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Abstract. We ask whether strictly causal components form well de-
fined systems when arranged in feedback configurations. The standard
interpretation for such configurations induces a fixed-point constraint on
the function modelling the component involved. We define strictly causal
functions formally, and show that the corresponding fixed-point problem
does not always have a well defined solution. We examine the relationship
between these functions and the functions that are strictly contracting
with respect to a generalized distance function on signals, and argue that
these strictly contracting functions are actually the functions that one
ought to be interested in. We prove a constructive fixed-point theorem
for these functions, and introduce a corresponding induction principle.

1 Introduction

This work is part of a larger effort aimed at the construction of well defined
mathematical models that will inform the design of programming languages and
model-based design tools for timed systems. We use the term “timed” rather
liberally here to refer to any system that will determinately order its events
relative to some physical or logical clock. But our emphasis is on timed compu-
tation, with examples ranging from concurrent and distributed real-time software
to hardware design, and from discrete-event simulation to continuous-time and
hybrid modelling, spanning the entire development process of what we would
nowadays refer to as cyber-physical systems. Our hope is that our work will lend
insight into the design and application of the many languages and tools that
have and will increasingly come into use for the design, simulation, and analy-
sis of such systems. Existing languages and tools to which this work applies, to
varying degrees, include hardware description languages such as VHDL and Sys-
temC, modeling and simulation tools such as Simulink and LabVIEW, network
simulation tools such as ns-2/ns-3 and OPNET, and general-purpose simulation
formalisms such as DEVS (e.g., see [1]).
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F
F (s)s

Fig. 1. Block-diagram of a functional component F in feedback. The input signal s
and the output signal F (s) are but the same signal; that is, s = F (s).

Considering the breadth of our informal definition for timed systems, we can-
not hope for a comprehensive formalism or syntax for such systems at a gran-
ularity finer than that of a network of components. We will thus ignore any
internal structure or state, and think of any particular component as an opaque
flow transformer. Formally, we will model such components as functions, and use
a suitably generalized concept of signal as flow. This point of view is consistent
with the one presented by most of the languages and tools mentioned above.

The greatest challenge in the construction of such a model is, by and large,
the interpretation of feedback. Feedback is an extremely useful control mech-
anism, present in all but the most trivial systems. But it makes systems self-
referential, with one signal depending on another, and vice versa (see Fig. 1).
Mathematically, this notion of self-reference manifests itself in the form of a
fixed-point problem, as illustrated by the simple block-diagram of Fig. 1: the
input signal s and the output signal F (s) are but the same signal transmitted
over the feedback wire of the system; unless F has a fixed point, the system has
no model; unless F has a unique or otherwise canonical fixed point, the model
is not uniquely determined; unless we can construct the unique or otherwise
canonical fixed point of F , we cannot know what the model is.

In this work, we consider the fixed-point problem of strictly causal functions,
namely functions modelling components whose output at any time depends only
on past values of the input. After a careful, precise formalization of this folklore,
yet universally accepted, definition, we show that the property of strict causality
is by itself too weak to accommodate a uniform fixed-point theory. We then
consider functions that are strictly contracting with respect to a suitably defined
generalized distance function on signals, and study their relationship to strictly
causal ones, providing strong evidence that the former are actually the functions
that one ought to be interested in. Finally, we consider the fixed-point problem
of these functions, which is not amenable to classical methods (see [2, thm.A.2
and thm.A.4]), and prove a constructive fixed-point theorem, what has resisted
previous efforts (e.g., see [3], [4]). We also introduce a corresponding induction
principle, and discuss its relationship to the standard ones afforded by the fixed-
point theories of order-preserving functions and contraction mappings.

For lack of space, we omit all proofs; they can be found in [2]. We also assume
a certain level of familiarity with the theory of generalized ultrametric spaces
(e.g., see [5]) and order theory (e.g., see [6]).
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2 Signals

We postulate a non-empty set T of tags, and a total order relation � on T.
We use T to represent our time domain. The order relation � is meant to play
the role of a chronological precedence relation, and therefore, it is reasonable to
require that � be a total order. We note, however, that such a requirement is
often unnecessary, and in fact, all results of Sect. 5 remain valid when 〈T,�〉 is
only partially ordered.

We would like to define signals as functions over an independent variable
ranging over T. But being primarily concerned with computational systems, we
should expect our definition to accommodate the representation of variations
that may be undefined for some instances or even periods of time. In fact, we
think of such instances and periods of time as part of the variational information.
Such considerations lead directly to the concept of partial function.

We postulate a non-empty set V of values.

Definition 1. An event is an ordered pair 〈τ, v〉 ∈ T×V.

Definition 2. A signal is a single-valued set of events.

We write S for the set of all signals.
Our concept of signal is based on [7]. But here, unlike in [7], we restrict signals

to be single-valued.
Notice that the empty set is vacuously single-valued, and hence, a signal,

which we call the empty signal.
We adopt common practice in modern set theory and identify a function with

its graph. A signal is then a function with domain some subset of T, and range
some subset of V, or in other words, a partial function from T to V.

For every s1, s2 ∈ S and τ ∈ T, we write s1(τ) � s2(τ) if and only if one of
the following is true:

1. τ �∈ dom s1 and τ �∈ dom s2;
2. τ ∈ dom s1, τ ∈ dom s2, and s1(τ) = s2(τ).

There is a natural, if abstract, notion of distance between any two signals, corre-
sponding to the largest segment of time closed under time precedence, and over
which the two signals agree; the larger the segment, the closer the two signals.
Under certain conditions, this can be couched in the language of metric spaces
(e.g., see [7], [8], [9]). All one needs is a map from such segments of time to
non-negative real numbers. But this step of indirection excessively restricts the
kind of ordered sets that one can use as models of time (see [4]), and can be
avoided as long as one is willing to think about the notion of distance in more
abstract terms, and use the language of generalized ultrametric spaces instead
(see [5]).
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We write d for a map from S× S to L 〈T,�〉 such that for every s1, s2 ∈ S,1

d(s1, s2) = {τ | τ ∈ T, and for every τ ′ � τ , s1(τ
′) � s2(τ

′)} .

Proposition 1. 〈S,L 〈T,�〉,⊇,T, d〉 is a generalized ultrametric space.

The following is immediate, and indeed, equivalent:

Proposition 2. For every s1, s2, s3 ∈ S, the following are true:

1. d(s1, s2) = T if and only if s1 = s2;
2. d(s1, s2) = d(s2, s1);
3. d(s1, s2) ⊇ d(s1, s3) ∩ d(s3, s2).

We refer to clause 1 as the identity of indiscernibles, clause 2 as symmetry, and
clause 3 as the generalized ultrametric inequality.

Proposition 3. 〈S,L 〈T,�〉,⊇,T, d〉 is spherically complete.

Spherical completeness implies Cauchy-completeness, but the converse is not
true in general (see [10, prop. 10], [2, exam. 2.6]). The importance of spherical
completeness will become clear in Section 4 (see Theorem 2).

There is also a natural order relation on signals, namely the prefix relation on
signals.

We write 
 for a binary relation on S such that for every s1, s2 ∈ S,

s1 
 s2 ⇐⇒ for every τ, τ ′ ∈ T, if τ ∈ dom s1 and τ ′ � τ , then
s1(τ

′) � s2(τ
′).

We say that s1 is a prefix of s2 if and only if s1 
 s2.
It is easy to see that for every s1, s2 ∈ S, s1 
 s2 if and only if there is

L ∈ L 〈T,�〉 such that s1 = s2 � L,3 and in particular, s1 
 s2 if and only if
s1 = s2 � d(s1, s2) (see [2, prop. 2.12 and thm. 2.13]).

Notice that for every s ∈ S, ∅ 
 s; that is, the empty signal is a prefix of every
signal.

Proposition 4. 〈S,
〉 is a complete semilattice.

For every C ⊆ S such that C is consistent in 〈S,
〉, we write
⊔

C for the least
upper bound of C in 〈S,
〉.

For every s1, s2 ∈ S, we write s1 � s2 for the greatest lower bound of s1 and
s2 in 〈S,
〉.
1 For every ordered set 〈P,�〉, we write L 〈P,�〉 for the set of all lower sets2 of
〈P,�〉.

2 For every ordered set 〈P,�〉, and every L ⊆ P , L is a lower set (also called a
down-set or an order ideal) of 〈P,�〉 if and only if for any p1, p2 ∈ P , if p1 � p2 and
p2 ∈ L, then p1 ∈ L.

3 For every function f and every set A, we write f � A for the restriction of f to A,
namely the function {〈a, b〉 | 〈a, b〉 ∈ f and a ∈ A}.
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3 Causal and Strictly Causal Functions

Causality is a concept of fundamental importance in the study of timed systems.
Informally, it represents the constraint that, at any time instance, the output
events of a component do not depend on its future input events. This is only
natural for components that model or simulate physical processes, or realize
online algorithms; an effect cannot precede its cause.

Assume a non-empty partial function F on S.
We say that F is causal if and only if there is a partial function f such that

for every s ∈ domF and every τ ∈ T,

F (s)(τ) � f(s � {τ ′ | τ ′ � τ}, τ) .

Example 1. Suppose that T = R, and � is the standard order on R. Let p be a
positive real number, and F a function on S such that for every s ∈ S and every
τ ∈ T,

F (s)(τ) �
{
s(τ) if there is i ∈ Z such that τ = p · i;
undefined otherwise.

Clearly, F is causal.

The function of Example 1 models a simple sampling process.
Now, as explained in Section 1, due to its relevance to the interpretation of

feedback, of special interest is whether any particular partial function F on S has
a fixed point, that is, whether there is s ∈ S such that s = F (s) (see Fig. 1), and
whether that fixed point is unique. The function of Example 1 has uncountably
many fixed points, namely every s ∈ S such that

dom s ⊆ {τ | there is i ∈ Z such that τ = p · i} .

And it is easy to construct a causal function that does not have a fixed point.

Example 2. Let τ be a tag in T, v a value in V, and F a function on S such that
for every s ∈ S,

F (s) =

{
∅ if τ ∈ dom s;

{〈τ, v〉} otherwise.

It is easy to verify that F is causal. But F has no fixed point; for F ({〈τ, v〉}) = ∅,
whereas F (∅) = {〈τ, v〉}.
The function of Example 2 models a component whose behaviour at τ resembles
a logical inverter, turning presence of event into absence, and vice versa.

Strict causality is causality bar instantaneous reaction. Informally, it is the
constraint that, at any time instance, the output events of a component do not
depend on its present or future input events. This operational definition has its
origins in natural philosophy, and is of course inspired by physical reality: every
physical system, at least, in the classical sense, is a strictly causal system.
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We say that F is strictly causal if and only if there is a partial function f
such that for every s ∈ domF and every τ ∈ T,

F (s)(τ) � f(s � {τ ′ | τ ′ ≺ τ}, τ) .

Proposition 5. If F is strictly causal, then F is causal.

Of course, the converse is false. For example, the sampling function of Example 1
is causal but not strictly causal.

Example 3. Suppose that T = R, and � is the standard order on R. Let F be a
function on S such that for every s ∈ S and every τ ∈ T,

F (s)(τ) � s(τ − 1) .

Clearly, F is stricty causal.

The function of Example 3 models a simple constant-delay component. It is in
fact a “delta causal” function, as defined in [7] and [8], and it is not hard to see
that every such function is strictly causal (as is every “Δ-causal” function, as
defined in [11] and [12]). The function of our next example models a variable
reaction-time component, and is a strictly causal function that is not “delta
causal” (nor “Δ-causal”).

Example 4. Suppose that T = [0,∞), � is the standard order on [0,∞), and
V = (0,∞). Let F be a function on S such that for every s ∈ S and any τ ∈ T,

F (s)(τ) �
{
1 if there is τ ′ ∈ dom s such that τ = τ ′ + s(τ ′);
undefined otherwise.

Clearly, F is strictly causal.

Now, the function of Example 3 has uncountably many fixed-points, namely
every s ∈ S such that for every τ ∈ R,

s(τ) � s(τ + 1) .

And the function of Example 4 has exactly one fixed point, namely the empty
signal. And having ruled out instantaneous reaction, the reason behind the lack
of fixed point in Example 2, one might expect that every strictly causal function
has a fixed point. But this is not the case.

Example 5. Suppose that T = Z, � is the standard order on Z, and V = N. Let
F be a function on S such that for every s ∈ S and every τ ∈ T,

F (s)(τ) �
{
s(τ − 1) + 1 if τ − 1 ∈ dom s;

0 otherwise.

Clearly, F is strictly causal. However, F does not have a fixed point; any fixed
point of F would be an order-embedding from the integers into the natural
numbers, which is of course impossible.

Example 5 alone is enough to suggest that the classical notion of strictly causality
is by itself too general to support a useful theory of timed systems.
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4 Contracting and Strictly Contracting Functions

There is another, intuitively equivalent way to articulate the property of causal-
ity: a component is causal just as long as any two possible output signals differ
no earlier than the input signals that produced them (see [8, p. 36], [13, p. 11],
and [14, p. 383]). And this can be very elegantly expressed using the generalized
distance function of Section 2.

We say that F is contracting if and only if for every s1, s2 ∈ domF ,

d(F (s1), F (s2)) ⊇ d(s1, s2) .

In other words, a function is contracting just as long as the distance between any
two signals in the range of the function is smaller than or equal to that between
the signals in the domain of the function that map to them.

In [4, def. 5], causal functions were defined to be the contracting functions.
Here, we prove that indeed they are.

Theorem 1. F is causal if and only if F is contracting.

Following the same line of reasoning, one might expect that a component is
strictly causal just as long as any two possible output signals differ later, if at
all, than the signals that produced them (see [8, p. 36]).

We say that F is strictly contracting if and only if for every s1, s2 ∈ domF
such that s1 �= s2,

d(F (s1), F (s2)) ⊃ d(s1, s2) .

Proposition 6. If F is strictly contracting, then F is contracting.

In [3, p. 484], Naundorf defined strictly causal functions as the functions that we
here call strictly contracting, and in [4, def. 6], that definition was rephrased using
the generalized distance function to explicitly identify strictly causal functions
with the strictly contracting functions. But the relationship between the pro-
posed definition and the classical notion of strict causality was never formally
examined. The next theorem, which is a direct application of the fixed-point
theorem of Priess-Crampe and Ribenboim for strictly contracting functions on
spherically complete generalized ultrametric spaces (see [5, thm. 1]), implies that,
in fact, the two are not the same.

Assume non-empty X ⊆ S.

Theorem 2. If 〈X,L 〈T,�〉,⊇,T, d〉 is spherically complete, then every
strictly contracting function on X has exactly one fixed point.

By Theorem 2, the function of Example 5 is not strictly contracting. What is
then the use, if any, of strictly contracting functions in a fixed-point theory for
strictly causal functions? The next couple of theorems are key in answering this
question.

Theorem 3. If F is strictly contracting, then F is strictly causal.
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F causal

Fig. 2. A functional component realizes a strictly contracting function F if and only if
the cascade of the component and any arbitrary causal component has a unique, well
defined behaviour when arranged in a feedback configuration.

Theorem 4. If 〈domF,L 〈T,�〉,⊇,T, d〉 is spherically complete, then F is
strictly contracting if and only if for every causal function F ′ from ranF to
domF , F ′ ◦ F has a fixed point.

An informal but informative way of reading Theorem 4 is the following: a func-
tional component realizes a strictly contracting function if and only if the cas-
cade of the component and any arbitrary causal filter has a unique, well defined
behaviour when arranged in a feedback configuration (see Fig. 2); that is, the
components that realize strictly contracting functions are those functional com-
ponents that maintain the consistency of the feedback loop no matter how we
chose to filter the signal transmitted over the feedback wire, as long as we do so
in a causal way.

Theorem 4 completely characterizes strictly contracting functions in terms
of the classical notion of causality, identifying the class of all such functions as
the largest class of functions that have a fixed point not by some fortuitous
coincidence, but as a direct consequence of their causality properties.

The implication of Theorem 3 and 4, we believe, is that the class of strictly
contracting functions is the largest class of strictly causal functions that one can
reasonably hope to attain a uniform fixed-point theory for.

Finally, if we further require that the domain of any signal in the domain of
a function is well ordered under ≺, then the difference between a strictly causal
function and a strictly contracting one vanishes.

Theorem 5. If for every s ∈ domF , 〈dom s,≺〉 is well ordered, then F is
strictly causal if and only if F is strictly contracting.

For example, the variable-reaction-time function of Example 4 is not strictly
contracting, as can be witnessed by the signals {〈 1

2n+1 ,
2

4n2−1 〉 | n ∈ N} and

{〈 1
2n ,

1
2n(n−1) 〉 | n ∈ N and n ≥ 2}, but its restriction to the set of all discrete-

event signals, for instance, is.
Theorem 5, immediately applicable in the case of discrete-event systems, is

most pleasing considering our emphasis on timed computation. It implies that
for all kinds of computational timed systems, where components are expected
to operate on discretely generated signals, including all programming languages
and model-based design tools mentioned in the beginning of the introduction,
the strictly contracting functions are exactly the strictly causal ones.
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5 Fixed-Point Theory

We henceforth concentrate on the strictly contracting functions, and begin to
develop the rudiments of a constructive fixed-point theory for such functions.

For every partial endofunction F on S, and any s ∈ domF , we say that s is a
post-fixed point of F if and only if s 
 F (s).

Assume non-empty X ⊆ S.

Lemma 1. If 〈X,
〉 is a subsemilattice of 〈S,
〉, then for every contracting
function F on X, and every s ∈ X, the following are true:

1. F (s) � F (F (s)) is a post-fixed point of F ;
2. if s is a post-fixed point of F , then s 
 F (s) � F (F (s)).

Lemma 2. If 〈X,
〉 is a subsemilattice of 〈S,
〉, then for every contracting
function F on X, and any set P of post-fixed points of F , if P has a least upper
bound in 〈X,
〉, then ⊔

X P is a post-fixed point of F .

Lemma 1 and 2 contain nearly all the ingredients of a transfinite recursion facil-
itating the construction of a chain that will converge to the desired fixed point.
We may start with any arbitrary post-fixed point of the function F , and iterate
through the function λx : X . F (x) � F (F (x)) to form an ascending chain of
such points. Every so often, we may take the supremum in 〈X,
〉 of all sig-
nals theretofore constructed, and resume the process therefrom, until no further
progress can be made. Of course, the phrase “every so often” is to be interpreted
rather liberally here, and certain groundwork is required before we can formalize
its transfinite intent.

We henceforth assume some familiarity with transfinite set theory, and in
particular, ordinal numbers. The unversed reader may refer to any introductory
textbook on set theory for details (e.g., see [15]).

Assume a subsemilattice 〈X,
〉 of 〈S,
〉, and a function F on X .
We write 1m2F for a function on X such that for any s ∈ X ,

(1m2F )(s) = F (s) � F (F (s)) .

In other words, 1m2F is the function λx : X . F (x) � F (F (x)).
Assume a directed-complete subsemilattice 〈X,
〉 of 〈S,
〉, a contracting

function F on X , and a post-fixed point s of F .
We let

(1m2F )
0
(s) = s ,

for every ordinal α,

(1m2F )
α+1

(s) = (1m2F )((1m2F )
α
(s)) ,

and for every limit ordinal λ,

(1m2F )λ(s) =
⊔

X {(1m2F )α(s) | α ∈ λ} .

The following implies that for every ordinal α, (1m2F )
α
(s) is well defined:
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Lemma 3. If 〈X,
〉 is a directed-complete subsemilattice of 〈S,
〉, then for
every contracting function F on X, any post-fixed point s of F , and every
ordinal α,

1. (1m2F )
α
(s) 
 F ((1m2F )

α
(s));

2. for any β ∈ α, (1m2F )
β
(s) 
 (1m2F )

α
(s).

By Lemma 3.2, and a simple cardinality argument, there is an ordinal α such
that for every ordinal β such that α ∈ β, (1m2F )

β
(s) = (1m2F )

α
(s). In fact, for

every directed-complete subsemilattice 〈X,
〉 of 〈S,
〉, there is a least ordinal
α such that for every contracting function F on X , any post-fixed point s of F ,
and every ordinal β such that α ∈ β, (1m2F )

β
(s) = (1m2F )

α
(s).

We write oh 〈X,
〉 for the least ordinal α such that there is no function ϕ
from α to X such that for every β, γ ∈ α, if β ∈ γ, then ϕ(β) � ϕ(γ).

In other words, oh 〈X,
〉 is the least ordinal that cannot be orderly embedded
in 〈X,
〉, which we may think of as the ordinal height of 〈X,
〉. Notice that the
Hartogs number of X is an ordinal that cannot be orderly embedded in 〈X,
〉,
and thus, oh 〈X,
〉 is well defined, and in particular, smaller than or equal to
the Hartogs number of X .

Lemma 4. If 〈X,
〉 is a directed-complete subsemilattice 〈X,
〉 of 〈S,
〉,
then for every contracting function F on X, any post-fixed point s of F , and
every ordinal α, if (1m2F )

α
(s) is not a fixed point of 1m2F , then α + 2 ∈

oh 〈X,
〉.
By Lemma 4, (1m2F )

oh 〈X,�〉
(s) is a fixed point of 1m2F . Nevertheless,

(1m2F )oh 〈X,�〉(s) need not be a fixed point of F as intended. For example, if F
is the function of Example 2, then for every ordinal α, (1m2F )

α
(∅) = ∅, even

though ∅ is not a fixed point of F . This rather trivial example demonstrates how
the recursion process might start stuttering at points that are not fixed under
the function in question. If the function is strictly contracting, however, progress
at such points is guaranteed.

Lemma 5. If 〈X,
〉 is a subsemilattice of 〈S,
〉, then for every strictly con-
tracting function F on X, s is a fixed point of F if and only if s is a fixed point
of 1m2F .

We may at last put all the pieces together to obtain a constructive fixed-point
theorem for strictly contracting functions on directed-complete subsemilattices
of 〈S,
〉.
Theorem 6. If 〈X,
〉 is a directed-complete subsemilattice of 〈S,
〉, then for
every strictly contracting function F on X, and any post-fixed point s of F ,

fixF = (1m2F )oh 〈X,�〉(s) .

To be pedantic, Theorem 6 does not directly prove that F has a fixed point;
unless there is a post-fixed point of F , the theorem is true vacuously. But by
Lemma 1.1, for every s ∈ X , (1m2F )(s) is a post-fixed point of F .
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This construction of fixed points as “limits of stationary transfinite iteration
sequences” is very similar to the construction of extremal fixed points of mono-
tone operators in [16] and references therein, where the function iterated is not
1m2F , but F itself. Notice, however, that if F preserves the prefix relation, then
for any post-fixed point of F , (1m2F )(s) = F (s).

The astute reader will at this point anticipate the following:

Theorem 7. If 〈X,
〉 is a non-empty, directed-complete subsemilattice of
〈S,
〉, then for every strictly contracting function F on X,

fixF =
⊔

X {s | s ∈ X and s 
 F (s)} .

The construction of Theorem 7 is identical in form to Tarski’s well known con-
struction of greatest fixed points of order-preserving functions on complete lat-
tices (see [17, thm. 1]).

We note here that 1m2F is not, in general, order-preserving under the above
premises (see [2, exam. 5.15]), as might be suspected, and thus, our fixed-point
theorem is not a reduction to a standard order-theoretic one.

Now, having used transfinite recursion to construct fixed points, we may use
transfinite induction to prove properties of them. And in particular, we may use
Theorem 6 to establish a special proof rule.

Assume P ⊆ S.
We say that P is strictly inductive if and only if every non-empty chain in

〈P,
〉 has a least upper bound in 〈P,
〉.
Note that P is strictly inductive if and only if 〈P,
〉 is directed-complete (see

[18, cor. 2]).

Theorem 8. If 〈X,
〉 is a non-empty, directed-complete subsemilattice of
〈S,
〉, then for every strictly contracting function F on X, and every non-
empty, strictly inductive P ⊆ X, if for every s ∈ P , (1m2F )(s) ∈ P , then
fixF ∈ P .

Theorem 8 is an induction principle that one may use to prove properties of fixed
points of strictly contracting endofunctions. We think of properties extensionally
here; that is, a property is a set of signals. And the properties that are admissible
for use with this principle are those that are non-empty and strictly inductive.

It is interesting to compare this principle with the fixed-point induction prin-
ciple for order-preserving functions on complete partial orders (see [19]), which
we will here refer to as Scott-de Bakker induction, and the fixed-point induction
principle for contraction mappings on complete metric spaces (see [20]), which
we will here refer to as Reed-Roscoe induction (see also [21], [22], [23]).

For a comparison between our principle and Scott-de Bakker induction, let
F be a function of the most general kind of function to which both our prin-
ciple and Scott-de Bakker induction apply, namely an order-preserving, strictly
contracting function on a pointed, directed-complete subsemilattice 〈X,
〉 of
〈S,
〉. Now assume a property P ⊆ X . If P is admissible for use with Scott-de
Bakker induction, that is, closed under suprema in 〈X,
〉 of arbitrary chains in
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〈P,
〉, then {s | s ∈ P and s 
 F (s)} is non-empty and strictly inductive. And
if P is closed under F , then {s | s ∈ P and s 
 F (s)} is trivially closed under
1m2F . Therefore, given any reasonable property-specification logic, our princi-
ple is at least as strong a proof rule as Scott-de Bakker induction. At the same
time, the often inconvenient requirement that a property P that is admissible for
use with Scott-de Bakker induction contain the least upper bound in 〈X,
〉 of
the empty chain, namely the least element in 〈X,
〉, and the insistence that the
least upper bound of every non-empty chain in 〈P,
〉 be the same as in 〈X,
〉
make it less likely that every property true of fixF that can be proved using our
principle can also be proved using Scott-de Bakker induction. For this reason,
we are inclined to say that, given any reasonable property-specification logic,
our principle is a strictly stronger proof rule than Scott-de Bakker induction, in
the case, of course, where both apply.

The relationship between our principle and Reed-Roscoe induction is less
clear. 〈S,L 〈T,�〉,⊇,T, d〉 being a generalized ultrametric space rather than
a metric one, it might even seem that there can be no common ground for a
meaningful comparison between the two. Nevertheless, it is possible to general-
ize Reed-Roscoe induction in a way that extends its applicability to the present
case, while preserving its essence. According to the generalized principle, then,
for every strictly contracting function F on any Cauchy complete, non-empty,
directed-complete subsemilattice of 〈S,
〉 such that every orbit under F is a
Cauchy sequence, every non-empty property closed under limits of Cauchy se-
quences that is preserved by F is true of fixF . One similarity between this
principle and our own, and an interesting difference from Scott-de Bakker in-
duction, is the lack of an explicit basis for the induction; as long as the property
in question is non-empty, there is some basis available. In terms of closure and
preservation of admissible properties, however, the two principles look rather
divergent from one another. For example, the property of a signal having only
a finite number of events in any finite interval of time is Cauchy complete, but
not strictly inductive. On the other hand, by Lemma 1.1 and Theorem 7, our
principle is better fit for proving properties that are closed under prefixes, such
as, for example, the property of a signal having at most one event in any time
interval of a certain fixed size. And for this reason, we suspect that, although
complimentary to the generalized Read-Roscoe induction principle in theory, our
principle might turn out to be more useful in practice, what can of course only
be evaluated empirically.

6 Related Work

Fixed points have been used extensively in the construction of mathematical
models in computer science. In most cases, ordered sets and monotone functions
have been the more natural choice. But in the case of timed computation, metric
spaces and contraction mappings have proved a better fit, and Tarski’s fixed-
point theorem and its variants have given place to Banach’s contraction principle.

Common to all approaches using this kind of modeling framework that we
know of is the requirement of a positive lower bound on the reaction time of each
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component in a system (e.g., see [20], [24], [12], [25], [7], [8], [9]). This constraint
is used to guarantee that the functions modelling these components are actually
contraction mappings with respect to the defined metrics. The motivation is of
course the ability to use Banach’s fixed-point theorem in the interpretation of
feedback, but a notable consequence is the absence of non-trivial Zeno phenom-
ena, what has always been considered a precondition for realism in the real-time
systems community. And yet in modelling and simulation, where time is repre-
sented as an ordinary program variable, Zeno behaviours are not only realizable,
but occasionally desirable as well. Simulating the dynamics of a bouncing ball,
for example, will naturally give rise to a Zeno behaviour, and the mathematical
model used to study or even define the semantics of the simulation environment
should allow for that behaviour. This is impossible with the kind of metric spaces
found in [20], [24], [12], [25], [7], [8], and [9] (see [4, sec. 4.1]).

Another limiting factor in the applicability of the existing approaches based
on metric spaces is the choice of tag set. The latter is typically some unbounded
subset of the real numbers, excluding other interesting choices, such as, for ex-
ample, that of superdense time (see [4, sec. 4.3]).

Naundorf was the first to address these issues, abolishing the bounded reaction
time constraint, and allowing for arbitrary tag sets (see [3]). He defined strictly
causal functions as the functions that we here call strictly contracting, and used
an ad hoc, non-constructive argument to prove the existence of a unique fixed
point for every such function. Unlike that in [7], [8], and [9], Naundorf’s defi-
nition of strict causality was at least sound (see Theorem 3), but nevertheless
incomplete (e.g., see Example 5). It was rephrased in [4] using the generalized
distance function to explicitly identify strictly causal functions with the strictly
contracting ones. This provided access to the fixed-point theory of generalized ul-
trametric spaces, which, however, proved less useful than one might have hoped.
The main fixed-point theorem of Priess-Crampe and Ribenboim for strictly con-
tracting endofunctions offered little more than another non-constructive proof
of Naundorf’s theorem, improving only marginally on the latter by allowing the
domain of the function to be any arbitrary spherically complete set of signals,
and the few constructive fixed-point theorems that we know to be of any rele-
vance (e.g., see Proof of Theorem 9 for ordinal distances in [10], [26, thm. 43])
were of limited applicability.

There have also been a few attempts to use complete partial orders and least
fixed points in the study of timed systems. In [11], Yates and Gao reduced the
fixed-point problem related to a system of so-called “Δ-causal” components to
that of a suitably constructed Scott-continuous function, transferring the Kahn
principle to networks of real-time processes, but once more, under the usual
bounded reaction-time constraint. A more direct application of the principle in
the context of timed systems was put forward in [27]. But the proposed definition
of strict causality was still incomplete, unable to accommodate components with
more arbitrarily varying reaction-times, such as the one modelled by the function
of Example 4 restricted to the set of all discrete-event signals, and ultimately,
systems with non-trivial Zeno behaviours. Finally, a more naive approach was
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proposed in [28], where components were modelled as Scott-continuous functions
with respect to the prefix relation on signals, creating, of course, all kinds of
causality problems, which, however, seem to have gone largely unnoticed.

7 Conclusion

Strictly contracting functions form the largest class of strictly causal functions
for which fixed points exist uniformly and canonically. More importantly, they
coincide with strictly causal function in the case of discrete-event computation.
The constructive fixed-point theorem for such functions presented in this work
is, we believe, a leap forward in our understanding of functional timed systems.
But a complete treatment of such systems should allow for arbitrarily complex
networks of components. What we need, then, is an abstract characterization
of a class of structures that will support the development of the theory, and
stay closed under the construction of products and function spaces of interest,
enabling the treatment of arbitrary, even higher-order composition in a uniform
and canonical way. This is the subject of future work.
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