Exercises

- 1. Consider the model shown in figure 6.2.
 - (a) Prove that the signal *s* (into the TimedPlotter) is not discrete.
 - (b) Construct a model in the DE domain in Ptolemy II similar to the one in figure 6.2 with the following properties:
 - i. it has a feedback loop where no actor is delta causal,
 - ii. time diverges (it has events at times greater than any finite time), and
 - iii. the system is discrete (there is no Zeno condition).

This demonstrates that the condition requiring a delta-causal actor in a feedback loop is only sufficient, not necessary, to prevent Zeno conditions.

2. Consider an actor $F: (T \rightarrow V) \rightarrow (T \rightarrow V)$ for tag set $T = \mathbb{R}_+$ and value set $V = \{0\}$, a singleton set, where for the n^{th} input event $(t_n, 0)$, there is an output event $(t_n + \tau_n, 0)$, where $0 < \tau_n < 1$. Specifically, let

$$\tau_n = 1/(n+1), \quad n \in \mathbb{N}.$$

Determine whether each of the following statements is true or false and give a justification.

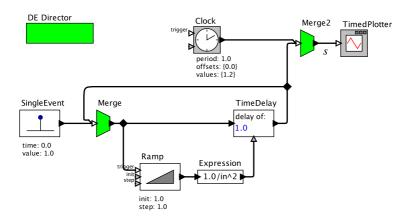


Figure 6.2: A discrete-event model that exhibits Zeno behavior.

- (a) F is discrete.
- (b) F is monotonic in the prefix order.
- (c) F is strictly causal under the Cantor metric.
- This problem explores the structure of the metric space that is the set of discrete signals (ℝ₊ → ℝ) with the Cantor metric *d*.
 - (a) An **open neighborhood** around a signal $s \in (\mathbb{R}_+ \to \mathbb{R})$ is a set of signals given by

$$N(s,r) = \{ s' \in (\mathbb{R}_+ \to \mathbb{R}) \mid d(s,s') < r \},\$$

for some real number *r* (called the **radius**). For the Cantor metric, describe in words the set N(s, r) for r = 0.5 and *s* given by its graph

$$G(s) = \{(1,1)\}.$$

(b) Show that this metric space is **Hausdorff**,^{*} meaning that given any $s_1, s_2 \in (\mathbb{R}_+ \to \mathbb{R})$ such that $s_1 \neq s_2$, there are open neighborhoods U_1 and U_2 in $(\mathbb{R}_+ \to \mathbb{R})$ such that $s_1 \in U_1, s_2 \in U_2$, and $U_1 \cap U_2 = \emptyset$.

^{*}The significance of this property of a metric space can be understood with the mnemonic "housed off." In such a metric space, given two distinct elements, it is always possible to construct non-overlapping openneighborhoods around each element. That is, each element can be "housed off" from the other.