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Abstract. This paper studies the semantics of models for discrete physical phe-
nomena such as rigid body collisions and switching in electronic circuits. The
paper combines generalized functions (specifically the Dirac delta function), su-
perdense time, modal models, and constructive semantics to get a rich, flexible,
efficient, and rigorous approach to modeling such systems. It shows that many
physical scenarios that have been problematic for modeling techniques manifest
as nonconstructive models, and that constructive versions of some of the models
properly reflect uncertainty in the behavior of the physical systems that plausibly
arise from the principles of quantum mechanics. The paper argues that these mod-
eling difficulties are not reasonably solved by more detailed continuous models
of the underlying physical phenomena. Such more detailed models simply shift
the uncertainty to other aspects of the model. Since such detailed models come
with a high computational cost, there is little justification in using them unless
the goal of modeling is specifically to understand these more detailed physical
processes. All models in this paper are implemented in the Ptolemy II modeling
and simulation environment and made available online.

1 The Problem

Many physical phenomena are naturally modeled as being discrete rather than con-
tinuous. Modeling and simulating combinations of discrete and continuous dynamics,
however, are challenging. Collisions of rigid objects and friction between moving ob-
jects are classic examples. Diodes and switches in electrical circuits present similar
problems. All known solutions have significant limitations.

The difficulties stem from a number of sources. First, discontinuities make signals
non-differentiable, which complicates simulation and analysis. Second, discrete phe-
nomena can cause chattering around the discontinuity, where the a solution repeatedly
bounces across a discrete boundary. Third, discrete models more easily lead to Zeno
conditions than continuous models, where an infinite number of events occur in a finite
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time. Finally, and perhaps most importantly, physical phenomena that are most natu-
rally modeled as discrete are among the most poorly behaved and least understood.
They frequently exhibit intrinsic nondeterminism and chaotic behaviors.

These sources of difficulty are worth separating. For example, it is not appropriate
to condemn a model because it fails to deterministically model an intrinsically nonde-
terministic physical phenomenon. Nor is it fair to condemn a model for exhibiting Zeno
behavior if the Zeno condition manifests outside the regime of parameters for which the
model is suited.

Stewart [54] gives an excellent overview of approaches that have been used towards
solving these problems for collisions and friction between macroscopic physical ob-
jects. In this regime, a solution that admits discrete behaviors can use generalized func-
tions, most commonly the Dirac delta function, Lebesgue integration, measure theory,
and differential inclusions. Stewarts argues for embracing discrete behaviors in models,
and shows that a well-known paradox in the study of rigid body known as the Painlevé
paradox can be resolved by admitting impulsive forces into the model.

A different (and more common) approach is to dispense with discrete models and
insist on detailed modeling of the continuous dynamics. Collisions between rigid ob-
jects, for example, involve localized plastic deformation, viscous damping in the mate-
rial, and acoustic wave propagation. Much experimental and theoretical work has been
done to refine models of such phenomena, leading to considerable insight into the un-
derlying physical phenomena. We contend, however, that such detailed modeling rarely
helps in developing insight about macroscopic system behavior. So when the goal is, for
example, to design robotic machinery, it is better to use simpler, more abstract models.

State-of-the-art design and simulation tools, however, do not support simpler mod-
els with discrete behaviors well. Modelica [57], for example, is a widely used language
with well-supported libraries of models for a large variety of physical systems. Otter,
et al. in [46] state that “at the moment, it is not possible to implement the solution with
impulses ... in a generic way in Modelica.” They offer continuous approximations as an
alternative, categorizing three approaches for collisions: impulsive, spring-damper ig-
noring contact area, and spring-damper including contact area. They describe a library
in Modelica that uses the latter two approaches.

Continuous models may indeed more accurately represent the physics, but they
come at the price of greatly increased simulation cost and, perhaps more importantly,
greatly increased modeling detail. The increased simulation cost is a consequence of
the stiffness of the resulting differential equations. The increased modeling detail re-
quires designers to specify much more detail about materials and systems than may
be reasonable, particularly at early stages of design. Moreover, such detailed models
may just shift the uncertainty from the modeling approximations to the determination
of parameters. Is a robot designer able to characterize acoustic propagation in steel for
a particular shape of robot arm in a particular range of temperatures and as the prod-
uct ages? Probably not. So a detailed simulation model based on continuous physical
processes may not be any more faithful than a much less detailed model.

In contrast, models that are created for the purpose of providing computer anima-
tions, like those described in Erleben et al. [17], are closer to what we need for under-
standing system dynamics. Computer animation has the very practical driving force that



it must exhibit some behavior in reasonable time, so simulation efficiency is important.
In this context, much of the complexity in the models arises from describing motions of
complicated shapes in three dimensions. Fortunately, although the techniques this paper
can be used for such complex models, there is no need to go beyond simple shapes and
one or two-dimensional systems. The simpler contexts are adequate for presenting and
analyzing the techniques.

The goal of this paper is improve the trustworthiness of less detailed, more abstract
models. The approach is to put the semantics of the models on a solid foundation. If
the meaning of a model is absolutely clear, it is much easier to tell whether the model
is faithful to the physical system it is modeling, and it is much easier to draw trusted
conclusions from simulations of the model.

To provide a solid foundation for abstract models, this paper embraces discrete phe-
nomena modeled using generalized functions, and uses an extended model of time
known as superdense time to cleanly mix discrete and continuous dynamics. In ad-
dition, the technique in this paper supports modal models, where a multiplicity of dis-
tinct abstract models, each with a well-defined regime of applicability, are combined to
model the same system (as in hybrid systems [35,1]). Finally, the modeling framework
is given a constructive fixed-point semantics [9], like that in synchronous-reactive lan-
guages [6]. We conjecture that nonconstructive models are suspect on physical grounds,
and show that a number of well-known problematic scenarios with modeling discrete
physical phenomena result in nonconstructive models. The techniques in this paper
have been implemented as a Ptolemy II simulation tool [51], and the models displayed
in this paper are all available online at http://ptolemy.org/constructive/
models.

2 Modeling Principles

Golomb, who has written eloquently about the use of models, emphasizes in [20] un-
derstanding the distinction between a model and thing being modeled, famously stating
“you will never strike oil by drilling through the map.” In no way, however, does this
diminish the value of a map! Models are created to gain insight into the thing being
modeled and to predict behaviors that have not yet been observed. Although precision
may be helpful in models, providing insight is more important than being precise. And
insight follows more easily from simple models than from complex ones. This point is
supported by [11], who state “essentially, all models are wrong, but some are useful.”
Of course the usefulness of a model depends on its fidelity, the degree to which it ac-
curately imitates the system being modeled. But models are always an approximation.

When choosing models, it is essential to bear in mind what sort of insight we are
seeking. For collisions of rigid objects, for example, we would not choose the same
model if the goal is to understand the physics of collisions as the one we would choose
if the goal is to design a robotic factory floor, where machinery comes into contact. In
this paper, we assume that the goal is not to understand the physics. Such a goal would
automatically bias the choice towards more detailed models. Instead, we assume the
goal is to understand how collisions affect a system behavior. This biases the choice
towards simpler models that can be simulated efficiently.

http://ptolemy.org/constructive/models
http://ptolemy.org/constructive/models


A model with high fidelity has high fidelity only within some regime of operation.
For example, a digital logic model of an integrated circuit is not valid if the circuit is
melting. One way to construct a high-fidelity model that is simple is to cover a more
limited regime, i.e. to make more assumptions about the operating conditions. This
creates a need for multiple models, each covering a distinct regime. We call a regime
of operation, together with its assumptions about the operating conditions, a mode. A
modal model is a collection of such mode models together with a logic for switching
discretely between mode models. Hybrid systems [35] are well known examples of
modal models. Modal models require a modeling framework that embraces discrete
events in order to support discrete mode switches.

For models to be useful, their meaning must be clear. A map with mysterious, unde-
fined symbols is not as useful as one with a legend. For this reason, we put considerable
emphasis on model semantics. In this paper, we are interested in models for simulation,
and we treat simulation as an execution of the model. A model, therefore, is a program,
the modeling language is a programming language, and a simulation is an execution of
the program. A programming language is more useful if there is a very clear definition
of what it means to correctly execute the program. There has to be a well-defined “right
answer,” and any execution that does not yield that right answer is an incorrect execu-
tion. There could even be more than one “right answer,” in which case the program is
nondeterminate, but in this case, the set of right answers must be well defined.

When simulating physical systems, this immediately brings us to the problem that
the continuums of physical dynamics cannot be exactly emulated by a computation. In-
stead, we use numerical methods to approximately solve ordinary differential equations
(ODEs). Since there are many techniques, all of which are approximate, it seems we
have to give up on the notion of a “right answer.”

But we do not. First, the discrete portions of a computation, such as mode switches
an impulsive events, are well matched to what computers can do, and hence we can
easily assign them a computational semantics. Since those are the focus of this paper,
we are on solid ground. But even the continuous dynamics between discrete events
can often be treated as a computational problem with a well defined “right answer.”
Specifically, we can adopt the ideal solver semantics of [34], which points out that
under certain conditions on a system of ODEs (Lipschitz continuity), a uniquely defined
solution exists over a non-zero time interval. This uniquely defined solution gives a
benchmark against which the correctness of computational answer can be determined
(and in certain cases, even admits for exact answers through symbolic solutions). This
is analogous to the use of real numbers as a benchmark against which the correctness
of floating-point arithmetic is assessed.

In summary, models are maps, not oil fields. The meaning of the map needs to be
clear. Faithfulness to the oil field needs to be good enough that the intended purpose
of the map can be met. Our models, unlike a map, are executable, and we need for
the execution to be efficient, and for there to be a clear distinction between correct and
incorrect executions.



3 Time

Time is central to our approach to modeling. We require a model of time that combines
a time continuum, over which physical dynamics can evolve, and discrete events, mod-
eling abrupt changes in state of the system. In this section, we review the superdense
model of time, the notion of discreteness, and the notion of piecewise continuity, which
is essential for our models to work well with practical ordinary differential equation
(ODE) solvers.

3.1 Superdense Time

We use a model of time known as superdense time [38,35,31,13]. A superdense time
value is a pair (t,n), called a time stamp, where t is the model time and n is an index
(also called a microstep). The model time represents the time at which some event oc-
curs, and the microstep represents the sequencing of events that occur at the same model
time. Two time stamps (t,n1) and (t,n2) can be interpreted as being simultaneous (in
a weak sense) even if n1 6= n2. Strong simultaneity requires the time stamps to be equal
(both in model time and microstep).

To understand the role of the microstep, consider Newton’s cradle, a toy with five
steel balls suspended by strings. If you lift the first ball and release it, it strikes the
second ball, which does not move. Instead, the fifth ball reacts by rising. Consider the
momentum p of the second ball as a function of time. The second ball does not move, so
its momentum must be everywhere zero. But the momentum of the first ball is somehow
transferred to the fifth ball, passing through the second ball. So the momentum cannot
be always zero.

Let R represent the real numbers. Let p : R→ R be a function that represents the
momentum of this second ball, and let τ be the time of the collision. Then

p(t) =
{

P if t = τ

0 otherwise (1)

for some constant P and for all t ∈ R. Before and after the instant of time τ , the mo-
mentum of the ball is zero, but at time τ , it is not zero. Momentum is proportional to
velocity, so

p(t) = Mv(t),

where M is the mass of the ball. Hence, combining with (1),

v(t) =
{

P/M if t = τ

0 otherwise. (2)

The position of a mass is the integral of its velocity,

x(t) = x(0)+
∫ t

0
v(τ)dτ,

where x(0) is the initial position. The integral of the function given by (2) is zero at all
t, so the ball does not move, despite having a non-zero momentum at an instant.



The above physical model mostly works to describes the physics, but it has two
flaws. First, it violates the basic physical principle of conservation of momentum. At
the time of the collision, all three middle balls will simultaneously have non-zero mo-
mentum, so seemingly, aggregate momentum has magically increased.

Second, the model cannot be directly converted into a discrete representation (see
Section 3.3 below). A discrete representation of a signal is a sequence of values that are
ordered in time. Any such representation of the momentum in (1) or velocity in (2) is
ambiguous. If the sequence does not include the value at the time of the collision, then
the representation does not capture the fact that momentum is transferred through the
ball. If the representation does include the value at the time of the collision, then the
representation is indistinguishable from a representation of a signal that has a non-zero
momentum over some interval of time, and therefore models a ball that does move. In
such a discrete representation, there is no semantic distinction between an instantaneous
event and a rapidly varying continuous event.

Superdense time solves both problems. Specifically, the momentum of the second
ball can be unambiguously represented by a sequence of samples where p(τ,0) = 0,
p(τ,1) = P, and p(τ,2) = 0, where τ is the time of the collision. The third ball has
non-zero momentum only at superdense time (τ,2). At the time of the collision, each
ball first has zero momentum, then non-zero, then zero again, all in an instant. The event
of having non-zero momentum is weakly simultaneous for all three middle balls, but
not strongly simultaneous. Momentum is conserved, and the model is unambiguously
discrete.

One could argue that the physical system is not actually discrete. Even well-made
steel balls will compress, so the collision is actually a continuous process, not a dis-
crete event. This may be true, but when building models, we do not want the modeling
formalism to force us to construct models that are more detailed than is appropriate.
Such a model of Newton’s cradle would be far more sophisticated, and the resulting
non-linear dynamics would be far more difficult to analyze. The fidelity of the model
may improve, but at a steep price in understandability and analyzability. Moreover, if
the properties of the material and the dynamics of the collision are not well understood,
the fidelity of the model may actually degrade as more detail is added.

The Newton’s cradle example shows that physical processes that include instanta-
neous events are better modeled using functions of the form p : R×N→ R, where N
represents the natural numbers, rather than the more conventional p : R→R. The latter
is adequate for continuous processes, but not for discrete events. At any time t ∈ R, the
signal p has a sequence of values, ordered by their microsteps. This signal cannot be
misinterpreted as a rapidly varying continuous signal.

Superdense time is ordered lexicographically (like a dictionary), which means that
(t1,n1) < (t2,n2) if either t1 < t2, or t1 = t2 and n1 < n2. Time stamps are a particular
realization of tags in the tagged-signal model of [27].

3.2 Piecewise Continuity

So that we can leverage standard, well-understood numerical integration methods, we
require signals to be piecewise-continuous in a specific technical sense. Consider a real-
valued superdense-time signal x : R×N→ R. At each real-time t ∈ R, we require that



x(t,n) settle to a final value and stay there. Specifically, we require that for all t ∈ R,
there exist an m ∈ N such that

∀n > m, x(t,n) = x(t,m). (3)

A violation of this constraint is called a chattering Zeno condition. The value of the
signal changes infinitely often at a model time t. Such conditions would prevent an
execution from progressing beyond real time t, assuming the execution is constrained
to produce all values in chronological order.

Assuming x has no chattering Zeno condition, then there is a least value of m satis-
fying (3). We call this value of m the final microstep and x(t,m) the final value of x at
t. We call x(t,0) the initial value at time t. If m = 0, then x has only one value at time t.

Define the initial value function xi : R→ R by

∀ t ∈ R, xi(t) = x(t,0).

Define the final value function x f : R→ R by

∀ t ∈ R, x f (t) = x(t,mt),

where mt is the final microstep at time t. Note that xi and x f are conventional continuous-
time functions. A piecewise continuous signal is defined to be a function x of the form
x : R×N→ R with no chattering Zeno conditions that satisfies three requirements:

1. the initial value function xi is continuous on the left at all t ∈ R;
2. the final value function x f is continuous on the right at all t ∈ R; and
3. x has only one value at all t ∈ R\D, where D is a discrete subset of R.

The last requirement is a subtle one that deserves further discussion. First, the notation
R\D refers to a set that contains all elements of the set R except those in the set D. D
is constrained to be a discrete set, as defined below. Intuitively, D is a set of time values
that can be counted in temporal order. It is easy to see that if D = /0 (the empty set), then
xi = x f , and both xi and x f are continuous functions. Otherwise each of these functions
is piecewise continuous.

Such piecewise-continuous signals coexist nicely with standard ODE solvers. At
the time of a discontinuity or discrete event, the final value signal provides the initial
boundary condition for the solver. The solver then works with an ordinary continuous
signal until the time of the next discontinuity or discrete event, and the solver provides
the initial value of the signal at the time of that next event.

Techniques for constructing models that produce only piecewise-continuous signals
are described in [12]. For our purposes here, it is sufficient to note that modal models,
as defined below, always produce piecewise-continuous signals.

3.3 Discreteness

A set D is a discrete set if it is a totally ordered set (for any two elements d1 and
d2, either d1 ≤ d2 or d1 > d2), and there exists a one-to-one function f : D→ N that is
order preserving. Order preserving simply means that for all d1,d2 ∈D where d1 ≤ d2,



we have that f (d1) ≤ f (d2). The existence of such a one-to-one function ensures that
we can arrange the elements of D in temporal order. Notice that D is a countable set,
but not all countable sets are discrete. For example, the set Q of rational numbers is
countable but not discrete. There is no such one-to-one function.

In order to be able to cleanly mix discrete and continuous behaviors, we introduce
the idea that a signal can be absent at a superdense time (t,n). We write this as

x(t,n) = ε.

A conventional continuous-time signal is nowhere absent. Discrete-event signals, by
contrast, are absent almost everywhere.

A discrete-event signal is a function from superdense time to some value set that
includes ε , where the signal is non-absent only at a discrete subset of times. I.e., a
discrete-event signal is absent almost everywhere, and the superdense times at which it
is not absent form a discrete set. An event in a discrete-event signal is a time-value pair
((t,n),v), where (t,n) is a superdense time and v is a non-absent value. A discrete-event
signal has a first event, a second event, etc., i.e. an ordered countable set of events.

The concept of piecewise continuity can be extended to discrete-event signals. A
discrete-event signal is a function

x : R×N→{ε}∪U,

where U is some value set, and x(t,n) = ε for all (t,n) ∈ (R×N) \D, where D is a
discrete set. That is, the signal is absent almost everywhere, and is present only at a
discrete subset of superdense times. A piecewise-continuous discrete-event signal is
defined as a discrete-event signal whose initial value and final value functions always
yield absent,

∀t ∈ R, xi(t) = ε, x f (t) = ε.

Such signals can coexist easily with numerical ODE solvers, since the signals seen by
the solver, which are initial and final value signals, are simply absent. The solver ignores
them.

The above definitions are used in [25]. Benveniste et al. in [7] define “discrete”
differently to mean that “each instant has unique previous and next instants.” This is a
much weaker definition than ours here. We prefer our definition, because every event
in a discrete-event signal has a finite number of predecessor events in the signal. This
property is essential to being able to compute the events in a signal.

We define a continuous-time signal to be a signal whose value is not absent at any
superdense time. Clearly, a continuous-time signal is not a discrete-event signal. But
we can have signals that are neither continuous-time signals nor discrete-event signals.
This becomes important with modal models, where a signal may be present in some
modes and not in others. We will require such signals to be piecewise continuous.

Any signal that is not a discrete-event signal will need to either be represented sym-
bolically or numerically approximated in any computation. This is because such a sig-
nal has an uncountably infinite number of values, and no computational system can
directly represent such sets of values. Standard ODE solvers produce estimated sam-
ples of continuous-time signals. The time spacing between samples is determined by
the step-size control of the solver. The samples themselves are defined on a discrete
subset of superdense time.



Fig. 1. A composition of actors with a constructive fixed-point semantics.

3.4 An Alternative Model of Time

Note that an alternative model of time that can accomplish the same objectives as super-
dense time is studied in [7,42,10]. Their construction is based on nonstandard analysis
[33], which, similarly to superdense time, has an infinite number of points at every real
time point. These points are represented as convergent sequences, and a total order is
induced over these sequences by means of a measure-theoretic construction. It has the
property that every non-standard time has an immediate predecessor and an immediate
successor, which the authors say provides an operational semantics. However, while an
operational semantics does require the notion of a discrete step of computation, it also
requires that the number of steps preceding any given step be finite. That is not auto-
matically provided by the nonstandard semantics, and when it is provided, the solutions
seem to be isomorphic with our much simpler superdense time construction. Hence,
it does not appear to this author that anything is gained by going to a more complex
mathematical formulation.

4 Constructive Fixed-Point Semantics

The next essential element in our rigorous modeling framework is the constructive
fixed-point semantics [9], which defines the meaning of a model as a composition
of components. The semantics we choose for hybrid systems is that of [32], which is
implemented in Ptolemy II [12]. We review the approach here.



A model is assumed to be a graph of actors, as shown in Figure 1. An execution of
the model (a simulation) will choose a discrete subset D ⊂ R×N of superdense time
values at which to evaluate the model. The elements of D will be selected in order by a
solver, beginning at some start time, say (0,0). At each (t,m) ∈ D, the solver will find
a value for each of the signals in the model, using a constructive procedure described
below. For example, at the start time (0,0), the solver will find the values x(0,0),y(0,0),
and z(0,0) in Figure 1.

After finding the values of all signals at a time (t,m) ∈ D, the solver will choose
the next time (t ′,m′) at which to evaluate the model. To do this, it must first ensure
that it has found the final value of each signal. If it has not, then it will increment
only the microstep, so (t ′,m′) = (t,m+1). If it has found the final value of all signals,
then it will consult an event queue, which contains a record of future discrete events,
and a numerical ODE solver, which determines a step size ∆ that achieves a desired
numerical accuracy. It then chooses the lesser of (t +∆ ,0) and (tn,m), where (tn,m) is
the superdense time of the earliest event in the event queue.

Each superdense time in D is called a tick. The set D of ticks is discrete. The ticks
can thus indexed by the natural numbers, so that

D = {τ0,τ1, · · · ,τi, · · ·}, (4)

where i < j ∈ N implies that τi < τ j.
At each (t,m) ∈D, the solver needs to find the value of each signal. To support this,

each actor provides a function from its input values to its output values. There are some
technical constraints on these functions, so we must be careful defining them.

Consider the actor labeled fi in Figure 1. It has one input port p1 and one output
port p5. Assume these ports have data type V1 and V5, respectively, where Vi is the set of
values that a signal at port i may take on. If the actor can tolerate an absent input, then
ε ∈ V1, where ε represents “absent.” If the actor may produce no output, then ε ∈ V5.
Define an extended data type for the k-th signal as a set

Ṽk = {⊥}∪Vk.

That is, Ṽk is just the data type, augmented with an additional element, ⊥, pronounced
“bottom,” which represents unknown. The actor function has these augmented sets as
domain and codomain. So the functions in Figure 1 have the form

fi : Ṽ1→ Ṽ5

gi : Ṽ2×Ṽ3→ Ṽ4

hi : { /0}→ Ṽ6.

The subscript i is the tick index, matching the subscripts in (4). On the first tick, for
example, the actor labeled fi provides a function f0. On the second tick, it provides a
(possibly different) function f1.

The function hi deserves some comment. The actor has no input port, so the domain
of its function hi is a singleton set, a set with only one element. The function, therefore,
specifies exactly one element in its codomain, Ṽ6. At each tick i, the actor produces a
fixed output given by hi( /0).



Defining an actor to operate on the extended data type is not an onerous burden.
In fact, a simple default can be provided, where f (⊥) = ⊥. An actor that requires all
its inputs to be known in order to be able to produce a known output is called a strict
actor. An actor that produce a known output without all its inputs being known is a
nonstrict actor.

As illustrated in Figure 1, a network of actors can be rearranged to define a single
function Fi that operates on all the signal values at tick i and yields all the signal values
at tick i. The task of the solver, therefore, is to find the signal values x̄(t,m) that are a
fixed point of the function Fi, i.e. that satisfy

Fi(x̄(t,m)) = x̄(t,m),

where x̄ is a three-tuple of signal values. The fixed point is the meaning (semantics) of
the model at tick i.

Three key questions now arise. Does a fixed point exist? Is it unique? How should
the solver find it? These questions are answered by the constructive fixed-point seman-
tics.

Recall that the augmented sets Ṽi include an element ⊥ called unknown. The con-
structive procedure for finding a fixed point is to start at each tick with every signal
value being ⊥, and then to evaluate the actor functions in any order until a fixed point
is found. With a simple and easily realized constraint on each function (monotonic-
ity, explained below), this procedure always yields a fixed point, and the fixed point
is uniquely defined to be the least fixed point in a particular partial order that we will
define.

Before giving the formalism, we consider an example to develop intuition. Suppose
that in Figure 1 all the data types are Vi =R (approximated by floating-point numbers).
Suppose that the actor functions are such that fi increments its input by 1.0, gi sums its
two inputs, and hi produces 1.0. Then what is the fixed point?

We initialize all signal values to ⊥ and evaluate functions in any order. Suppose we
start with fi. Its input is unknown, so its output is unknown. We cannot increment a
value by 1.0 if we do not know what the value is. The actor is strict. Suppose we next
evaluate gi. Again, its inputs are unknown, so its output is unknown. It too is strict.
Suppose we next evaluate hi. Its output is 1.0. This provides more information for gi,
so we should evaluate that function again. But its output remains unknown because the
input at port p2 is unknown. We have a reached a fixed point where

x̄(t,m) = (x,y,z) = (⊥,⊥,1.0).

When the fixed point that is found by this procedure yields one or more unknown sig-
nals, the model is nonconstructive. In this case, it is nonconstructive because there is a
causality loop, where the outputs of fi and gi depend directly on their inputs, and each
input equals the other’s output.

Suppose instead that at the first tick, f0 produces an initial value, say 0.0, and fi for
each i≥ 1 produces the input received in the previous tick, i−1.1 In this case, the first

1 This actor implements the “fby” (followed by) function of the Lustre synchronous language
[21].



Fig. 2. An executable model with the structure of Figure 1. [online]

fixed point found by the above procedure will yield

x̄(0,0) = (x,y,z) = (1,0,1).

This is not the final value at model time 0, so the solver should choose (0,1) as the next
tick. At that tick, the fixed point will be

x̄(0,1) = (1,1,2).

In the next tick,
x̄(0,2) = (1,2,3).

With these actor definitions, there is no final value at model time 0, so the model exhibits
chattering Zeno behavior.

Suppose instead that fi implements an integration function. An actual Ptolemy II
model with this structure is shown in Figure 2. The model includes an instance of the
Continuous director, which implements the semantics described in this paper. An exe-
cution of the model is shown in Figure 3. The horizontal axis of this plot shows the real
coordinate only (the model time) of superdense time. In this case, none of the signals is
discontinuous, so every signal has its final value at microstep zero. Moreover, every sig-
nal is a continuous-time signal (it is not absent anywhere). The points on the horizontal
axis where values are provided have been chosen by the numerical ODE solver, which is
selected as a parameter of the Continuous director. In this case, it is a variable-step-size
Runge-Kutta 2-3 solver.

The model in Figure 2 is constructive because the Integrator actor does not need to
know its input in order to produce an output. A fact about integration is that for any
real-valued function x : R→ R, if we define

y(t) =
∫ t

0
x(τ)dτ,

then y(t) does not depend on x(t). It does depend on the values x(τ) for all 0 ≤ τ < t.
But it does not depend on the value at t. The integrator is nonstrict. The Integrator actor

http://ptolemy.org/constructive/models/IntegratorLoopPlot/index.html
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Fig. 3. An execution of the model in Figure 2.

provides a numerical approximation to this function y, assuming the input is x. Hence,
if at a tick in superdense time, the input x(t,m) = ⊥, then the actor can nevertheless
provide an output y(t,m). So the causality loop is broken.2

We can now outline why this procedure works. The actor functions are required
to satisfy a particular technical constraint called monotonicity. Specifically, for each
set Ṽi, we define a flat partial order, where ⊥ < v for all v ∈ Vi, and all v ∈ Vi are
incomparable with each other. For a set Ṽi× Ṽj, as is needed for the domain of gi in
Figure 1 for example, we define a pointwise partial order from this flat partial order.
That is, for any (v,w),(x,y) ∈ Ṽi×Ṽj,

(v,w)≤ (x,y)⇔ v≤ x∧w≤ y.

In this partial order, we require every actor function to be monotonic. Specifically, a
function fi : Ṽ1→ Ṽ5 is monotonic if for all x,u ∈ Ṽ1,

x≤ u⇒ fi(x)≤ fi(u).

In the flat partial order, this is not an onerous restriction on the actor function fi. Specif-
ically, it just says that if fi(⊥) yields some value y, then fi(v) = y for any v ∈ Ṽ1. In
words, if the actor function can produce an output when its input is unknown, then it
should produce that same output for any known input. This is intuitive, and any vi-
olation of this principle would mean that the function actually did need to know the
input.

If all actor functions in a network are monotonic in this sense, then the well known
Kleene fixed-point theorem [15] guarantees that there is a unique least fixed point and
that the procedure we have outlined above will find that unique fixed point in a finite
number of steps.

2 Note that an implicit solver would, in fact, create a direct dependence on the input x. It is
common when using implicit solvers in such feedback loops to extrapolate to estimate the
input x. Such extrapolation again breaks the causality loop.



Fig. 4. Two balls on a frictionless surface.

It is important to note that for our purposes here it is not important what scheduling
strategy is used to find the fixed point. We have stated that functions can be invoked in
any order, but clearly some choices of orderings will be more efficient than others. See
[16] for a discussion of optimized execution.

One final loose end remains. We have stated that actor functions, such as fi in Figure
1, are indexed by the tick i. This means that an actor can realize a new function in each
tick. How does it progress from one function to the next? Conceptually, each actor is
a state machine, and the function fi is associated with a state of the actor. The actor
changes state when moving from one tick to the next, after the constructive fixed-point
procedure has concluded. Thus, when the actor determines its next state, assuming the
model is constructive, all inputs are known. This strategy is called the actor abstract
semantics (see [26] and [51]). In the case of the Integrator actor, the progression from
one state to the next is simply the integration algorithm. The result of that progression
is the new value of the state of the integrator, which can then be produced in the next
tick as an output without knowing the current input at that tick.

5 Collisions

We now consider the first of the families of discrete physical phenomena that we will
consider in this paper, collisions between rigid objects. Consider two objects with
masses m1 and m2 colliding on a one-dimensional frictionless surface. We would like to
treat the collision as an instantaneous event and are interested in determining the veloc-
ity after a collision. Newton’s laws of motion imply that total momentum is conserved.
If the velocities of the masses before the collision are v1 and v2, and after the collision
are v′1 and v′2, then conservation of momentum requires that

m1v′1 +m2v′2 = m1v1 +m2v2. (5)

For notational simplicity, we leave off the dependence on time of the velocities, for now.
Consider first perfectly elastic collisions, where no kinetic energy is lost. Conservation
of kinetic energy requires that

m1(v′1)
2

2
+

m2(v′2)
2

2
=

m1(v1)
2

2
+

m2(v2)
2

2
. (6)

We have two equations and two unknowns, v′1 and v′2. Because of the quadratic, there
are two solutions to these equations. The trivial solution represents the absence of a



collision, where v′1 = v1 and v′2 = v2. The second solution is

v′1 =
v1(m1−m2)+2m2v2

m1 +m2
(7)

v′2 =
v2(m2−m1)+2m1v1

m1 +m2
. (8)

Note that if m1 = m2, then the two masses simply exchange velocities.
In practice, most collisions of macroscopic physical objects lose kinetic energy. A

common way to model this is to use an empirical quantity called the coefficient of
restitution, denoted e and defined to be the relative speed after a collision divided by
the relative speed before the collision. Using such a coefficient, the velocities after the
collision are given by [5]

v′1 =
em2(v2− v1)+m1v1 +m2v2

m1 +m2
(9)

v′2 =
em1(v1− v2)+m1v1 +m2v2

m1 +m2
. (10)

The coefficient of restitution is determined experimentally for a particular pair of ma-
terials and must lie in the range 0 ≤ e ≤ 1. Note that if e = 1, this reduces to elastic
collision as given in (7) and (8). If e = 0, then momentum is still conserved, but the loss
of kinetic energy is maximized. In this case, the resulting speeds of the two objects are
identical. They collide and then travel together, not bouncing at all.

Note that if m1 = m2, then these equations reduce to

v′1 = (v1(1− e)+ v2(1+ e))/2 (11)
v′2 = (v2(1− e)+ v1(1+ e))/2. (12)

Another useful special case is where one of the masses is fixed (it cannot be moved),
so the other will bounce off it. This follows from (9) and (10) if we let v2 = 0 and
determine the limit as m2→ ∞. In this case, we find

v′1 =−ev1 . (13)

Mass 1 simply reverses direction upon collision and loses speed by factor e. This makes
it clear why we restrict e to 0≤ e≤ 1.

5.1 Dirac Delta Functions

Stewart [54] points out that many of the difficulties in modeling collisions are a conse-
quence of overly restricting the mathematical domains that are used. Impulsive forces,
for example, can be naturally modeled using the Dirac delta function, a function
δ : R→ R+ given by

∀ t ∈ R, t 6= 0, δ (t) = 0, and∫
∞

−∞

δ (τ)dτ = 1.



Fig. 5. The Integrator actor in Ptolemy II.

That is, the signal value is zero everywhere except at t = 0, but its integral is unity.
At t = 0, therefore, its value cannot be finite. Any finite value would yield an integral
of zero. This is indicated by R+ in the form of the function, δ : R→ R+, where R+

represents the extended reals, which includes infinity. Dirac delta functions are widely
used in modeling continuous-time systems (see [30], for example), so it is important to
be able to include them in simulations.

Suppose that a signal x has a Dirac delta function occurring at time t1 as follows,

x(t) = x1(t)+Kδ (t− t1),

where x1 is an ordinary continuous-time signal, and K is a scaling constant. Then∫ t

−∞

x(τ)dτ =

{ ∫ t
−∞

x1(τ)dτ t < t1
K +

∫ t
−∞

x1(τ)dτ t ≥ t1

The component Kδ (t − t1) is a Dirac delta function at time t1 with weight K, and it
causes an instantaneous increment in the integral by K at time t = t1.

The Ptolemy II Integrator actor, shown in Figure 5, directly supports Dirac delta
functions. Specifically, the actor accepts a discrete-event signal at the input port labeled
“impulse,” and it interprets the real time of each event that arrives at that port as the time
offset of the Dirac delta function (t1 above) and the value of the event as the weight of
the Dirac delta function (K above).

Why not include the Dirac delta function on the ordinary input port of the Integrator
actor, the one labeled “derivative” in Figure 5? There are two reasons for providing a
distinct input port for Dirac delta inputs vs. ordinary continuous-time inputs. First, the
value of a Dirac impulse at the time it occurs is not a real number, so we would need
some extended data type to include such weighted non-real values. But more impor-
tantly, at a superdense time (t,m), the output of the Integrator does not depend on the
value of the input at the “derivative” input port, but it does depend on the value of the
input at the “impulse” port! There is direct feedthrough from the impulse input to the
output. The Integrator actor is both strict and nonstrict, depending on which input is
being considered.

This causality distinction is essential to the soundness of our modeling approach.
In fact, we will show below that many problematic modeling problems with discrete
physical phenomena manifest as causality loops, and failing to make this distinction
obscures this defect. For example, any direct feedback from the output of the Integrator



Fig. 6. A Ptolemy II model of a ball.

to the impulse input will result in a causality loop, and hence a nonconstructive model.
Glockner [19] also advocates separately treating ordinary continuous-time signals and
impulsive signals, whose models “split into the atomic and the Lebesgue part.”

5.2 Modeling Collisions as Impulses

Figure 6 shows a Ptolemy II composite actor that models Newton’s equations of motion,
F = ma. The model has three parameter, the mass m of the ball, and the initial position
x0 and velocity v0. The model uses Newton’s second law to output the velocity v and
position x as a function of time. There are two inputs, a real-valued force F and an
impulsive force Fi. Fi is required to be a piecewise-continuous discrete-event signal,
and its value represents the weight of a Dirac delta function.

A model that composes two instances of the ball model from Figure 6 is shown in
Figure 7. The figure also shows a plot of the positions of two balls of diameter 1.0,
where the left ball has an initial velocity of 1.0, and the right ball is standing still. Af-
ter the collision, the situation is reversed. At the superdense time of the collision, the
LevelCrossingDetector actor outputs an event, which enables execution of the Calcu-
lateImpulsiveForce composite actor. That actor is an instance of a subclass of En-
abledComposite, which executes the inside model only when the enable port at the
bottom has a present input with value true. The CalculateImpulsiveForce actor samples
the current velocities of the balls and calculates the impulsive force that will change the
velocities to those given by equations (9) and (10). The impulsive forces are then routed
through a pair of MicrostepDelay actors, which apply the forces in the next microstep.
Without these MicrostepDelay actors, we would have a causality loop, because the Cal-
culateImpulsiveForce actor observes the velocities of the balls, and an impulsive force
directly affects the velocities.

A collision occurs when the position of the right edge of the left ball coincides with
the left edge of the right ball, and when the velocity of the left ball is greater than the
velocity of the right ball. If ball 1 is on the left and ball 2 on the right, and the diameter
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Fig. 7. A Ptolemy II model of two balls that collide. [online]

of the left ball is d, then the collision occurs when

(x1 +d ≥ x2)∧ (v1 > v2).

However, this statement is fundamentally problematic. A collision occurs at the instant
when the above predicate becomes true. First, there may be no such precise instant
(suppose the balls are initially touching and we start applying a force to the left ball).
Second, computational numerical methods have to approximate the continuums of time
and position. In practice, to model such a collision as a discrete event, we need an error
tolerance. Lower error tolerance will translate directly into increased computational
cost.

In Figure 7, the collision is detected by an actor labeled LevelCrossingDetector,
which detects zero crossings of the distance between the two balls. This actor collabo-
rates with the solver to adjust the step size of the numerical ODE solution so that the
zero crossing is pinpointed with precision specified by a parameter.

Detecting collisions as zero crossings of the distance function, however, raises an-
other difficulty. Specifically, if two balls are initially touching, the distance starts at
zero. If a collision occurs, it does not cross zero. We consider this problem next.

5.3 Simultaneous Collisions

Consider the scenario shown in Figure 8, which is analogous to Newton’s cradle. Two
balls are initially touching, with zero distance between them, and a third ball approaches

http://ptolemy.org/constructive/models/Collision/index.html


Fig. 8. Three balls on a frictionless surface.

them from the left. At the instant of the collision, the left ball will transfer its momentum
to the middle ball (assuming it has the same mass), which will then instantly transfer
its momentum to the right ball. These two transfers occur at successive superdense time
microsteps, so that the total momentum in the system is constant over time.

The zero-crossing detection strategy in Figure 7, however, will not work for this
scenario. It will fail to detect the second collision, because the distance between the
middle and the right balls does not cross zero. It is initially zero, and a model like that
in Figure 7 will show the left ball passing through the right ball, as shown in Figure 9(a).
This difficulty is corrected by using a more sophisticated collision detection shown in
Figure 10, which yields the plot in Figure 9(b). This correctly emulates Newton’s cradle.
This collision detector declares a collision to occur whenever the distance between the
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Fig. 9. (a) Second collision is not detected. [online] (b) Second collision is de-
tected. [online]
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Fig. 10. A Ptolemy II model of a collision detector.

balls is less than or equal to zero and the velocity of the left ball is greater than the
velocity of the right ball.3

Consider a third scenario, where two balls simultaneously collide with a stationary
ball from opposite sides, as shown in Figure 11. This scenario is fundamentally prob-
lematic, and the Newtonian model of collisions given above has difficulty with it. A
naive model superimposes the impulsive forces from the two simultaneous collisions,
which cancel each other out in the middle ball. The result is a model where upon collid-
ing, all three balls instantly stop, as shown in Figure 12(a). All the energy in the system
is instantly lost!

One possible solution is to replace Newton’s model with the Poisson hypothesis,
which postulates that a collision consists of two distinct phases, a compression phase
and a restitution phase. It is possible to construct a model where the two collisions
have simultaneous compression phases, storing their kinetic energy as potential energy,
and then, one superdense time index later, simultaneously release the potential energy as
kinetic energy. Such a model would seem to solve the problem, but actually, it doesn’t.
There are many ways to assign kinetic energy such that both energy and momentum are
conserved. In fact, such a solution simply masks a more fundamental physical problem.

3 Note that the signal out of the Expression actor in Figure 10 is not, in fact, piecewise con-
tinuous, so we must use caution and avoid presenting this signal or any signal triggered by it
directly to a numerical ODE solver. MicrostepDelay actors used as in Figure 7 will convert a
discrete signal that is not piecewise continuous into one that is (its output at microstep zero
will always be absent).

Fig. 11. Three balls with simultaneous collisions.
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Fig. 12. (a) Superposition of simultaneous impulsive forces results in instant
loss of energy. [online] (b) Interleaving of simultaneous collisions at distinct mi-
crosteps conserves energy. [online]

An alternative solution is consider the two simultaneous collisions as being arbi-
trarily interleaved. That is, one occurs first, then the other. If the balls have the same
mass, then it does not matter which one occurs first, and the model yields reasonable
behavior. The outside balls bounce back with equal speed. This behavior is shown in
Figure 12(b). The model that generates this plot arbitrarily chooses one of the colli-
sions, ignoring the other, calculates the modified velocities, and then, one superdense
index later, detects the second collision, which occurs with the modified velocities.

The portion of the model that arbitrarily selects a collision is shown in Figure 13.
This model uses the Default actor, which behaves as follows. If an input is present on
its preferred input port, then that input is passed through to the output. Otherwise, the
alternate input, if present, is passed through to the output. The model also uses the
Inhibit actor, which passes the left input to the output unless the bottom input port is
present. This actor ensures that the second collision is completely ignored if the first
occurs at the same superdense time index. In the next superdense time index, after the
first collision has resulted in new velocities, a new collision may occur.4

However, if the balls have different masses, then the behavior depends on the order
in which the collisions are handled, even though no time elapses between collisions.

4 Note that this model arbitrarily chooses one of the collisions, but it always prefers one over the
other. This is acceptable for a nondeterministic model, but may not be acceptable in simulation.
We may instead want to choose one of the two collisions probabilistically. We leave this as an
exercise.

http://ptolemy.org/constructive/models/CollisionSimultaneousLoss/index.html
http://ptolemy.org/constructive/models/CollisionSimultaneous/index.html


Fig. 13. A portion of the model producing the plot in Figure 12, showing the
arbitrary selection of the upper collision when two occur simultaneously. [online]

This is shown in Figure 14. It is easy to verify that both behaviors conserve both mo-
mentum and energy, even though they result in different trajectories for the balls. It
seems that a reasonable modeling choice would be to nondeterministically choose an
ordering.

In light of the Heisenberg uncertainty principle, these difficulties should not be
surprising. The Heisenberg uncertainty principle states that we cannot simultaneously
know the position and momentum of an object to arbitrary precision. But the reaction
to these collisions depends on knowing position and momentum precisely. A direct ex-
pression of such simultaneous collisions results in a nonconstructive model. To get a
constructive model, we have to insert microstep delays and tolerate nondeterminism.
Nature, it seems, resolves nonconstructiveness with uncertainty. Chatterjee and Ruina
suggest that indeed, a reasonable and practical approach to simulating such systems is
to nondeterministically choose an ordering [14].

Note that doing more detailed modeling of the collisions does not solve the problem.
It just shifts the uncertainty to other parts of the model. Unlike the two-ball collision,
there are multiple solutions that conserve energy and momentum. We conjecture that
defensible detailed models could yield the same (or more) variabilities in behaviors.

It might seem odd to invoke quantum mechanics when considering macro phenom-
ena such as collisions of balls. But the impulsive model we are using has infinite preci-
sion, and in physics, it is at high precisions where quantum mechanical effects become
important. Moreover, the conjecture here that nonconstructive models associate with
quantum mechanical uncertainty is perhaps related to the study of nonconstructive dig-
ital circuits in [36,53] and the proof in [39] that such models correspond to physical
circuits that are vulnerable to unstable oscillations.

http://ptolemy.org/constructive/models/CollisionSimultaneousDifferentMasses/index.html
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Fig. 14. (a) Interleaving of simultaneous impulsive forces where the collision of
the left ball (with mass 0.2kg) with the middle ball (with mass 1kg) is handled
before the collision of the right ball (with mass 5kg) with the middle ball. [online]
(b) Interleaving the collisions in the opposite order yields different behavior.
[online]

Notice that the three-ball collisions of Figure 9(b) do not have the same difficulty
because of the linear ordering of causal relationships. Nevertheless, even the notion
of causality is fraught with difficulty. For a wonderful philosophical discussion of this
issue, see [50], which includes an essay arguing that there is no basis in physics for the
notion of causality [44]. Causality, it claims, is a human cognitive construction.

5.4 Collisions vs. Pushing

Consider again just two balls on a frictionless surface. Suppose the two balls are initially
stationary and touching, so x1 +d = x2. Suppose now that we begin to apply a force of
one Newton at time t = 1,

F(t) =
{

0, t < 1
1, t ≥ 1

The left ball begins moving to the right at time 1. Then when does the collision occur?
At time 1, the velocity of both balls is zero, so the collision does not occur at time 1.
The collision occurs at the smallest time (a real number) greater than 1. There is no
such time, of course, so again, we have to choose a numerical precision with which to
approximate this behavior.

http://ptolemy.org/constructive/models/CollisionSimultaneousDifferentMasses/index.html
http://ptolemy.org/constructive/models/CollisionSimultaneousDifferentMasses2/index.html
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Fig. 15. Positions of two balls that start out touching and not moving. From time
1, a constant force is applied to the left ball, which results in pushing both balls
to the right. At time 3.5, we stop applying the force, so the balls drift together at
the same velocity. [online]

This scenario can be modeled by the model in Figure 7, but with the LevelCross-
ingDetector replaced with the CollisionDetector of Figure 10. Figure 15 shows the re-
sulting plot of the positions of the balls over time, and Figure 16 shows the velocities.
Note from the detail of the velocities that in this model, the left ball repeatedly collides
with the right ball, providing an impulsive force each time. So the velocity of the right
ball is piecewise constant. The time interval between collisions is determined by the
precision with which zero-crossing detection is being done, which in this case is 10−4

seconds.

The computational cost of such a simulation is substantial. For high precision, the
density of collisions must be high. This will force a simulator to take small step sizes.
A better model is a modal model, where the balls are modeled as a single mass when
the left ball is accelerating to the right and they are touching, and as two distinct balls
when they are separated. We provide such a model in Section 6 below.

Erleben et al. [17, p. 154] give an interesting example of two masses on a rigid
immovable surface, one on top of the other. They assume perfectly inelastic collisions,
where the coefficient of restitution is e = 0. So when the masses collide, they move
together at a velocity the conserves momentum. Suppose you apply an impulsive down-
ward force on the top mass. The top mass will instantly acquire a downward velocity.
It immediately collides with the lower mass, so the two masses acquire the same down-
ward velocity. The lower mass then collides with the rigid surface, which is modeled
as an infinite mass, so the lower mass stops moving. The upper mass then immediately
collides with the lower mass, the two masses again acquire a downward velocity. The
cycle repeats infinitely without time advancing and without the momentum ever becom-
ing identically zero. This is a chattering Zeno model. We now explore more classical
Zeno models.

http://ptolemy.org/constructive/models/Collision5/index.html
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Fig. 16. Velocities of the two balls in Figure 15, showing that the velocity of
the right ball is piecewise constant, and that it is getting pushed by repeated
discrete collisions.

5.5 Zeno Conditions

Modeling instantaneous events inevitably brings up the question of Zeno conditions,
named after Zeno of Elea, a pre-Socratic Greek philosopher famous for his paradoxes.
A model that exhibits Zeno behavior has an infinite number of events in a finite time.
Any execution of the model that constructs all these events in temporal order will fail
to advance time beyond a certain point.

First, we would like to point out that Zeno conditions are not a consequence of
discrete events. Continuous-time systems can also exhibit Zeno behaviors. Consider for
example the function x : R→ R defined by

x(t) =
{

sin(2πt/(1− t)) 0≤ t < 1
0 otherwise

A plot of this function over the time range [0,2] is shown in Figure 17. There are an
infinite number of oscillations prior to time 1.0.

Nevertheless, models with discrete events seem to be more vulnerable to Zeno con-
ditions. We have already mentioned the possibility of chattering Zeno behavior, where
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Fig. 18. Bouncing ball using impulsive forces. [online]

a signal fails to converge to a final value at a particular model time. A classic example
of a Zeno system that is not a chattering-Zeno system is an idealized bouncing ball.
In such an idealized model, a ball collides with a fixed surface and bounces according
to equation (13). That is, upon collision, the velocity reverses instantaneously and is
attenuated by a coefficient of restitution.

An implementation of such a model is shown in Figure 18. A constant gravitational
acceleration of 9.8 m/sec2 is applied to an instance of the same ball model in Figure
6. The model in Figure 18 uses a LevelCrossingDetector actor to determine when the
ball collides with the surface, and then calculates the weight of an impulsive force
that will reverse the velocity according to (13). As before, we need a MicrostepDelay
in the feedback loop. This specifies that the impulsive force should be applied in the
next microstep after the detection of the collision. Were it not there, we would have
a causality loop, where the velocity output of the Ball model depends directly on the
impulsive force.

A plot of the positions and velocities produced by the model are shown in Figures
19 and 20. These plots exhibit the discontinuous changes in velocity at the times of
collision. But note an interesting phenomenon: the ball drops below the surface around
time 12.8. The ball appears to “tunnel” through the surface.

http://ptolemy.org/constructive/models/BouncingBall/index.html
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Fig. 19. Plot of the position of the bouncing ball vs. time.
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Fig. 20. Plot of the velocity of the bouncing ball vs. time.

In fact, this model has Zeno behavior. Analytically, we can determine that the num-
ber of bounces before time 13 is infinite. So why does our simulation show the ball
tunneling through the surface and going into a free fall?

The LevelCrossingDetector actor has an errorTolerance parameter. Such a toler-
ance is intrinsic to any numerical technique for detecting level crossing of a signal in
a continuum. This tolerance allows the simulation of the bouncing ball’s position to
numerically drop below zero by a small amount. When its velocity is low enough, then
when it bounces, it will not have enough energy to rise again above zero, and hence no
further zero crossings will occur. The ball goes into a free fall. Figure 21 zooms in on
the point in time where this occurs. You can see in the figure that the final bounce fails
to rise above the surface.

The errorTolerance of the LevelCrossingDetector in this plot is set to 10−4. We can
adjust the errorTolerance and constrain the step size of the simulator arbitrarily, up to
numerical precisions of double-precision floating point numbers. However, no choice
of precision constraints will prevent this tunneling.

Again, we can invoke the Heisenberg uncertainty principle. On physical grounds
alone, this model does not make sense at arbitrary precisions. The execution gets to a
state of the system where the model is no longer valid. To prevent this, we need to use
modal models, as described below.
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Fig. 21. Detail of the point in simulation where the bouncing ball tunnels through
the surface.

One possible interpretation is that the model is flawed in that the surface on which
the ball is bouncing is infinitely thin. Indeed, if a physical system had this property,
then quantum mechanical tunneling suggests that indeed the ball could drop through the
surface. Perhaps tunneling is nature’s way of preventing Zeno conditions from stopping
time! Less speculatively, we need to switch to a more suitable model when the velocity
of the ball at the time of collision drops below a threshold related to the accuracy of
collision detection.

6 Modal Models

No (useful) model has high fidelity over all possible operating conditions and all possi-
ble configurations of the system. Modal models provide a mechanism for having more
than one model of a physical system, and for switching between models when the oper-
ating conditions change or when the configuration of the system changes. Modal models
provide an operational semantics for hybrid systems [31] that is compatible with super-
dense time. In this section, we briefly describe the structure of modal models, and then
give a sequence of examples that resolve several issues raised above.

6.1 The Structure of Modal Models

The general structure of a modal model is shown in Figure 22. The behavior of a modal
model is governed by a state machine, where each state is associated with a mode. In
Figure 22, each mode is represented by a bubble (like a state in a state machine) but
it is colored to indicate that it is a mode rather than an ordinary state. A mode, unlike
an ordinary state, has a mode refinement, which is a submodel that defines the mode’s
behavior.

Like states in a finite state machine, modes are connected by arcs representing
transitions with guards that specify when the transition should be taken. A guard is
a boolean-valued expression that may reference inputs to the modal model (in1 and
in2 in the figure) and/or outputs of the refinements (out in the figure). Guards may be



Fig. 22. General pattern of a modal model with two modes.

interpreted as “enabling” a transition or as “triggering” a transition. In the former in-
terpretation, a transition may be taken when the guard evaluates to true. In the latter
interpretation, a transition must be taken when the guard evaluates to true. We adopt the
latter interpretation here in order to be able to specify deterministic models.

The transitions can also have one or more actions. In this paper, we will use actions
to initialize the state of the destination mode. This will provide the initial conditions for
execution in that mode.

Many variants of modal models have appeared in the literature and in simulation
tools. In this paper, we use the specific modal models of Ptolemy II, which are described
in detail in [18]. The semantics of these models is given in [29].

6.2 Bouncing Ball

The bouncing ball example in Figure 18 exhibits tunneling through the bounce surface,
as shown in Figure 19. The problem is that the impulsive model of collisions is invalid
below a velocity and position threshold. A modal model solution to this problem is
shown in Figure 23, with resulting plot in Figure 24. This model has two modes of
operation, called “falling” and “sitting.” The falling mode is identical to that in Figure
18, but the sitting mode provides a much simpler model, one that is suitable for a ball
that is just sitting on a surface. The transition from falling to sitting is triggered when the
absolute value of position and velocity are both below a parametric threshold p. Upon
taking the transition, the position x of the destination mode is set to the current position,



Fig. 23. Modal version of the bouncing ball example that avoids tunneling. [on-
line]

which will typically not be exactly zero. This transfer of state prevents a discontinuity
in position, albeit a small one.

The ability to set the initial conditions of the destination mode is quite useful. In fact,
we can use this to get the same effect as impulsive forces, as shown in Figure 25. In that
figure, the bounce itself is handled by a transition instead of a Dirac delta. Instead of
going to a new mode, the transition goes back to the same “falling” mode. The transition
adjusts the velocity of the ball according to (13), but otherwise leaves the state of the
refinement unchanged (the position of the ball, for instance, does not change when this
transition is taken). The transition uses a notation inspired by SyncCharts [3], where
the circled “H” indicates that this is a history transition. When a history transition is
taken, the destination mode is not initialized; its state is the same after the transition as
before, except for any specific actions that are specified on the transition. Notice that
this model no longer requires any microstep delays.

6.3 Collisions vs. Pushing

Recall from Section 5.4 the scenario where two stationary balls are initially touching,
and an external force is applied to the left ball starting at time 1. The resulting velocities
of the balls are shown in Figure 16, which shows that the impulsive model results in
many small collisions, yielding a rather inefficient simulation.

Figure 26 shows a modal version of this model, where initially the system is in
the together mode, which models the balls as shown in the bottom of the figure as a
single mass that travels together. If at any time the force on the right ball is greater

http://ptolemy.org/constructive/models/BouncingBallModal/index.html
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Fig. 24. Position of the bouncing ball example that avoids tunneling.

than the force on the left ball or either ball receives an impulsive force, then the system
transitions to different mode where the balls are separate. Figure 26 doesn’t show the
details, but as part of this transition, the state of the two balls should be initialized. The
result of this model is a plot with the same shape as the top part of Figure 16, but without
many small collisions. The simulation is far more efficient, since the step sizes are now
determined only by the integration accuracy, and not by the time between collisions.

An interesting subtlety about this model concerns the transition back from the sep-
arate mode to the together mode. In Figure 26, the guard for this transition requires
the balls to be touching and their velocities to match. The test checks for equality, and
equality is rarely a good test for floating point numbers that are approximating real

Fig. 25. Alternative modal version of the bouncing ball. [online]

http://ptolemy.org/constructive/models/BouncingBallModal2/index.html


numbers. Indeed, in a model like this, the transition back to the together mode would
be rare indeed. For elastic collisions, this conforms with intuition. It is very difficult to
prevent two elastic objects from bouncing off one another. A more interesting scenario,
however, would model some “sticking” between the balls. Such a model is a part of
the standard Ptolemy II demo suite, is described in detail in [28, section 4.2.2], and is
available online.

It is tempting to similarly use mode transitions to handle simultaneous multibody
collisions, like the scenario studied in Figures 11, 12(b), 13, and 14, where two balls
simultaneously collide with a stationary ball from opposite sides. It is difficult to make
such a model modular, however.

Fig. 26. Modal version of the model that produces the plot in Figure 16. [online]

http://ptolemy.org/constructive/models/StickyMasses/index.html
http://ptolemy.org/constructive/models/Collision6Modal/index.html


Fig. 27. An attempt at a modal model for simultaneous collisions like those in
Figure 11. [online]

An attempt is shown in Figure 27, but this attempt is flawed. In this model, three
balls communicate their positions and velocities to each other. There is no causality
loop induced by this communication because the positions and velocities are outputs of
integrators. When a collision occurs, a transition is taken from the action state back to
itself. If two collisions occur simultaneously on opposite sides, then one of the transi-
tions is chosen nondeterministically. However, in this model, each ball independently
detects collisions and adjusts its own velocity. Hence, when the center ball ignores one
of two simultaneous collisions, the ball that it is ignoring will not ignore the collision.
That ball adjusts its velocity without a corresponding adjustment occurring in the center
ball.

One solution might be for the center ball to communicate to its neighbors which of
two simultaneous collisions it chooses. However, this solution will not scale. If we have
four balls instead of three, then such communication will form a causality loop, and the
model will be non-constructive. Another solution is to arbitrarily choose left collisions
over right collisions (see online for such a solution). Such a solution works well in one
dimension, but in two or three dimensions, it will be more difficult. In one dimension,
we have at most two simultaneous collisions with each ball, but in more dimensions,
we could have more collisions.

Any general interleaving solution will have to handle all simultaneous collisions
together, using centralized logic to choose the interleaving, and using microstep delays
to communicate the choices. The real issue here is that we are trying to build a model
that violates fundamental laws of physics by trying to define simultaneous impulsive
collisions. It should not be surprising that constructing such models is difficult. Note
that it will not help to define the model in an acausal language like Modelica. In fact,

http://ptolemy.org/constructive/models/BilliardsOneDimensional/index.html
http://ptolemy.org/constructive/models/BilliardsOneDimensionalSimultaneous/index.html


that will just obscure the problem. A causal language has the advantage that it is easier
to see why a model is non-constructive.

6.4 Friction

Friction is a sufficiently complex physical phenomenon that calculation from first prin-
ciples is impractical. Instead, engineers use empirical methods that are based on exper-
iment. A commonly used empirical model of friction dates back to Leonardo da Vinci
in the 15th century, and was further developed by Guillaume Amontons and Charles-
Augustin de Coulomb in the 17th and 18th centuries. We will refer to it here as the
Coulomb model of friction.

The Coulomb model distinguishes static friction from kinetic friction. In the for-
mer, the two objects move together (their relative velocity is zero), and the force of
friction is just enough to keep them moving together. In the latter, the two objects have
non-zero relative velocity, so they are sliding against one another. Kinetic friction is a
force opposing their relative motion. The kinetic friction force has three basic proper-
ties:
1. it is directly proportional to the force pressing the two objects together;
2. it is independent of the apparent area of contact; and
3. it is independent of the sliding velocity.
For the first property, the proportionality constant is the kinetic coefficient of friction
µk, an empirical quantity found through measurement.

Consider two objects with masses m1 and m2 arranged as shown in Figure 28.
Here, mass 1 slides on a frictionless surface in response to an input force. Mass 2
will slide with mass 1 if the input force is sufficiently small. Specifically, if mass 1
moves, Coulomb’s model states that static friction will apply a force F2 on mass 2 in
the direction of motion that satisfies the following inequality,

F2 ≤ µsFn

where Fn is the normal force pressing the two objects together, and µs is the static
coefficient of friction. Specifically, this force will be just enough to get mass 2 to match
the acceleration of mass 1, causing the two masses to behave as one. If the input force on
mass 1 is F1, then Newton’s second law tells us that the acceleration of the two masses
together will be F1/(m1 +m2). To keep the masses together, this requires a force on

Fig. 28. Two masses with friction.



mass 2 due to static friction of
F2 =

F1m2

m1 +m2
.

Sliding will begin when F2 exceeds µsFn. Hence, the critical breakaway force on mass
1 is

Fb =
µsFn(m1 +m2)

m2
. (14)

That is, when F1 > Fb, mass 2 will begin sliding. Note that with the arrangement in
the figure, Fn is due to gravity, and hence Fn = m2g, where g = 9.81m/sec2 is the ac-
celeration of gravity at the earth’s surface. Hence, the breakaway force can be written

Fb = µsg(m1 +m2). (15)

Modal models provide a natural way to model friction, where a breakaway is a
mode transition. Two masses may also come together again, at a time where their ve-
locities match. This capture can be modeled as a mode transition. But such models get
particularly interesting when we combine them with impulsive collisions. We do that
next.

6.5 Combining Collisions and Friction

Stronge [55] gives an excellent analysis and critique of Newton’s model of collisions
when combined with Coulomb’s model of friction, showing that in certain circum-
stances, the models appear to be incompatible (they create energy). His solution is a
much more detailed model of the physics. Our solution is instead to stick to the naive
and simple models, but to explicitly limit the use of these simple models to their regime
of applicability. We use modal models to switch between models when crossing from
one regime to another.

A model that combines friction with impulsive collisions for the scenario of Figure
28 is shown in Figure 29. In this model, we assume that any non-zero impulsive force
on mass 1 causes a breakaway. This makes physical sense because an impulsive force
is instantaneously infinite, and therefore exceeds the breakaway force (14) at the instant
of the collision. A weak impulsive force, of course, will result quick recapture. Note
that Mosterman et al. [42] take a different approach, where they instead calculate the
velocity that would result from breakaway, and if that velocity exceeds a threshold,
then they declare the breakaway valid. Otherwise, they reverse the breakaway and treat
the two masses as one. This latter approach does not appear consistent with Coulomb’s
model, because the breakaway threshold is a force, not a velocity. Moreover, it suffers an
unnecessary causality loop, where the actual post collision velocity depends on whether
the breakaway occurs, and whether the breakaway occurs depends on the actual post
collision velocity. This causality loop provides further evidence that their model is based
on questionable physics.

The plot in Figure 29 shows a rather complex behavior. A sinusoidal non-impulsive
force is applied to mass 1. This force is sufficient to cause a breakaway around time
0.2. After breakaway, a constant force is applied to mass 2 (sliding friction), which
causes its velocity to drop linearly. Around time 0.8, mass 1 reverses direction, reversing
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Fig. 29. Model of friction with impulsive collisions. [online]

the polarity of the force on mass 2. At time 1.0, an impulsive force produced by the
DiscreteClock actor causes an abrupt reversal of the direction of motion of mass 1.
Around time 1.8, recapture occurs, followed by another impulsive force at time 2.0, and
another recapture near time 2.4.

A breakaway is represented in Figure 29 by the bottom transition from the stuck
mode to the sliding mode. The other transition from stuck to sliding has a dashed line,
which in Ptolemy II means that this transition will be considered only if no solid-line
transition is enabled. The dashed transition, therefore, will be taken if there is no impul-
sive force and the non-impulsive force exceeds the breakaway force. Impulsive forces
trump non-impulsive forces. Note that it is safe to ignore the non-impulsive force at the

http://ptolemy.org/constructive/models/Friction/index.html


Fig. 30. Mode refinement for the sliding mode of Figure 29. [online]

Fig. 31. Mass falling at an angle onto a surface with friction.

time that an impulsive force occurs, because no time will elapse before the next tick,
and a non-impulsive force has no effect in the microstep dimension of time.

The transition from sliding to stuck represents capture. It occurs when a capture
event is detected and the velocity difference is lower than some threshold (a finite pre-
cision is required here, because comparing equality of real numbers makes no sense).
The capture event is produced by the sliding mode refinement, which is shown in Figure
30. That refinement uses a zero-crossing detector to identify when the velocities of the
two masses cross in either direction. Why do we need both the velocity difference com-
parison on the transition and the zero-crossing detector? Because a zero crossing can
occur if mass 1 is subjected to an impulsive force that causes its velocity to cross that of
mass 2. In the plot in Figure 29, this occurs at time 1.0. This event does not cause recap-
ture. But it does cause the acceleration of mass 2 to abruptly reverse polarity, because
the sign of the velocity of mass 1 reverses.

The polarity of the acceleration imposed on mass 2 by dynamic friction is piecewise
constant, following Coulomb’s principle, but its sign depends on the sign of the velocity
of mass 1. Dynamic friction will push mass 2 to the right if mass 1 is moving to the right,
and it will push to the left if mass 1 is moving to the left. This reversal of polarity is
handled by the simple modal model in Figure 30, where the two mode refinements each
produce a constant output. This idiom ensures a piecewise continuous signal.

http://ptolemy.org/constructive/models/Friction/index.html


6.6 Relating Impulse Weights

The scenario of Figure 28 has some interesting limiting cases. If the static coefficient
of friction is infinite, then the two masses are permanently stuck together. In this case,
they act as one mass. Similarly, if the dynamic coefficient of friction is infinite, then
mass 2 will be recaptured immediately after any breakaway. But even in these cases, we
could assign a weight to the coefficients of friction. An impulse force could therefore
“break” a monolithic mass into two pieces if the weight on the impulsive force exceeds
the weight on the (infinite) breakaway force.

Erleben et al. [17, p. 154] study an interesting example where a mass falls at an
angle onto a rigid immovable surface, as shown in Figure 31. In this case, at the time of
the collision, the impulsive force has both a vertical and a horizontal component. The
vertical component imposes an instantaneously infinite normal force, so the breakaway
force given by (14) is infinite. This suggests that since the surface is immovable (its
mass is infinite), the falling mass should instantly stop. But the horizontal component
also imposes an instantaneously infinite force, which suggests that the mass should
break away and start sliding. In this case, the test for breakaway is comparing two
infinite values. Fortunately, by modeling these impulses as Dirac delta functions, we
still have a legitimate basis on which to compare them, which is to compare the weights
of the two impulses. If the weight of the horizontal impulse exceeds the weight of the
breakaway force, then the mass should start sliding upon collision. Otherwise, it should
stop. This is consistent with the solution given by [17].

7 Mode-Dependent Causality

In the models above, causality is relatively independent of mode. Velocities and posi-
tions are always outputs produced in reaction to forces, which are inputs. These facts
do not change with the mode changes. However, in more interesting models, different
modes of the same system can exhibit different causal relationships between variables.
This adds considerable complexity to modeling and simulation. We study this problem
with examples from electrical circuits that have elements that are modeled with discrete
behaviors. Diodes and switches are two commonly used examples of such elements.

7.1 Dual-Mode Diode Circuit

Consider the “oscillating LCD” circuit in Figure 32. This circuit is considered by Ben-
veniste et al. in [8]. The voltages across the three circuit elements, which are a function
of time, are u, w, and v respectively, with the polarities shown in the figure. Kirchoff’s
voltage law tells us that at all times t,

u(t)+w(t)+ v(t) = 0. (16)

The current flowing around the cycle is i, with the polarity shown in the figure. The
capacitor relates the voltage v with the current i according to

i(t) =C
dv(t)

dt
, (17)



Fig. 32. Oscillating LCD circuit from [8].

where C is the capacitance. I.e., current is proportional to the rate of change of voltage.
The inductor relates the voltage u and the current i by

u(t) = L
di(t)

dt
, (18)

where L is the inductance. I.e., the voltage is proportional to the rate of change of
current.

The diode is what makes this circuit interesting. One model for an ideal diode is
that it is either reverse biased, in which case

i = 0
w < 0,

or it is forward biased, in which case5

i > 0
w = 0.

The diode, therefore, defines two modes for this circuit. In the forward biased mode,
since w = 0, (16) implies that

u(t) =−v(t),

hence
di(t)

dt
=
−1
L

v(t),

and
dv(t)

dt
=

1
C

i(t).

These two equations are realized in the model shown in Figure 33 in the forwardBiased
mode. The integrator labeled “Capacitor” represents the capacitor, which stores voltage,
and the integrator labeled “Inductor” represents the inductor, which stores current.

5 Note that a more realistic diode model will exhibit a non-zero voltage drop when it is forward
biased. This model is easily generalized to accommodate this, as we will do with the next
example.



Fig. 33. Modal model for the LCD circuit from [8]. [online]

When the current hits zero, the diode instantly becomes reverse biased, and the
model makes a transition to the reverseBiased mode. This mode contains a very differ-
ent model of the circuit. All of the outputs are constant, as shown in the plot in Figure
34.6

The constant outputs follow from the equations above. Specifically, since the current
becomes a constant zero, the derivative of the current also becomes zero, and hence,
from (18), the voltage across the inductor also becomes zero. Since the current becomes
zero, (17) implies that the voltage across the capacitor becomes constant. Finally, since
u = 0, (16) implies that w = −v. The voltage across the capacitor remains at the value
it had when the diode became reverse biased, and the voltage across the diode holds at
the negative of this, which will keep the diode reverse biased.

Notice that the voltage u across the inductor abruptly drops to zero. This is not
physically troubling, however, because the current through the inductor at that time is
zero.

The dependency relationships between variables in the two modes shown in Figure
33 are different. In the forwardBiased mode, u has a direct dependency on v. In the
reverseBiased mode, it does not. Figure 32 does not make this so explicit. One has
to reason carefully about the diode model to infer these different relationships. Such
differences, however, can significantly affect a simulation strategy, or even the validity
of a simulation. We will illustrate this with a more complex example.

6 Again, a more realistic diode model would all a non-zero leakage current when it is reverse
biased. This is a trivial extension of this model.

http://ptolemy.org/constructive/models/LCDModal/index.html
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Fig. 34. Plot of an execution of the model in Figure 33.

Fig. 35. A diode-inductor circuit from [40].

7.2 Diodes and Switches

The model in Figure 33 realizes a rather brute force strategy of constructing a separate
model for each configuration of a circuit. This works fine when there is only one element
in the circuit, the diode, that results in multi-modal behavior. What if there are more
such elements?

Consider the circuit in Figure 35, which was studied by Mosterman and Biswas [40].
Such circuits are commonly used to protect inductive loads (such as motors) from high
voltages that can result from being abruptly disconnected from a power source. The
power source is at the left of the circuit, and the inductive load at the right. In normal
operation, when the switch is closed, the diode is reverse biased, so no current (or a
small leakage current) flows through it. When the switch is disconnected, if the diode is
not present, the current through the inductor abruptly and discontinuously falls to zero.
Equation (18) indicates that a very large (or in the ideal, infinite) negative voltage will
be induced across the inductor. The role of the diode is to limit this voltage to prevent
damage. Such a diode is often called a “flyback diode.”
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Fig. 36. A causal model for the circuit in Figure 35. [online]

This circuit has two multi-modal elements, a switch and a diode. Assuming that each
of these has two modes, the number of modes of the circuit is the product of the number
of modes of the elements. In order to anticipate larger circuits with more multi-modal
components, we will want to construct a more modular model than one consisting of a
distinct model for each mode of the overall circuit.

The figure shows dashed lines around two sub circuits, each of which has one dual-
mode component. The interface between these sub circuits is a current j and a voltage
w. But the causal relationships are not clear, and in this case will depend on the modes
of the sub circuits.

The top level of a causal model for this circuit is shown in Figure 36. The model
has four parameters, the voltage u applied by the ideal voltage source, the inductance
L, the resistance R, and the voltage drop of a forward biased diode. With the parameters
as shown in the figure, the model exhibits the plot shown in the figure. Initially, the
switch is closed and no current i is flowing through the inductor, so the voltage across
the inductor is u and the diode is reverse biased. Over time, the current i increases and
voltage v drops. At time 3.0, the SingleEvent actor issues a discrete command to open
the switch. This causes the diode to abruptly become reverse biased, imposing a fixed
voltage of −0.7 volts (the forward bias voltage) across the inductor. Since the rate of
change of current in an inductor is proportional to voltage (equation 18), the current
i (and h, the current through the diode) falls linearly. When that current hits zero, the
diode ceases to be forward biased, and the current remains at zero.

http://ptolemy.org/constructive/models/DiodeInductorModel/index.html


Fig. 37. Implementation of the SwitchedSource in Figure 36.

In Figure 36, the component labeled “SwitchedSource” represents the left side of
the circuit in Figure 35. Its implementation is shown in Figure 37. Notice in particular
that in this implementation, the current i and the voltage w are provided both as inputs
and outputs. This allows the component to be used in a variety of ways. In Figure 36,
the current input j is provided, but not the voltage input w. Because this modeling
framework is rooted in synchronous-reactive models, absence of an input is a well-
defined concept, so the lack of a voltage input will simply result in the lack of the
current output.

The SwitchedSource has two modes, open and closed. When the switch is closed,
if the current through the load is provided as an input, then the output voltage to the
load will be provided. It is calculated by calculating the voltage drop across the resistor
using the standard formula for a resistor,

x = jR. (19)

Hence, if the current j is provided as an input, the output voltage will be

w = u− x = u− jR.

If instead the voltage w is provided as an input, then the current j will be given by

j = x/R = (u−w)/R.

When the switch is open, the inputs are ignored, and a constant zero output current is
provided. Notice that the causal relationships between inputs and output depend on the
mode.



Fig. 38. Implementation of the InductorDiode in Figure 36.

In Figure 36, the component labeled “InductorDiode” represents the right side of
the circuit in Figure 35. Its implementation is shown in Figure 38. When the diode is
reverse biased, the input is the voltage across the diode, which is equal to the voltage
across the inductor. The output is the current through the inductor.

In this mode, the input current j is ignored. In fact, in this mode, it is physically
problematic to provide an input j. An inductor stores current, so if the current through
the inductor is an input to the model, then the storage element has to be abruptly and
discontinuously modified. This would be an impulsive change, and could be realized
using the same (problematic) mechanisms explored in Section 7.4 below. But this model
does not need such mechanisms, and in fact, any attempt to use them would probably
result in a causality loop.

If no input w is provided, the output voltage i will be absent. This explains a subtle
point about the plot in Figure 36, where the voltage v becomes absent around time 4.4.
This is a modeling choice, of course. It is a simple exercise to change the model to
assert a zero output voltage in the reverseBiased mode when the input w is absent.

Let us carefully go through what occurs at time 3.0, when the switch is opened.
First, at superdense time (3,0), the SwitchedSource is in mode closed and Inductor-
Diode is in mode reverseBiased. The output current i from InductorDiode is the input
to the SwitchedSource, which responds by providing an input voltage w back to Induc-
torDiode. All of this occurs simultaneously and instantaneously at time (3,0). It is a
fixed point.

At superdense time (3,1), the SingleEvent actor provides a value true to the input
port of SwitchedSource labeled “open.” The currents and voltages at this time (3,1) will



all be the same as they were at (3,0), because nothing has changed (yet). According
to the operational semantics of modal models [29], a mode transition occurs after the
fixed-point solution has been found. At superdense time (3,2), the voltage output of
SwitchedSource will be absent, because the SwitchedSource mode is open. At that time,
InductorDiode is still in its reverseBiased mode, so its outputs i and v will also be absent.
After the fixed-point has been found (where most signals are absent), InductorDiode
will take a transition to forwardBiased. At superdense time (3,3), both components are
in their final modes, and the new fixed point represents the starting point for the next
integration interval.

Note that the circuit model is at one superdense time instant in the open and re-
verseBiased modes. But it does not linger in this mode. Since it spends zero time in this
mode, the signal values (mostly absent) that are the fixed point in this mode are harm-
less. They do not affect integrators that are keeping track of the physical state of the
system. Such transitory modes are called “mythical modes” by Mosterman and Biswas
[40].

7.3 Complexity

Notice that in a circuit with two elements, each of which has two modes, there are a
total of four modes. One modeling approach would be to construct a separate circuit
model for each of the modes of the overall circuit, and to build the logic that switches
between modes, carrying the state of the circuit while switching modes. A more compli-
cated circuit, however, will have many more modes. In fact, the number of modes will
grow exponentially with the number of modal elements. This complexity is intrinsic
in such circuits, and suggests that the struggles that scientists and engineers have had
modeling such circuits is not just a consequence of poor understanding of the physics.
It is because these circuits are fundamentally complex, exhibiting an exponential num-
ber of distinctly different behaviors with complex transitions between these behaviors.
Indeed, electrical systems with discrete elements can get extremely complicated [45].
Such complex examples would yield a truly vast number of modes in a flat multi-modal
model.

The modeling style represented in Figure 36 is preferable. It does not eliminate the
complexity, but it makes it more manageable and understandable.

7.4 Nonconstructive Circuits

Some circuits do not yield easily to reasonable solutions. Mosterman and Biswas con-
sider a suite of circuits in [41] that are variants of Figure 39. Assume that the switch
is initially open and the capacitors start with unequal voltages, v(0) 6= u(0). When the
switch is closed, the two voltages, by definition of a closed switch, become equal in-
stantaneously. This requires an impulsive input to the capacitors to instantaneously alter
their stored values.

A first attempt to construct an executable model for Figure 39 is shown in Figure
40. However, this model fails to execute because it has a causality loop, and hence is
not constructive. The EnabledComposite will be triggered at the same superdense time
where an enable event is provided by the SingleEvent actor. At this index, the least fixed



Fig. 39. Two capacitors and a switch.

Fig. 40. Attempt at a model for Figure 39.

point results in unknown values for u and v. This is because the integrators need to know
their impulse inputs before they can assert an output value, and the EnabledComposite
needs to know the values of u and v before it can provide the impulsive corrections to
the integrators.

We can change the model to make it executable by manually adding a MicrostepDe-
lay actor in the feedback paths, which will result an executable model providing the plot
shown in Figure 41. In that figure, the switch is closed at time 1.0, and at that time, in-
stantaneously, the voltages of the two capacitors equalize. But to what value?

As pointed out in [41], the charge stored in a capacitor is proportional to the voltage,
but the energy stored in a capacitor is proportional to the voltage squared. The plot in
Figure 41 conserves charge, but it instantaneously loses energy. But there is no dissi-
pative element in the model that can lose energy, so the model appears to correlate to
flawed physics. Perhaps this is related to the time-energy uncertainty of [37]. So while
our attempt to circumvent a causality loop results in a model that can be executed, the
model is suspect, just as the multi-body collision models above are suspect.
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Fig. 41. Execution of a variant of the model in Figure 40 where a MicrostepDelay
has been inserted in each feedback path. This execution conserves charge but
not energy. [online]

8 Related Work

Superdense time was introduced in [35] and [38] and subsequently used for modeling
hybrid systems in [24] and [31], and also in [23], where it was called “hyper time.”
The trace semantics and interleaving semantics of Alur and Henzinger [2] also have
the flavor of superdense time, since multiple ordered events can be simultaneous in
time. The hardware description language VHDL has a related model of time, where
time is a member of N×N, and the second value is used in a manner similar to the
superdense time index [4]. This paper adopts the approach in [32], where at each instant
in superdense time, a model has a fixed-point semantics.

In this paper, models are constructed with causal components, which have explicit
inputs and outputs. An alternative is so-called equational languages, where the in-
terfaces between components are neither inputs nor outputs, but rather assert equality.
Bond graphs [49], Modelica [57], and SPICE [43] all have this character. They em-
phasize a style of modeling that focuses on describing systems directly in terms of
conservation laws, such as equations (5) and (6), rather than input/output relationships.
Figure 32, for example, has three interconnected acausal components. Figure 33 has
translated the entire circuit into a causal model.

The Ptolemy II framework used in this paper, in contrast, uses a style similar to
other popular modeling languages such as Simulink and LabVIEW. As illustrated in
this paper, a person building a model in such a language may have to puzzle over which
variables to define as inputs and which to define as outputs of which components. If the
model builder is constructing the model in an acausal language, then the compiler has
to construct a causal variant in order to simulate the model. The compiler will face the
same problems.

Acausal languages such as Modelica allow system dynamics to be given using dif-
ferential algebraic equations (DAEs), which are more general than ODEs. DAEs include
equations that specify algebraic relationships between variables, where “algebraic” sim-
ply means here that the relationships do not involve integration. Such relations can form
cycles, in that x depends on y and vice versa, but these cycles do not automatically lead

http://ptolemy.org/constructive/models/TwoCapacitorsModelWithDelays/index.html


to causality loops or nonconstructive models. In particular, given a system of DAEs, a
Modelica compiler will attempt to remove apparent causality loops through a process
known as index-order reduction, using for example the Pantelides algorithm [48].
When this process is successful, causality loops have been removed, and the resulting
models resemble the ODE models that we use in this paper.

In many cases, the acausal representation is more compact and readable. However,
such a representation may mask nondeterminacy or complexity, leading a designer into
a false sense of confidence. Moreover, acausal representations are not always more
intuitive or easier to understand. Consider a pendulum for example. To this author,
a causal model in the transformed polar coordinate system is easier to construct and
understand than the standard acausal model.

This paper is not taking a position about whether it is preferable to specify models
using causal or acausal languages, but instead is showing how such models need to be
executed. Whether they are specified as shown in Figure 32 and then translated into
Figure 33, or specified directly as in Figure 33, is irrelevant to this paper.

Similarly, in this paper, all models are given in a visual block diagram notation. This
is useful for pedagogical purposes, but this paper is not taking a position on whether
such visual representations are to be preferred over textual languages. Some modeling
languages, such as Modelica, provide both visual and textual notations, a recognition
that each has its place. Which notation is used is again irrelevant to this paper.

Modal models have appeared in many forms in the literature, perhaps beginning
with Statecharts [22]. This paper assumes the semantics in [29]. Modelica also supports
modal behaviors [52,47]. Sztipanovits et al. also describe modal models [56]. Hybrid
Bond graphs are also modal models [41].

The constructive semantics is due to Berry [9], who applied it to the Esterel pro-
gramming language and to circuit analysis [53]. Recently, Mendler et al. have proven
that non-constructive circuit models correspond to physical systems that are vulnerable
to unstable oscillation [39].

9 Conclusion

Constructive semantics gives a natural way to separate problems that can be solved
with confidence from those that cannot. When, for example, the order of nearly instan-
taneous collisions is important, a constructive semantics forces us to either choose an
order or explicitly choose nondeterminism. Moreover, given a nonconstructive and a
constructive model of the same physical phenomenon, the constructive one is more like
to be useful and faithful to the physics than the nonconstructive one. Building useful
constructive models of combined continuous and discrete behaviors is facilitated by
a superdense model of time, an explicit use of impulses (generalized functions), and
modal models.

10 Acknowlegements

Thanks to Gérard Berry, David Broman, Lev Greenberg, Pieter Mosterman, Marc Pouzet,
Stavros Tripakis, and Michael Wetter for extensive discussions that led to this paper.



And thanks to my former students, Adam Cataldo, Eleftherios Matsikoudis, Jie Liu,
Xiaojun Liu, and Haiyang Zheng, for teaching me about continuous-time models.

References

1. ALUR, R., COURCOUBETIS, C., HALBWACHS, N., HENZINGER, T., HO, P.-H.,
NICOLLIN, X., OLIVERO, A., SIFAKIS, J., AND YOVINE, S. The algorithmic analysis
of hybrid systems. Theoretical Computer Science 138, 1 (1995), 3–34.

2. ALUR, R., AND HENZINGER, T. Logics and models of real time: A survey. In REX Work-
shop (Mook, The Netherlands, 1991), J. W. De Bakker, C. Huizing, W. P. De Roever, and
G. Rozenberg, Eds., vol. LNCS 600, Springer, pp. 74–106.
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