
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 3.5. NO. 5 . MAY 1990 535

Hybrid Dynamical Systems Theory and the
SIGNAL Language

Abstract- We study the logic and synchronization characteristics of
general dynamical systems called Hybrid Dynamical Systems. Our the-
ory is related to discrete event dynamical system theory, hut handles
numerics as well as symbolics. It is supported by the programming lan-
guage SIGNAL and a mathematical model of general implicit dynamical
systems. The core of the theory is the notion of HDS resolution which
is based on a coding of any HDS into a “dynamical graph” which con-
sists of a skew product of a polynomial dynamical system on the finite
field of integers modulo 3 (to describe the transitions of the underlying
automaton) and directed graphs (to describe how data dependencies
dynamically evolve). The resolution algorithms are then based on the
study of this dynamical system.

I. INTRODUCTION
A . Requirements from Applications: Hybrid Dynamical
Systems (HDS)

As recognized in [21] and [15], most modern applications in-
volving dynamical systems are very complex in nature; think of
the following:

real-time complex control or signal processing systems in
avionics, aeronautics, and in C3-military systems;

automation handling man-machine interfaces of control sys-
tems (monitoring, trouble shooting, visual aids in avionics, re-
mote manipulation. . .);

vision- and sensory-based control in robotics;
complex pattern recognition applications such as continuous

speech recognition

to mention just a few. Some particular features of these applica-
tions are the following:

1) the mixed continuous/discontinuous nature of time because
of the simultaneous presence of familiar differentiaVdifference dy-
namical subsystems and discrete event systems relating these sub-
systems;

2) the presence of dynamics;
3) a large combinatorial complexity as far as logic and syn-

chronization is concerned (there is no concise model to describe
precisely such applications), hence the need for modularity.

Discrete event dynamical systems (DEDS) have been intro-
duced as a theoretical framework for the study of flexible man-
ufacturing and related systems by Wonham and Ramadge [28],
[29], and have been widely studied since their introduction [25],
[24], [17]. Roughly speaking, DEDS are finite state transition
systems which are observed and can be controlled by the lan-
guage generated by the labels that are attached to each transition,
regardless of the precise meaning of these labels. However, in
most of the above-mentioned applications, the mutual interaction
between numerical computations and the enabling or disabling of
transitions is very complex and should be considered within a
theory of such dynamical systems: this point will be discussed
qeveral times throughout this paper.

Manuscript received April 18, 1988; revised April 13, 1989. Paper rec-

The authors are with IRISA-INRIA, Campus de Beaulieu, Rennes Cedex,

IEEE Log Number 9034487.

ommended by Associate Editor, A. Haurie.

France.

On the other hand, past research in computer science has re-
sulted in the development of a large set of tools to handle such
complex dynamical systems in the context of real-time systems
and languages. More precisely communicating systems theo-
ries were developed, with CSP (communicating sequential pro-
cesses) [16], [9] and CCS (a calculus of communicating sys-
tems) [22], [23] as most famous examples. More recently, the
new approach of synchronous programming has been introduced
and developed around the languages ESTEREL [8], [12], LUS-
TRE [7], [lo], and SIGNAL [20], [5], [4], [19] to specify, pro-
gram, and analyze the kind of complex dynamical system we
described above. This is the direction we want to pursue and
further discuss from a control viewpoint in this paper.

In the sequel, hybrid dynamical systems (HDS) theory will
refer to a theory handling synchronization, logic, and their inter-
connections with the numerical behavior of dynamical systems.
As the reader will understand while reading this paper, the mixed
nature of HDS justifies the development of a new theory and
paradigm.

B . A New Paradigm, Some Fruitful Remarks
1) Building complex objects requires the use of strongly

modular languages. Our first remark was about the highly com-
binatorial complexity of HDS. Such a complexity faces us with
a new problem which was not considered before in the control
community, namely the difficulty of simply describing, specifu-
ing, or constructing HDS. Such a formal specification must be
based on the use of an unambiguous syntax (which can be text-,
mathematics-, or even graphics-oriented), that is to say a speci-
fication or programming language.

2) Why relational dynamical systems? A second claim is
that a HDS should be described via a set of relations or con-
straints, rather than as a complicated input-output map as it is
usually done in control science. This issue has also been brought
up by J . C. Willems [30] in the context of the theory of linear
dynamical systems. The advantage is that both dynamics and ob-
jectives of the system can be stated within a single framework,
unlike to classical control theory where they are separated into
the dynamics and some performance criterion.

3) The basic problem: HDS resolution. An immediate con-
sequence of this relational framework is that such HDS specifi-
cations cannot be effective, i.e., it is not immediately possible to
compute the outputs of a so-specified HDS in response to some se-
quences of inputs. The control scientist will recognize a standard
situation when handling descriptor or implicit linear dynamical
systems. By HDS resolution, we have in mind a procedure to
transform any relational HDS specification into a machine which
can execute the desired behaviors, and thus represents the desired
equivalent input-output map.

4) What is the nature of time for HDS? Complex appli-
cations such as mentioned above are inherently distributed in na-
ture. Hence, every subsystem possesses its own time reference,
namely the ordered collection of all the communications or ac-
tions this subsystem performs: in sensory based control systems,
each sensor possesses its own digital processing with proper sam-
pling rate, actuators generally have a slower sampling rate than
sensors, and moreover the software devoted to monitoring only
reacts to various kinds of alarms that are triggered internally or

0018-9286/90/05OO-0535$01 .OO @ 1990 IEEE

536

externally. Hence, the nature of time in HDS is by no means
universal, but rather local to each subsystem, and consequently
multiform. A fundamental consequence is that communications
between subsystems impose relative constraints on the timing of
these subsystems: an alarm can be sent by an actuator or a sen-
sor to the supervisor which in turn is designed to react on ac-
tuators: the whole result is a synchronization constraint between
these subsystems. Hence, handling these multiform time refer-
ences and reasoning about them is one of the fundamental tasks
we have to perform.

C. Organization of the Paper
Section I1 is devoted to an introduction to the topic of HDS.

For this purpose, we begin with a point of view which we think to
be as natural as possible to the control audience, and show step-
by-step how the SIGNAL language naturally comes out from this
discussion. ’ A mathematical model corresponding to this infor-
mal presentation is given in Appendix A. In Section 111, HDS
resolution is informally presented and discussed. It is shown how
the previously mentioned mutual interaction between synchro-
nization and computation is handled via dynamical graphs, a
notion which combines both advantages of signal flow graphs and
automata. An algebraic coding of dynamical graphs using poly-
nomial dynamical systems over the finite field of integers modulo
3 is introduced, and its use is illustrated on the sketchy analysis
of properties such as observability and deadlock. Finally, HDS
resolution is informally presented on an example. Formal models
and methods supporting these examples are found in [SI and [3].

11. THE SIGNAL PROGRAMMING LANGUAGE; SOME EXAMPLES
A. Connecting the Topic to a Control Formulation

The purpose of this section is to motivate the notion of hybrid
dynamical system we shall consider throughout this paper. A
simple mathematical model is presented in Appendix A.1, where
the notions and objects we shall informally introduce in the sequel
are formally defined.

I) Specifring Hybrid Dynamical Systems: Consider a
discrete-time dynamical system described by a set of dynamical
plus algebraic equations

0 = g (F n , Y n) (1)

where the variables En and y n are both vector valued and n =
1,2, 3 We can define some of the components in y,, to be
input variables, and some as output variables and investigate the
resulting input-output behavior of this system. Clearly, depend-
ing on the peculiarity of the functions f and g , at a given instant,
the output may not exist for a given input and state, or multiple
solutions may exist. In this sense, this is a relational dynamical
system.

Now, assume that all the vectors above have a mixture of com-
ponents such as real, integer, logic, symbolic,. , .. Therefore, f
and g may look unusual. In this sense, this is a hybrid dynamical
system, and we shall see later what the consequences of this prop-
erty are when handling such systems. All this is quite familiar
and not really novel in a control formulation.

What is new is a certain kind of restricted asynchronism. This
is explained next. Assume that each variable, in addition to the
normal values it takes in its range, can also take a special value
representing the absence of data at that instance. The symbol
used for absence is 1. Therefore, an infinite time sequence of an
integer variable (we shall refer to as a signal in the sequel) may
look like

1, -4, I, I , 4 , 2, I , . . . (2)

‘ This discussion is related to social science, but we could have selected an
example from control science as well.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 35. NO. 5. MAY 1990

which is interpreted as the signal being absent at the instants
n = 3, 4, 7 , . . , etc. The following questions are immediate from
this definition.

(1) If a single signal is observed, should we distinguish the
following samples from each other?

1,-4, i, 1 , 4 , 2 , 1,

1 , 1 , L , - 4 , 1 , 4 , 1 , 2 , 1,

1, - 4 , 4 , 2 ,

Consider an “observer”’ who monitors this single signal and
does nothing else. Since he is assumed to observe only present
values, there is no reason to distinguish the samples above. In
fact, the symbol I is simply a tool to specify the relative pres-
ence or absence of a signal, given an environment, i.e., other sig-
nals that are also observed (cf. Appendix A.1). Jointly observed
signals taking the value i simultaneously for any environment
will be said to possess the same clock, and they will be said
to possess different clocks otherwise (cf. Appendix A.1). Hence,
clocks can be considered as equivalence classes of signals that are
present simultaneously. As a first consequence, we prefer to omit
the time index n when referring to signals since clocks are only
relative rather than absolute notions. In the sequel, signals will
be denoted by names such as x, y, zap; . ., without mentioning
the time index.

(2) How to extend usual functions to the special value
I? For instance, what does 2 + 1 mean? Several choices are
possible. For reasons that will be apparent later, we decided that
2 + I has no meaning, so that + appears as a partial function
giving, for instance, 2 + 3 = 5 , I + I = I , but being
undefined when only one of its arguments takes the special value
I. With this convention, usual functions are easily extended to
signals possessing the same clock. For instance, we shall write
equations such as

water := rain - evaporation
help := (water > max-level)

The first equation requires that both signals rain and evaporation
possess the same clock, and this equation delivers the difference
of these inputs when they are present. The second one delivers
the boolean help exactly when the level of water is measured,
with the value true or false according to whether the mentioned
condition is satisfied or not (max-level is assumed to be a constant
threshold and is therefore permanently available). Consequently,
while the usual + is certainly a function, our + on signals is not,
since requiring the clocks of the inputs to be equal is a constraint
on the input signals. To help for the present discussion, we shall
for the moment use the (naive) notation

clock(rain) = clock(evaporation) = clock(water) = clock(help)

to refer to the equality of clocks.
(3) How to produce signals with new clocks from exist-

ing signals? For example, how can we perform undersampling,
oversampling, both at data-dependent rates? The simplest idea is
to select the instants at which some boolean signal takes the value
true. For instance, we shall write formulas such as

exceptional-funds := (500 flooded-acre) when help

to mean that the exceptional-funds must be delivered to the farm-
ers precisely when help occurs and takes the value true (cf. above)
and, then, are (in billion $) 500 times the flooded acreage. To
simplify, we assume that flooded-acre is measured exactly when
help occurs and is true. A new clock was created by this way,
which is less frequent than the clock of the boolean signal help.

In the common sense, no mathematical definition is referred to here.

BENVENISTE AND LE GUERNIC: wmm DYNAMICAL SYSTEMS THEORY 537

help. We shall write (cf. Appendix A.1 for a formal definition of
5)

clock(exceptiona1-funds) 5 clock(help)

Are other ways needed to transform clocks?
(4) How to combine signals with different clocks? Since

usual functions cannot do it, what kind of new operator on signals
is needed for this purpose? For instance, we may write

funds := exceptional-funds default exportation-aid

to indicate that regular funds are: Ist/(i.e., with priority)
exceptional-funds whenever needed, or 2nd/(i.e., by default)
evaporation-aid in other cases. The clock we created in this way
is the supremum of the clocks of the signals lying on the right-
hand side. In particular, we have

clock(exceptional-funds) 5 clock(funds)
Is anything else needed?

(5) How to define clock-dependent delay operators? Re-
ferring to (2), the two following ways to define the corresponding
delayed signal could be considered:

delayed signal (1st idea): so -4 _L _L . ,
original signal: 1 -4 I 1 4 2 1 . .

delayed signal (2nd idea): ’ 0 -4 . .
where so is some initial condition. The first idea is to define the
delayed signal 6s as 6s, = s,-l, which seems at a 6rst glance
reasonable. Unfortunately, this definition makes explicit use of
the time index n which is not desirable for the above discussed
reasons. In the second idea, present values are shifted while keep-
ing the clock unchanged: the notion of delay is clock-dependent
and is local to each signal. This second idea is nothing but a
mathematical model of the shift register: this is the definition we
chose. To denote shift registers, we may for instance write

forecasted-funds := funds $ 5000

to mean that the current value of forecasted-funds is, according to
the second idea above, the delayed (denoted by $)3 value of funds
with initial condition 5000 (bruteforce extrapolation is performed
when the budget is voted). Consequently, we have

clock(forecasted-funds) = clock(funds)

(6) How to interconnect hybrid dynamical systems? This
will be extremely easy because we decided to handle the time
indexes in an implicit way. Here follows an example:

FARM E RS- L OV E- RA I N =
I water := rain - evaporation
I help := (water > max-level)
1 exceptional-funds := (500 flooded-acre) when help
I funds := exceptional-funds default exportation-aid
I forecasted-funds := funds $ 5000
This is just a system of (dynamical) equations, where the symbol
‘ ‘ I ” is used to denote linking. We provided it with a name for the
sake of convenience. Three different “master” clocks are involved
in this system: the clocks of the signals water, exceptional-funds,
exportation-aids: while other clocks are derived from these.
Try to write this with explicit time indexes as in (l) ! Let us
emphasize that, despite the apparent explicit form of this system,
it is an implicit one, due to the various constraints on the clocks
we have imposed. This simple example justifies the relational
form we started with in (1) for our hybrid dynamical systems
(cf. Appendix A.11 for a formal definition of HDS).

Time is money.
There is no reason to believe that exportation aids are delivered as fre-

quently as the level of water is measured.

In the Appendixes A.1-A.11, a formal definition is given for the
various objects (“signals, I, I”) we introduced here informally,
and this model is also used there as a mathematical model for the
SIGNAL language.

2) Hybrid Dynamical Systems Resolution: A First Discus-
sion: The constructive thrust of HDS theory is the resolution sys-
tem. This problem reduces to that of investigating the existence
and uniqueness of solutions to a set of equations. Here “solu-
tion” means an input-output map producing the same behaviors
as the specified system. Here follow a few remarks.

A difference between hybrid- and discrete event dyn-
amical systems theories. Consider again the system FARM-
ERS-LOVE-RAIN. As we said before, it involves three dif-
ferent master clocks. The clocks of the signals water and
exportation-aids are not constrained by the considered system
of equations: these were specified as inputs, and their clocks as
well as their values are free. However, the clock of the signal
exceptional-funds is constrained by the value of the boolean sig-
nal help, which turns out to depend on the value of water. This
possible dependency of clocks on values of other (nonboolean)
signals is a special feature of HDS theory; since on the other hand
the presence of signals can depend on clocks, tricky signal/clock
interdependences have to be taken into account when HDS
resolution is considered. This is a special feature of HDS com-
pared to DEDS where transformations on integer (or real, etc.)
values are considered as “hidden actions” performed when state
transitions occur. The skeptical reader is urged to analyze care-
fully the Gonthier and MUX examples in Sections IIIA3 and IIIB.

HDS resolution and control problems. Up to year 19**,
FARMERS-LOVE-RAIN was the law governing the delivery of
funds for agriculture. At this time, W. W. LeGuen, a repre-
sentative of the (French) middlewest, suggested to replace the
FARMERS-LOVE-RAIN law by the following slightly different
one:

FARM ERS-LOVE-LEGU EN =
I water := rain - evaporation
1 help := (water > max-level)
I exceptional-funds := (500 flooded-acre) when help
I f u n d s := exceptional-funds default forecasted-funds
1 forecasted-funds := funds $ 5000

This was voted, and the immediate consequence was the following
trouble: funds had to be provided at least when exceptional-funds
were requested, but could be delivered as frequently as requested!
In fact, the last two equations impose only the constraints

clock(exceptional-funds) 5 clock(funds)

= clock(forecasted-funds)

This left an unexpected degree of freedom. Farmers immediately
proposed to maximize their income (a basic control problem) and
proposed to receive funds as frequently as possible:

c/ock(funds) ‘I

(the clock which is more frequent than any other one). On the
other hand, the national budget proposed to minimize the out-
come (another basic control problem) and wanted to never deliver
funds:

clock(funds) z I

(the clock with no presence at all). This latter pro-
posal was recognized as being in contradiction to the
FARMERS-LOVE-LEGUEN law and was rejected. Finally, the
compromise was to deliver f u n d s as scarcely as possible,

clock(funds) = clock(exceptiona1-funds)

i.e., only when a flood occurred, so that farmers got angry.

538 IEEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. 35. NO. 5 . MAY 1990

This little story illustrates how the relational nature of HDS
could be exploited based on the following philosophy.

Describe the constraints imposed by the "physics" of the
system (both rain and evaporation occur).

Specify some additional constraints you wish to be satisfied
by your system (a kind of model reference).

Verify whether the whole is consistent, and/or free from
ambiguity. In this case, construct the executable machine (it must
be some I/O map) that can produce the specified behavior: this
is what we called resolution.

On the other hand, questions have been raised such as: did we
propose the right tools to model hybrid dynamical systems? Such
questions can only be answered by some fundamental investiga-
tion involving formal mathematical models of HDS. This work
is beyond the scope of the present paper and was, for instance,
discussed in [2] and [3]. Incidentally, what we introduced was an
outline of the SIGNAL5 programming language.

B . SIGNAL -Kernel
To be concise, we shall introduce only the primitives of the

SIGNAL language, and drop any reference to typing, modular
structure, and various declarations; the interested reader is re-
ferred to [l 11. As we have shown, SIGNAL handles (possibly
infinite) sequences of data with time implicit: such sequences
will be referred to as signals. At a given instant, signals may
have the status absent (denoted by I) and present. If x is a sig-
nal, we shall denote by { ~ ~ } ~ 2 ~ the sequence of its values when
it is present. Signals that are present simultaneously are said to
have the same clock, so that clocks are equivalence classes of
simultaneously present signals (a formal definition is given in the
Appendix A.1). Instructions of SIGNAL are intended to relate
clocks as well as values of the various signals involved in a given
system. We shall term a system of such relations program; pro-
grams can be used as modules and further combined as indicated
later.

A basic principle in SIGNAL is that a single name is as-
signed to every signal, so that in the sequel (and unless explicitly
stated), identical names refer to identical signals. The kernel-
language SIGNAL possesses 5 instructions, the fxst of them be-
ing a generic one.

i) R(x1, . . . ,xp)
ii) y : = x $ x O

1 1 1) y : = x when b
iv) y := U default v

Their intuitive meaning is as follows (for a formal definition, see
Appendix A.111).

i) Direct extension of instantaneous relations into relations act-
ing on signals:

...

4 P I Q

R(x l , . . . , xp) @ 'in : R(xl, , . . . , xp,) holds

where R (. .) denotes a relation and the index n enumerates the
instants at which the signals xi are present. Examples are func-
tions such as z := x+y (Vn:z, = x, +yn) or statements such as (a
and b) or c =true (Vn:(an and bn) or Cn = true). A byproduct
of this instruction is that all referred signals must be present
simultaneously, i.e., they must have the same clock. This is
a generic instruction, i.e., we assume a family of relations is
available. If one chooses an instantaneous relation accepting any
p-uple, the resulting SIGNAL instruction only constrains the in-
volved signals to have the same clock: this is the way we derive
the instruction written synchro x, y, . . . which only forces the
listed signals to have the same clock.

ii) Shift register.

y : = x $ x O @ V n > l : yn =xn- l ,y , 1 x 0

SIGNAL is a joint trademark of CNET and INRlA

Recall that the index n refers to the values of the signals when
they are present. Again this instruction forces the input and output
signals to have the same clock.

iii) Condition (b is boolean): y equals x when the signal x and
the boolean b are available and b is true; otherwise, y is not
emitted; the result is an event-based undersampling of signals.
Here follows a table summarizing this instruction: ITTI

(I I I I

ITTI
(I I I I

iv) y merges U and v, with priority to U when both signals are
simultaneously present; this instruction is the key to oversam-
pling as we shall see later. Here follows a table summarizing this
instruction:

The instructions i)-iv) specify the elementary programs.
v) combination of already defined programs: signals with com-

mon names in P and Q are considered as identical. For example

I y := zy + a

denotes the system of recurrent equations

/ z y : = y $ xo

Yn =ZYn +an

ZY, = ~ ~ - I , z Y I =d.

We shall say that the smallest set of HDS containing the el-
ementary systems specified by the instructions i)-iv) and closed
under the interconnection operation I is the algebra of SIGNAL
programs. A formal definition of this set of instructions is pre-
sented in Appendix A.111.

111. HDS RESOLUTION: AN INFORMAL PRESENTATION
In the preceding section, we have informally presented the SIG-

NAL language, and gave a first illustration to specify HDS. A
corresponding formal model is found in the Appendix. The next
section will be devoted to an informal presentation of HDS reso-
lution, and investigation of examples that are tailored to illustrate
the features of our theory. A formal presentation of HDS resolu-
tion is beyond the scope of this paper. The interested reader is
referred to [5] for such a presentation.

A . Encoding SIGNAL Programs: A Tool for Resolution
HDS resolution aims at transforming implicit dynamical sys-

tems of the form (1) into an equivalent explicit I/O form. If no
restriction is imposed on the nature off, g, this will be gener-
ally impossible. To overcome this difficulty, we shall 6rst define
a map (or coding) from the algebra of SIGNAL programs onto a
smaller algebra where resolution is possible. The idea behind this
coding is the following. There are two basic types of tools for
transforming and analyzing how computations are organized in
general dynamical systems. The first one is the signal flow graph
showing data dependencies; this may be sufficient for very reg-
ular algorithms such as those encountered in basic digital signal
processing. The second one is the class of finite state automata

BENVENISTE AND LE GUERNIC: HYBRID DYNAMICAL SYSTEMS THEORY 539

describing the scheduling, the branching, and related features of
the dynamical system. We show next how to handle signal flow
graphs which evolve dynamically under the control of an automa-
tion: the algebra of dynamical graphs we shall obtain in this way
will be the subalgebra where we shall be able to perform reso-
lution.

I) Dynamical Graphs: What we must handle jointly are the
special value 1, booleans, and nonboolean data dependencies.
We shall first provide an algebra with a convenient calculus where
the pairs {I, booleans} can be represented. What we want to
encode are the following status: absent, present, true, false,
the last two for boolean signals only. These are encoded onto the
finite field 53 = Z / Z of integers modulo 3 as follows

true U + 1

false tf ~ I

absent - 0

present U * 1

whcre * 1 denotes a nondeterminate choice of +1 or - 1 ; i.e., we
handle in the same way nonboolean signals and boolean ones that
possess a nondeterminate value. HDS involving only boolean data
types will be encoded via dynamical systems over Sf for some
integer p . Such dynamical systems will be generally denoted by
the letter A , and are of the following form:

4 f l + I = P(4fl, Y f l)

This form deserves some comment. In (3), ([, y) E Sq, [is the
state vector, y is the vector of the observed signals, and P , Q
are polynomial vectors. Hence, the observation equation of usual
dynamical systems is here a relation instead of a function: this is
just a particular case of the general form (1) of HDS we intro-
duced. In (3), we shall denote by { y (i) } l j ; ~ ~ the components of
the vector y (so that we must have Z 5 p) .

Let us now introduce dynamical graphs. A dynamical graph
is a triple { A , r, y } where:

A is a dynamical system of the form (3). The purpose of
A is to encode the logic and synchronization of the considered
HDS.

r is a directed graph with the symbols {y (i) }15 ;5 , as its
set of vertices. The graph r summarizes potential (nonboolean)
data dependencies, as in signal flow graphs.

y is a function mapping Sf into the set of the subgraphs
of r. This map y plays a key role in specifying the actual data
dependencies at each instant (for this purpose, instants may be
characterized by points in St).

Notice that the map y is equally well-defined as follows: for
each branch y (i) + y (j) E r, specify the subset of Sg composed
of the points x such that ~ (x) contains the considered branch. This
is denoted by

where V is the considered subset of Sq.
Hence, dynamical graphs are skew products of dynamical sys-

tems and graphs. The dynamical system is intended to encode
the underlying automaton within a program, while the directed
graphs will encode the way dependencies evolve during an exe-
cution: the dependencies at a given instant will only depend on
the set of signals that are present in this instant.

2) Encoding SIGNAL Programs: Here follows the intuitive
description of our method. Recall that SIGNAL is obtained by
extending to multiple clocked dynamical systems a given “alge-

bra” of instantaneous relations. This remark is the keystone of
the method we present next to encode SIGNAL programs.

Step I : Among the relations of this algebra, select the sub-
family of relations and corresponding data types for which you
accept to solve systems of equations (and are supposed to be able
to!).

Step 2: Other instantaneous relations must be functions,
and are encoded into their dependency graphs; hence correspond-
ing data types are handled as sets of labels for which dependency
graphs summarize all the possible rewritings or substitutions

y = f(xl,...,xp)isencodedas{xI + y , . . . , xp - y } .

This defines our map; its ability to reason about dynamical sys-
tems as well as its complexity relies on the choice we have done
in Step 1. Here we shall select the boolean variables together
with the boolean relations generated by {:=, and, or, not} and
the constants true, false; this choice is motivated by the particular
role played by the booleans in the instruction when.

Based on these remarks, the algebraic coding of SIGNAL pro-
grams into dynamical graphs is derived next. For this purpose,
we shall use the following notations. For a signal with SIGNAL
name zap, we shall write zap to denote its value at the considered
instant (here, “value” means 1 or the actual value if the signal is
present), and we shall also write zap to denote the image of zap
in the dynamical system over S t :6 Using these notations, we first
show how presencelabsence of signals of any type is encoded

x = 1 + + x * = o

x f I - x 2 = 1 (5)

Only squares appear since the value of booleans plays no role
here. The following formulas concern (present) boolean values:

b = true c-f b = 1

b =false ti b = - 1

b = n o t a + + b = - a

c = a a n d b + + c = l - (a b + a + b) (6)

Let us illustrate how the coding works on the instruction y := x
when b in the nonboolean case. Four cases occur according to
the presence/absence of the various involved signals

i): b2 = 0, x2 = 0, y 2 = 0

ii): b2 = 0, x2 = 1, y 2 = 0

iii): b2 = 1, x2 = 0, y 2 = 0

i u) : b = - 1 , ~ ’ = 1 , y2 = O

U): b = +1, x2 = 1 , y2 = 1 , x + y .

Case v) is the only one where the output y is present. In this
case, its value depends on the value of x: this is indicated with
the - in v). These four cases can be summarized as the double
coding

’1 (7) [y 2 : x - y
y 2 = x2(-b - b2

y := x when b c-f

where the first field of this coding is the equation of the dy-
namical system over 5 3 (it is static here). In the second field
of this coding, “y2:” means that the dependency holds exactly
when y 2 = 1. A systematic application of this method yields the
algebraic coding of programs that we present next.

‘ No confusion should result in the sequel from this common notation.

540 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 35. NO. 5 . M A Y 1990

y := U default v c)

The following notation will be used for this coding into dy-
namical graphs:

y2 = u2 + u 2 (1 - u2) .
(15) u 2 : u i y

1 clock calculus
conditional dependency graph

program cf

where
program denotes the program to be encoded;
“clock calculus” denotes the set of algebraic equations en-

coding the constraints on synchronization or logic as we discussed
above; these equations defme dynamical systems over 5;;

“conditional dependency graph” denotes the set of possibly
occurring dependencies together with the instants where these
dependencies are in force.

Instruction i): Relation or Function:
Boolean Relation: The coding of all boolean relations is easily

derived from the coding of the following instructions and the
coding of the composition we shall see below:

of signal. Notice that the state takes +1 or - I as only values,
i.e., states are persistent. The state is modified when a new input
is received, and at the same instant the old state is delivered at
the output. Again no dependency graph is necessary.

Nonboolean Register:

The fist field expresses that clocks must be identical; the second
field is empty even if we consider nonboolean types, since the
current value of y does not depend on the current value of x, but
on the content of the memory (which has been lost in the coding).

Instruction iii): The when:
when with boolean output.

[‘ - b 2) c := awhen b e-i

when with nonboolean output.

] . (13) [y 2 : x + y
y 2 = x2(-b - b 2)

y := x when b ++

a :=true c--)

b = -a
b := not a ++

The second field expresses that x influences y when y is produced.
Instruction iv): The default. 1 default with boolean output. a2 = b 2 r

c = a 2 - (a b + a + b) l 0 c := a and b cf

L

The algebraic equation of the first formula possesses a = 1,
a = 0 as only solutions, which means that a is either absent or
true. The second equation is obvious. To derive the last one, note
that its first component encodes the fact that both signals a and b
must have the same clock (they are either both present or absent,
which is encoded as a2 = 1 and a2 = 0, respectively). Then it
is straightforward to verify that the last equation maps the pairs

-1, respectively. Since only booleans are involved, no coding of
dependencies is required, hence the symbol 8 in the second field.

(0, 01, (1, 11, (-1, 11, (1, -11, (-1, -1) onto 0, 1, -1, -1,

Nonboolean Function:

The 6rst field encodes the constraints on clocks (equality), while
the second one encodes the data dependencies. The second field
means “the listed dependencies hold when y 2 = 1 .” Notice that
a := (U < v) produces a boolean, but it is a nonboolean function.

Instruction ii): The Register:
Boolean Register: This is the key case where dynamical sys-

tems in 53 are used.

default with nonboolean output.

1

L U2(1 -u2) : U + y J
The second field expresses the fact that U influences y when it is
present, while U influences y when it is present and U is absent.

Instruction v): The Composition: The fields of P and Q have
to be merged to produce a single clock field and a single condi-
tional dependency graph field.

The General Form of Coding for a SIGNAL Program: By
combining the elementary codings (8)-(15), we derive the fol-
lowing form of dynamical graph to encode an arbitrary SIGNAL
program (cf. (3) and (4) for the undetined notations):

< ’ = (I - ~ ~) [+ a , < ~ = U
where h(i , j) is a polynomial expression involving the variables
y (k) in 5 3 which specifies when the considered dependency

C . Examples

b:=a$u e--* [b=t2E 1 (10) holds.

I) A Synchronized Memory: The output y returns either the
present value of x (when the latter is present), or the last received
value of when b is present and true. we call the corresponding
program CELL:

where t’ is the current state Of the system, its pre-
vious state, and U its initial condition (f 1-valued). The corre-
sponding explicit form of this dynamical system is

CELL (input: x,b output: y) =
I zy := y $ yo
1 y := x default zy
1 synchro y, (x default (true when b))

6 , = ai<,,
where n is any time index fast enough to capture every presence

BENVENISTE AND LE GUERNIC: HYBRID DYNAMICAL SYSTEMS THEORY

When encoding this program, we shall make a distinction between
two cases: x boolean, and x nonboolean.

Encoding the Boolean CELL into its Clock Calculus.

t ’=(1-Y2)4+Y,FI = Y o

ZY = Y2F

y = x + z y (l - x 2)

y 2 = x2 + (-b - b2)(1 - x’).

Eliminating z y and rewriting t’ as a function of the input x yields

F’ = (1 - X 2) E + x , E , =yo

y = x + (-b - b2)(1 - x2)(

which reflects exactly the meaning of the program CELL: the
memory is refreshed when x is received (first equation), and y
delivers the current value of x when x is received, or its last value
when b is received and true.

Encoding the Nonboolean CELL into its Clock Calculus and
Conditional Dependency Graph.

Clock calculus:

zy2 = y 2 = x2 + zy2 (1 - x 2)

y 2 = X * + (-b - b2)(1 - x*)

which yields

ZY’ = y 2 =X2+(-b -b2) (1 -X2) .

Conditional dependency graph:

54 1

$(I-X’) X2
z y - y + x

Here the dynamics has been lost; the clock calculus expresses
only how the clocks of the signals are related.

2) A n Example of Deadlock: The following example is due to
G. Gonthier (private communication). An if.. .then.. .else state-
ment is provided as a macro in the full SIGNAL language. Using
this macro, we can write the following SIGNAL instruction:

if z > 0 then z := a else z := b

The expansion of this program in terms of the primitive instruc-
tions we have given in the following:

I synchro a,b
1 beta = (z > 0)
I x := a when beta
I y := b when not beta
1 z := x default y

Denoting by /3 the image of beta, the clock calculus is

a* = b2

x2 = a2(-P - P 2)

y 2 = b2(P - /3*)

22 = x* + y2(1 - x2) .

Then, we set h = a2 = b2 , and, combining the above equations,

we get

X* = h(-0 - P 2)

y* = h(P - 0’)
0’ = z 2 = x 2 +y2(1 -x*) = h p 2 .

Now, consider the last equation p2 = hP2. It is equivalent to

P2 = @*h

where is a free variable of 53, which we shall call aphantom.
Hence, the clock calculus can be rewritten as follows (the deleted
equation was redundant):

a2 = b2 = h

x2 = h(-/3 - P 2)

Y 2 = h(P - P 2)

P2 = z2 = @*h. (17)

Notice that the presence of the phantom reflects the fact that the
clock of the signals z and /3 is not completely determined by the
inputs a,b. From this form of the clock calculus, it appears that
h is the fastest clock, so that we can assume

h 1. (18)

Finally, using (18), (17) is rewritten as

Y 2 = +P - P2

P* free. (19)

Using again (18), the conditional dependency graph is

-0 -02 a - x

b+o--S2 + e o ’ -S2 - y ‘ z - P .
In both cases, /3 appears both at the end of the last branch of the
graph, and as a label of the first two branches. This is a sort of a
cycle where both control and data dependencies are involved.
This is handled with the following procedure we outline now
(the reader is referred to [5] for a detailed presentation of this
procedure and the formal model to support it).

From the clock calculus (19), it is seen that the value of P
does influence both clocks x2 and y 2 : let us encode this via the
following graph:

B ’ X

P ’ Y . (21)

Combining (20) and (21), we get the following labeled graph:

--$ Y .

542 IEEE TRANSACTIONS ON AUTOMATIC CONTROL. VOL. 35, NO. 5 , MAY 1990

Two cycles are exhibited. The first cycle is effective when f l =
$1, while the second one is effective when /3 = - 1 . Hence,
to prevent both cycles we must enforce f12 = 0. Consequently,
this program accepts the inputs (a,b), but refuses to produce any
other signal.

This illustrates informally how deadlocks can be detected and
isolated by taking into account clocks and data dependencies. This
example also reveals why taking into account only the dynam-
ical system over 53 in the coding of SIGNAL programs may
result in dramatic errors in deadlock detection: no deadlock
is detected in this example from the inspection of the clock cal-
culus only. This is perhaps the most illustrative example of the
additional difficulty encountered in handling HDS as compared to
DEDS.

3) A Time-Multiplexer: Here follows a desired behavior of
the program we shall write next:

inputr: 2 I I 4 I I I I O 5 i .

outputn.2 1 0 4 3 2 1 0 0 5 4 . . .

The input r is a nonnegative integer. When r is read and takes
the value r, r additional samples are produced for the output n
before the next value of r is read: this is a (variable rate) time-
multiplexer which is a basic tool to construct oversampling. Here
follows the program:

MUX (input: r, output: n) =
I n := r default (z n - 1)
Izn:=n$O
1 b := (n = 0)
I past-b := b $ true
1 true-past-b :=true when past-b
I synchro true-past-b, r

The first two instructions deline a decreasing counter n with
reset signal r. The boolean signal b tests for n = 0, past-b
is the delayed signal b, while true-past-b extracts the instants
where past-b is true. Therefore, when n reaches 0, the next
time n is produced, a new sample of the input signal r must
be read, due to the last instruction synchro which constrains
the clocks of the listed signals to be equal. Notice that, in this
way, we implemented an oversampling, so that both requests
about clock changes that were expressed when introducing the
FARMERS-LOVE-RAIN story are now satisfied: SIGNAL pro-
vides tools for both (variable rate) under- and over-sampling.

We shall encode this program. Clock calculus and dependency
graph will be written with the short signal names pb, tpb instead
of the full names past-b, true-past-b. This coding is written
instruction-by-instruction :

zn2 = n2

b2 = n2 , n c b

\ p b = b2C;

tpb = -pb - p b 2

tpb2 = r2. (23)

The first two equations of the clock calculus are equivalent to

n2 = zn2 = r2 + @ * (I - r 2)

where Q, is a phantom. This phantom reflects the fact that, in the

first two instructions

I n := r default (z n - 1)
I zn := n$O

of the program, the clock of the output n is not completely de-
termined by the clock of the input r alone: the only constraint on
synchronization we get is that n must be more frequent than r.

Using the last instruction synchro allows us to remove this
phantom: the whole clock calculus can be rewritten as follows:

E ’ = (l - b *) [+ b , E l = O

p b = b2[

zn2 = n2 = pb2 b2

i
r2 = tpb2 = t pb = -pb - p b 2 (24)

while the corresponding conditional dependency graph is now

(l-r2)b’ b’ r2
r + n , z n + n , n + b .

Considering only the clock calculus (24), it looks like if b was
the input (all other clocks are determined from 6) . However,
this boolean signal is not an input of the program: this paradox
is due to the fact that, in considering the clock calculus alone,
we just disregarded the dependencies encoded in the conditional
dependency graph (25) . This reveals again the intricate mutual
interaction between graphs and automata in HDS theory. To fur-
ther investigate this point, we shall now discuss in details on this
example how HDS resolution is performed.

B . HDS Resolution: The Example of the Time-Multiplexer
To show that the form (24), (25) corresponds to an already

solved HDS, we shall simply show how the finite state machine
works, which produces the desired behavior. This is described
next. First, note that in (24), we are free to take b2 E 1. Here is
a description of this finite state machine.

Initial stage: a new instant begins.
FOR EACH INSTANT DO:

r2 = tpb2 = t pb = -pb - 1.

The initial stage is equivalent to (24), (25) if we take into account
b2 s 1 . Two cases may occur, depending on the value of the
current state E .

Case 1: = +l.
Step 1: r2 is evaluated to 1. The branches labeled with a 0

are removed (the corresponding dependency is not in force at the
considered instant). Some branches remain with a label 1 (the
corresponding dependency is in force), we remove this label 1
for the sake of simplicity. Finally, the signals and clocks that have
been evaluated and will not be used any more are removed. This
yields

[’ = b

1 = n2 = b2 i r + n , n + b

r2 = - 1 - 1 = 1 .

BENVENISTE AND LE GUERNIC: HYBRID DYNAMICAL SYSTEMS THEORY 543

Step 2: Since r’ = n2 = 1 and r + n , n can be evaluated

(’ = b

1 = n2 = b2

{ n + b .

Step 3: b is ready to be evaluated

(’ = b.

Step 4: The next value of the state can be computed

G1.
This ends the considered instant.
Case 2: 4 = - 1 . Here follow the corresponding steps.
Step I :

Step 2:

(’ = b

Step 3, Step 4, as before.
This execution scheme revealed what really are the inputs of

this HDS. Knowing that b2 E 1 is a first input (it is here a trivial
information). Knowing this, it is possible to read the value of the
current state 4 : this indicates whether the input signal r should
be read or not, and allows us to evaluate n, then b, and finally
to write the latter value in the next state. This shows that the
input of this system is split into 1) its “internal clock’> 2)
the values of the input reset signal r when the latter is read.

C . Discussion
I) On the “Graph Peeling” Mechanism: The MUX example

did not really involve numerics, except for the zn - 1 instruction.
But the mechanism of clock dependent graph peeling we pre-
sented as a key step of the execution machine is obviously valid
for numerical computations as well. The MUX example and the
example of deadlock due to G. Gonthier illustrate best why the
mixed nature of HDS makes their study more difficult than the
study of DEDS.

2) Solving HDS: A formal model supporting HDS resolution
is presented in [5] using the technique of “conditional rewriting
rules” borrowed from formal semantics of languages in computer
science.

3) Studying Dynamical Systems in 33: A systematic study
of the dynamical systems of the form (3) is presented in 1181.
This study is control oriented, and covers some of the classical
topics of DEDS. It is entirely based on the tools of polynomial
ideal theory.

IV. CONCLUSION
We have presented a brief account of HDS theory. Notice the

following points.
HDS involve both numerics and symbolics (logic and syn-

chronization), which makes them of wide applicability, but also
difficult to analyze. The reader interested in a formal presentation

of the theory is referred to [3] for a control oriented presentation,
and to (5) for a computer science oriented one.

Our theory is supported by the SIGNAL programming lan-
guage. A version of the SIGNAL compiler is currently experi-
mented with in some universities, and a block-diagram oriented
interface is available to specify systems in a control engineer-
ing style. The compiler produces as an intermediate level code
the pair clock calculus, conditional dependence graph; from this
intermediate level code, executable Fortran code, but also dis-
tributed OCCAM code (programming language of the “Trans-
puter” by INMOS), is generated. Current applications to test
the language are signal processing systems, radar systems, and a
whole continuous speech recognition application. The existence
of this programming language makes the treatment of real appli-
cations really feasible, cf. [15]. A thorough discussion of SIG-
NAL from the user’s viewpoint is presented in 161.

Our approach is relational, which allows us to specify HDS
via constraints involving logic and synchronization, to analyze
them, and to execute them. This relational approach provides
a “proof system” for these properties, similar to (but weaker
than) temporal logic [26]. This point is further investigated in
1181 using a control point of view and polynomial ideal theory.
The main problem is then HDS resolution, i.e., transforming the
implicit specification into an explicit input/output map.

Our theory captures the notion of deadlock; a detailed dis-
cussion of this and other properties is presented in [181.

Finally, let us mention related work on synchronous languages:
the declarative (but functional) language LUSTRE [7] [lo], the
imperative language ESTEREL [8] 1121 the syntax of which pos-
sesses some flavor of ADA. Loosely related to the same field are
the STATECHARTS and STATEMATES developed by Hare1 and
Pnueli 1131, 1141, which provide a graphical interface to specify
in a hierarchical way states and transitions in automata.

APPENDIX A

A MATHEMATICAL MODEL FOR HDS A N D THE SIGNAL LANGUAGE
In this Appendix, a mathematical model for HDS is presented,

and used to formally define SIGNAL. The reader is referred to
Section I1 for the motivation of the following definitions.

I . Signals, Clocks
Consider an alphabet (h i t e set) A of typed variables called

ports. For each a E A , XIo is the domain of values (integers,
reals, booleans. . .) that may be carried by a at every instant.
Introduce

S A = U XIo, 9; = S A U { 1 }
a EA

where the additional symbol I denotes the absence of the value
associated with a port at a given instant. For two sets A and B,
the notation A + B will denote the set of all maps defined from
A into B . Using this notation, we introduce the following objects.

Events: Events specify the values carried by a set of ports at
a considered instant. The set of the A-events (or “events” for
short when no confusion is likely to occur) is defined as

= A -33;.

Events will be generally denoted by E . We shall denote by i the
event E such that € (a) = I Va E A .

2) Traces: Traces are infinite sequences of events. Let N denote
the set of integers, then the set of A-traces (or simply “traces”)
is defined as

SA = N + E A .

3) Compressions: The compression of an A-trace T (deleting

544 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 35. NO. 5 . MAY 1990

the 1 ’ s) is defined as the (unique) A-trace S such that

S (n) = T(kn)

where

I I . HDS

ko = min {m 2 0 : T (m) # I },
k , = min { m > k,-l : T (m) # i }.

The compression of a trace Twill be denoted by T 1 .
4) Signals: The condition

TL = T’J

defmes an equivalence relation on traces we shall denote by
T - T’. The corresponding equivalence classes are called mul-
tiple signals, and simply signals when the set A is reduced to
a singleton. The set of multiple signals on A will be denoted by
S A , so that we have (’1- denotes here the quotient space by the
relation -)

SA = (%I/-.
The notion of “signal” has been informally discussed in Section
IIA1(1), where we motivated the formal definition of signals as
equivalence classes with respect to the relation -. Clearly, the
symbol I is useful when components of multiple signals are
considered, such components are frequently simply referred to as
“signals” in the informal discussion.

5) Clocks: Extend the domain a>$ with another distinguished
value T , intended to encode the status “present” regardless of
any particular value, and write aiock = { 1 } U {T}. We define
on aiock the order relation < by setting 1 < T. Consider the
map clocks, E a>; --f 9iock defined by

clockD(I) = I, clockD(x) = T forx # I .

For each E E E A , there is a unique map in EA -i &A making the
following diagram commutative, denote it by clockg :

Similarly, there is a unique map in 3A --f 3 ~ , we denote by
clock3, making the following diagram commutative:

N

T J L clock, (T)
clock6

&A --3 E*

This map satisfies the condition T I - T2 + cIock3(TI) -
clocks(T2), so that it induces a map in SA ---$ SA we shall now
denote by clock: the clock of a (multiple) signal is another (multi-
ple) signal which summarizes the status {present/absent} of each
of its components.

In Section IIA2, we discussed informally some relations on
clocks of signals involved in a given SIGNAL program. By this,
we had in mind the following. A SIGNAL program defines a sub-
set of “admissible” multiple signals (see below). The components
of these multiple signals are denoted by the different names used
in the program. Hence, by clock(zap), we mean the image by
the map clock of the component z a p of the considered multiple
signal.

Finally, the order + we introduced above on the pair {I, T }
can be carried out via the above construction to obtain the order
on clocks denoted by 5 in Section IIA2.

I) Definition of HDS: An HDS is simply a subset

x c SA

of the set of all multiple signals on A .
2) Restricting HDS: Consider a subset of A’ of the alphabet

A. The inclusion A’ C A induces a projection E - € / A ‘ from &A

onto E A , . Following the same argument as for the definition of
clocks, we derive the following family of restrictions we generi-
cally denote by . i A , . First, the following commutative diagram:

N

uniquely defines the restriction T --f on traces. Since
T I - T2 + (TI),A, - (T z) / A ~ holds, a restriction on signals
S + S1*, can be defined, ‘which finally yields a restriction on
HDS we denote by

This restriction maps the set of HDS defined over the alphabet
A onto the set of HDS defined over the alphabet A’ . The HDS
X ~ A ! is called the restriction of X to (the subalphabet) A‘.

3) Combining HDS: Consider two HDS X I , X2, respec-
tively, defined over the alphabets A 1 and A2. Set A = A 1 U A2.
Then X I 1 x 2 will denote the maximal’ HDS defined over the
alphabet A satisfying the following conditions:

(X I I X Z) / A , c XI

(X I l X 2) / A 2 c X2

The meaning of these conditions is that both constraints induced
by X I and X2 have to be satisfied by X I 1 x 2 : this is exactly
what “combining two systems of equations” usually means (see
[19] for a similar construction).

III. The Definition of SIGNAL
According to the preceding section, in order to specify an HDS

over a given alphabet, we have to describe a subset of all multiple
signals that can be built upon this alphabet. Since signals are
defined as equivalence classes of traces with respect to the relation
-, this can be done by listing a family of constraints on the
set of all traces that can be built on this alphabet. This is what
we shall do next.

Instruction i): R(x1,. . .xp)

V n E N : x i (n) # I V i

Viz E N : R(xi(n);..,xp(n))hoIds.

Here, the notation xi(n) denotes the value carried by the port with
name xi at the nth instant of the considered trace. This notation
will be further used in the sequel.

Instruction ii): y := x $ x0

V n E N : x (n) # 1

tin > 1 : y(n) = x(n - 1)

y(1) = xo.

Instruction iii): y := x when b

x(n)

I otherwise.

’With respect to the order by inclusion X’ C X defined on HDS.

if x(n) # I and b(n) = true
‘vn E N , y(n) =

BENVENISTE AND LE GUERNIC: HYBRID DYNAMICAL SYSTEMS THEORY

Instruction iv): y := U default v

u (n) ifu(n) # i

Vn E N , y(n) = v(n) ifu(n) = I andv(n) # 1
I otherwise.

APPENDIX B

A SAMPLE WORK OF THE SIGNAL COMPILER: THE PROGRAM MUX
Here is the syntactically correct form of the program MUX:

{
Instruction v): P I Q
We already defined the operator I on HDS.

process MUX=
{ ? integer R
! integer N }

(1 N := R default (ZN - 1)
I Z N : = N $ l
I B : = N = O
I PAST-B := B $1
I synchro {when PAST-B, R }
I)!! N

where
logical B. PAST-B init true;
integer ZN init 0

end

Some differences with the syntax we used in the paper are men-
tioned now. The symbol $1 denotes a unit delay ($n is also avail-
able to denote an n-delay), the initial condition of ZN is given in
the where field. The field { ?. . ., !. . . } specifies the interface (?
stands for “input”, and ! for “output”). At the end of the body,
! !N means that N is the only output visible from outside (this is
redundant with the interface specification).

The translation of MUX results in the following SIGNAL pro-
gram which specifies now a “solved” HDS. This means that
synchronization, boolean, and nonboolean data are determined
by functions instead of relations: this HDS is ready for execu-
tion. The special work “event” denotes:

a type “pure clock signal” (a boolean which always car-
ries the value true) when encountered in the specification of the
interface;

the clock of the mentioned signal when encountered in the
body of the program (event N-2 is the first example).

The symbols H-**-H refer to clocks that are synthesized by the
clock calculus, or to modules that are fired according to the clock
with the mentioned name (cf. for instance process H-10-H).

process MUX-TRA=
{ ? integer R-1

(1 (1 H-10-H := event N-2
! integer N-2 }

I synchro { H-lO-H, N-2)

I,”’”“) I)/ H-l l -H, H-10-H
where

process H-lO_H=
event H-l l-H, H-10-H

{ ? event H-10-H;
integer R-1

! event H-11-H;
integer N-2)

(Isynchro { H-lO-H, B-6, PAST-B-7, ZN-8)
I (I H-11-H := when PAST-B-7

I synchro { H-l l-H, R-1 }
I H-12-H :=when(not PAST-B-7)
I) I (1 ZN-8 := N-2 $1
1 PAST-B-7 := B-6 $1

545

N-2 := (R-1 when H-11-H)

B-6 := (N-2 = 0)when H-10-H

H-12-H, B-6, PAST-B-7, ZN-8

default((ZN-8 - 1)when H- 12-H)

I)
where

event H-12-H;
logical B-6, PAST-B-7 init true;
integer ZN-8 init 0

end
end

The above program is ready for sequential (i.e., centralized) as
well as parallel (i.e., distributed) implementation.

The compiler also produces the following Fortran Subroutine
(an instance of sequential implementation). This subroutine calls
user-defined input/output functions for each of the input/output
signals.

C SIGNAL P1,5-(Fevrier 1989-release September 1989)-
IRISA

SUBROUTINE SMUX

INTEGER R1

INTEGER N2

INTEGER ZN8
LOGICAL PASTB7,B6

LOGICAL h lOh,h l2h,h l lh

ENTRY CM UX(hl0h)
hlOh = .TRUE.
h l l h = PASTB7
h12h = .NOT. h l l h
IF (hl2h)THEN
N2 = ZN8 - 1
ENDIF
IF (hl1h)THEN

C Reading input R
CALL RR (R1,hlOh)
IF (.NOT. (hl0h))RETURN
N2 = R1
ENDIF

C Producing output N
CALL W N (N2)
B6 = N2 .EQ. 0

PASTB7 = B6
ZN8 = N2

RETURN

ENTRY IMUX

ZN8 = 0
PASTB7 = .TRUE.

C List of clocks

C Body of the program

C Handling delays

C Initialization

RETURN
END

ACKNOWLEDGMENT
The authors wish to thank B. Le Goff and C. Ozveren for

fruitful discussions and suggestions, and an anonymous reviewer
who performed an outstanding work in rephrasing for a control
audience the motivations for our theory.’

However, the authors are entirely responsible for the illustration example
related to social science, and for all kinds of excommunication that could
result.

546 LEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 35, NO. 5, MAY 1990

[71

181

[91

1191
1201

REFERENCES
K. J . Astrom, J . J . Anton, and K. E. Arzen, “Expert control,” Au-
tomatica, vol. 22, no. 3, pp. 277-286.
A. Benveniste and P. Le Guemic, “A denotational theory of syn-
chronous communicating. systems,” INRIA Research Rep. 685.
A. Benveniste, B. Le Goff, and P. Le Guernic, “Hybrid dynamical
systems theory and the language SIGNAL,” INRIA Research Rep.
838, 1988.
A. Benveniste and P. Le Guemic, “Hybrid dynamical systems theory
and nonlinear dynamical systems over finite fields,” in Proc. 1988
IEEE CDC, Austin, TX, Dec. 7-9, 1988.
A. Benveniste, P. Le Guernic, and C . Jacquemot, “Synchronous pro-
gramming with events and relations: The SIGNAL language and its
semantic,” IRISA Research Rep., 1989.
- , “The SIGNAL software environment for real-time system speci-
fication, design, and implementation,” in Proc. 1989 IEEE Workshop
on Comput.-Aided Contr. Syst. Design, Tampa, FL, Dec. 16, 1989.
J. L. Bergerand, P. Caspi, N. Halbwachs, D. Pilaud, and E. Pilaud,
“Outline of a real-time data-flow language,” in Proc. Real Time Sys-
tems Symp., San Diego, CA, Dec. 1985.
G. Berry and G. Gonthier, “The ESTEREL synchronous programming
language: design, semantics, implementations,” CMA Research Rep.;
also in Sci. Comput. Programming, to be published.
S . D. Brookes, C . A. R. Hoare, and A. W. Roscoe, “A theory of
communicating sequential processes,” J . ACM, vol. 31, no. 3, pp.
560-599.
P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice, “LUSTRE: A
declarative language for programming synchronous systems,” in Proc.
14th ACM Symp. Principles of Programming Languages, 1987.
T. Gautier, P. Le Guemic, and L. Besnard, “SIGNAL, A declarative
language for synchronous programming of real-time systems, ” in Proc.
3rd Conf. Functional Programming Languages and Computer Ar-
chitecture, G. Kahn Ed. (Lect Notes in Computer Science, Vol. 274).
New York: Springer-Verlag, 1987.
G. Gonthier, thesis, Univ. de Nice and Ecole des Mines, 1988.
D. Harel, “Statecharts: A visual approach to complex systems,” Sci.
Comput. Programming, vol. 8, no. 3, pp. 231-275, 1987.
D. Harel and A. Pnueli, “On the development of reactive systems:
Logic and models of concurrent systems,” in Proc. NATO Advanced
Study Institute on Logics and Models for Verification and Spec-
ifcation of Concurrent Systems (NATO AS1 Series F., Vol. 13).
New York: Springer-Verlag, 1985, pp. 477-498.
Y. C . Ho, “Basic research, manufacturing automation, and putting the
cart before the horse,’’ IEEE Trans. Automat. Contr., vol. AC-32,
pp. 1042-1043, Dec. 1987.
C. A. R. Hoare, “Communicating sequential processes,” Commun.
ACM, vol. 21, no. 8, pp. 666-678.
K. Inan and P. Varaiya, “Finitely recursive processes,” in Proc. CDC,

M. Le Borgne, A. Benveniste, and P. Le Guernic, ”Polynomial ideal
theoretic methods in discrete event, and hybrid dynamical systems,’’
in Proc. 1989 CDC, Tampa, FL, Dec. 13-15, 1989.
B. Le Goff, thesis, IRISA, Univ. Rennes I, 1989.
P. Le Guernic, A. Benveniste, P. Bournai, and T. Gautier, “SIG-
NAL: A data-flow oriented language for signal processing,” IEEE
Trans. Acoust., Speech, Signal Processing, vol. ASSP-34, no. 2, pp.

A. Levis et al., “Challenges to control, A collective view,” IEEE
Trans. Automat. Contr., vol. AC-32, pp. 274-285, 1987.
R. Milner, A Calculus of Communicating Systems (Lect. Notes in
Computer Science Vol. 92). New York: Springer-Verlag.
- , “Calculi for synchrony and asynchrony,” Theoret. Comput.
Sei., vol. 25, no. 3, pp. 267-310.

1987, pp. 252-256.

362-374.

[24] C. Ozveren and A. S . Willsky, “Aggregation and multi-level control in
discrete event dynamic systems,” Mass. Inst. Technol., Reps. LIDS-
P-1902, LIDS-MIT; also in Automatica, 1989.
C. Ozveren and A. S . Willsky, “Observability of discrete event dy-
namic systems,” Mass. Inst. Technol., Rep. LIDS-P-1861; also in
IEEE Trans. Automat. Contr., to be published.
A. Pnueli, “The temporal logic of programs,” in Proc. IEEE Symp.
Foundations of Comput. Sci., Providence, RI.
P. J . Ramadge, “Observability of discrete event systems,” in Proc.
CDC, Athens, Greece, 1986, pp. 1108-1 112.
P. J. Ramadge and W. M. Wonham, “Supervisory control of a class
of discrete event processes,” SIAM J . Contr. Optimiz., vol. 25, no.
1, pp. 206-230, 1987.
- , “On the suprema1 controllable sublanguage of a given language,”
SIAM J . Contr. Optimiz., vol. 25, no. 3, pp. 637-659, 1987.
J . C. Willems, “From time series to linear systems,” Automatica,

1251

[26]

[27]

[28]

[29]

1301
vol. 22, pp. 561-580, 1986.

Albert Benveniste (M’81-SM’89) was born in
Paris, France, in 1949. He graduated from Ecole
des Mines de Paris in 1971.

From 1971 to 1973 he has been with the
Centre d’Automatique de 1’Ecole des Mines,
Fontainebleau. From 1974 to 1976, he has been
with INRIA, Rocquencourt. In 1976, he joined
IRISA, Rennes, where he holds an INRIA re-
search position. After some work in probability the-
ory Markov processes and Ergodic theory, for the
“These d’Etat” in 1975, his interest moved towards

the area of applied mathematics (signal processing, identification and adaptive
algorithms, speech and image coding, data communication systems, change
detection). Since 1983, he has also been involved in the SIGNAL project
under the head of Paul le Guernic. He is the author of numerous papers on
signal processing, automatic control, and computer science. He is the coau-
thor of a book on adaptive algorithms with M. Metivier and P. Priouret.

Dr. Benveniste is Associate Editor for the IEEE TRANSACTIONS ON AUTO-
MATIC CONTROL, the International Journal on Adaptive Control and Signal
Processing, and Discrete Event Systems. He is Chairman of the IFAC Com-
mittee on Theory for the triennium 90-93.

Paul Le Guernic was born in Bonneval, France, in
1950. He graduated from the Institut National des
Sciences Appliqutes, Rennes, France, in 1974.

Since 1978, he has been a member of IRISA,
Rennes, with an INRIA research position. From
1974 to 1978, he worked in language theory and
compiling techniques, which was the area of his
“These de troisieme cycle” in 1976. Since 1978,
he has mainly been concerned with parallel pro-
cessing, and, since 1981, more precisely with real
time systems. The Programming Environment for

Real Time Applications group that he manages has defined the language SIG-
NAL. As a designer of the SIGNAL environment, he is also interested in
symbolic manipulation tools.

