting 1 < T. Consider the 
map clocks, E a>; --f 9iock defined by 

clockD( I ) = I, clockD(x) = T forx # I . 

For each E E E A ,  there is a unique map in EA -i &A making the 
following diagram commutative, denote it by clockg : 

Similarly, there is a unique map in 3A --f 3 ~ ,  we denote by 
clock3, making the following diagram commutative: 

N 

T J  L clock, ( T )  
clock6 

&A --3 E* 

This map satisfies the condition T I  - T2 + cIock3(TI) - 
clocks(T2), so that it induces a map in SA ---$ SA we shall now 
denote by clock: the clock of a (multiple) signal is another (multi- 
ple) signal which summarizes the status {present/absent} of each 
of its components. 

In Section IIA2, we discussed informally some relations on 
clocks of signals involved in a given SIGNAL program. By this, 
we had in mind the following. A SIGNAL program defines a sub- 
set of “admissible” multiple signals (see below). The components 
of these multiple signals are denoted by the different names used 
in the program. Hence, by clock(zap), we mean the image by 
the map clock of the component z a p  of the considered multiple 
signal. 

Finally, the order + we introduced above on the pair {I, T } 
can be carried out via the above construction to obtain the order 
on clocks denoted by 5 in Section IIA2. 

I )  Definition of HDS: An HDS is simply a subset 

x c SA 

of the set of all multiple signals on A .  
2) Restricting HDS: Consider a subset of A’ of the alphabet 

A. The inclusion A’ C A induces a projection E - € / A ‘  from &A 

onto E A , .  Following the same argument as for the definition of 
clocks, we derive the following family of restrictions we generi- 
cally denote by . i A , .  First, the following commutative diagram: 

N 

uniquely defines the restriction T --f on traces. Since 
T I  - T2 + (TI),A, - ( T z ) / A ~  holds, a restriction on signals 
S + S1*, can be defined, ‘which finally yields a restriction on 
HDS we denote by 

This restriction maps the set of HDS defined over the alphabet 
A onto the set of HDS defined over the alphabet A’ .  The HDS 
X ~ A !  is called the restriction of X to (the subalphabet) A‘. 

3) Combining HDS: Consider two HDS X I ,  X2, respec- 
tively, defined over the alphabets A 1 and A2. Set A = A 1 U A2. 
Then X I  1 x 2  will denote the maximal’ HDS defined over the 
alphabet A satisfying the following conditions: 

( X I  I X Z ) / A ,  c XI  

( X I  l X 2 ) / A 2  c X2 

The meaning of these conditions is that both constraints induced 
by X I  and X2 have to be satisfied by X I  1 x 2 :  this is exactly 
what “combining two systems of equations” usually means (see 
[19] for a similar construction). 

III. The Definition of SIGNAL 
According to the preceding section, in order to specify an HDS 

over a given alphabet, we have to describe a subset of all multiple 
signals that can be built upon this alphabet. Since signals are 
defined as equivalence classes of traces with respect to the relation 
-, this can be done by listing a family of constraints on the 
set of all traces that can be built on this alphabet. This is what 
we shall do next. 

Instruction i): R(x1,. . .xp) 

V n E N : x i ( n ) #  I V i  

Viz E N :  R(xi(n);..,xp(n))hoIds. 

Here, the notation xi(n) denotes the value carried by the port with 
name xi at the nth instant of the considered trace. This notation 
will be further used in the sequel. 

Instruction ii): y := x $ x0 

V n E N : x ( n ) #  1 

tin > 1 : y(n)  = x(n - 1) 

y(1) = xo. 

Instruction iii): y := x when b 

x(n) 

I otherwise. 

’With respect to the order by inclusion X’ C X defined on HDS. 

if x(n) # I and b(n) = true 
‘vn E N ,  y(n) = 
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Instruction iv): y := U default v 

u ( n )  ifu(n) # i 

Vn E N ,  y(n) = v(n)  ifu(n) = I andv(n) # 1 
I otherwise. 

APPENDIX B 

A SAMPLE WORK OF THE SIGNAL COMPILER: THE PROGRAM MUX 
Here is the syntactically correct form of the program MUX: 

{ 
Instruction v): P I Q 
We already defined the operator I on HDS. 

process MUX= 
{ ?  integer R 
! integer N } 

( 1  N := R default ( ZN - 1) 
I Z N : = N $ l  
I B : = N = O  
I PAST-B := B $1  
I synchro {when PAST-B, R } 
I)!! N 

where 
logical B. PAST-B init true; 
integer ZN init 0 

end 

Some differences with the syntax we used in the paper are men- 
tioned now. The symbol $1  denotes a unit delay ($n is also avail- 
able to denote an n-delay), the initial condition of ZN is given in 
the where field. The field { ?. . ., !. . . } specifies the interface (?  
stands for “input”, and ! for “output”). At the end of the body, 
! !N means that N is the only output visible from outside (this is 
redundant with the interface specification). 

The translation of MUX results in the following SIGNAL pro- 
gram which specifies now a “solved” HDS. This means that 
synchronization, boolean, and nonboolean data are determined 
by functions instead of relations: this HDS is ready for execu- 
tion. The special work “event” denotes: 

a type “pure clock signal” (a boolean which always car- 
ries the value true) when encountered in the specification of the 
interface; 

the clock of the mentioned signal when encountered in the 
body of the program (event N-2 is the first example). 

The symbols H-**-H refer to clocks that are synthesized by the 
clock calculus, or to modules that are fired according to the clock 
with the mentioned name (cf. for instance process H-10-H). 

process MUX-TRA= 
{ ?  integer R-1 

( 1  ( 1  H-10-H := event N-2 
! integer N-2 } 

I synchro { H-lO-H, N-2) 

I,”’”“) I)/ H-l l -H, H-10-H 
where 

process H-lO_H= 
event H-l l-H, H-10-H 

{ ?  event H-10-H; 
integer R-1 

! event H-11-H; 
integer N-2) 

(Isynchro { H-lO-H, B-6, PAST-B-7, ZN-8) 
I ( I  H-11-H := when PAST-B-7 

I synchro { H-l l-H, R-1 } 
I H-12-H :=when( not PAST-B-7) 
I) I ( 1  ZN-8 := N-2 $1  
1 PAST-B-7 := B-6 $1 
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N-2 := ( R-1 when H-11-H) 

B-6 := ( N-2 = 0)when H-10-H 

H-12-H, B-6, PAST-B-7, ZN-8 

default( (ZN-8 - 1 )when H- 12-H ) 

I) 
where 

event H-12-H; 
logical B-6, PAST-B-7 init true; 
integer ZN-8 init 0 

end 
end 

The above program is ready for sequential (i.e., centralized) as 
well as parallel (i.e., distributed) implementation. 

The compiler also produces the following Fortran Subroutine 
(an instance of sequential implementation). This subroutine calls 
user-defined input/output functions for each of the input/output 
signals. 

C SIGNAL P1,5-(Fevrier 1989-release September 1989)- 
IRISA 

SUBROUTINE SMUX 

INTEGER R1 

INTEGER N2 

INTEGER ZN8 
LOGICAL PASTB7,B6 

LOGICAL h lOh,h l2h,h l lh  

ENTRY CM UX(hl0h) 
hlOh = .TRUE. 
h l l h  = PASTB7 
h12h = .NOT. h l l h  
IF (hl2h)THEN 
N2 = ZN8 - 1 
ENDIF 
IF (hl1h)THEN 

C Reading input R 
CALL RR (R1,hlOh) 
IF ( .NOT.  (hl0h))RETURN 
N2 = R1 
ENDIF 

C Producing output N 
CALL W N  (N2) 
B6 = N2 .EQ. 0 

PASTB7 = B6 
ZN8 = N2 

RETURN 

ENTRY IMUX 

ZN8 = 0 
PASTB7 = .TRUE. 

C List of clocks 

C Body of the program 

C Handling delays 

C Initialization 

RETURN 
END 
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