
EXERCISES

Figure 7.1: A timed automaton.

2. This problem explores scenarios in which the ideal solver semantics is actually
practical and realizable. Consider the model shown in Figure 7.1. This is a simple
case of a timed automaton (Alur and Dill, 1994). Assume C > 0 is a given real
constant, and assume that the mode transitions are both reset transitions, so the state
of the integrators is reset to zero on each transition. This model could provide an
implementation for a thermostat, with the following associations for the signals:

• w is the current temperature;
• x is the current set point (the target temperature);
• y is the time elapsed since entering a mode; and
• z is the control signal turning a heater on (1) or off (0).

Let the start time of the model be t0 = 0 and the time of the nth mode transition
be given by tn. In each state k ∈ {1,2}, the system needs to solve an initial value
problem of the form

ẏ(t) = fk(y(t), y(tn) = 0

for t ≥ tn.

(a) Give the functions f1 and f2.

(b) Show that f1 and f2 are Lipschitz continuous.
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7. CONTINUOUS-TIME SYSTEMS

(c) The initial-value problem has an analytical solution, meaning that there is a
closed-form expression for y(t) for all t ≥ tk. Find that solution.

(d) Let (X ,≤) be a total order. A subset T ⊆ X is progressing if for all x ∈ X ,
there exists a t ∈ T such that x ≤ t. Let T be the set of times tn at which a
transition is taken. Show that either T is finite or T is progressing.

(e) Explain why the ideal-solver semantics is actually implementable in this case.
You may assume that arithmetic on time values suffers no quantization errors
when addition or subtraction is performed, and you may assume that the times
at which w < x or w > x become true are representable exactly in the number
system used by your computer.

(f) Consider the model of Figure 7.1 in a feedback loop with a physical plant rep-
resenting the cooling and heating of the room. Suppose that the temperature
of the room is given by

w(t) = w(0)+
∫ t

0
(hz(τ)− r(1− z(τ))dτ,

where h is constant representing the rate of heating when the heater is on
(when z(t) = 1), r is the rate of cooling when the heater is off (when z(t) = 0),
and w(0) is the initial temperature of the room. Comment about the quality
of this thermostat. In particular, suppose C = 20 seconds, w(0) = 22 degrees
centigrade, h = 0.2 degrees per second, and r = 0.1 degrees per second. How
often will the heater turn on an off? What are the maximum and minimum
temperatures reached? Can you suggest a better thermostat design?
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