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A Kahn process network (KPN) is a concurrent composition of sequential processes
that communicate using a particular form of message passing. A key property of these
networks is that, despite the concurrency, they are assured of being determinate, in the
sense that a KPN defines a unique sequence of messages on each communication chan-
nel between processes. That is, the messages that are communicated do not depend on
the scheduling of the sequential processes. This chapter develops the theory behind such

27



2.1. KAHN-MACQUEEN PROCESS NETWORKS

Figure 2.1: Example of a process network.

networks, explaining why they are determinate, and discussing constraints that an execu-
tion engine must satisfy to execute them correctly. For the historical background on this
model of computation, see the sidebar on page 33. For a discussion of the practical use of
process networks, see Ptolemaeus (2014).

2.1 Kahn-MacQueen Process Networks

A process network (PN) is a collection of components called processes or actors, each
representing a sequential, step-by-step procedure. A, B, and C in Figure 3.1 depict pro-
cesses as rectangles. A process may have private state (variables that are invisible to
other processes). The steps in its procedure may manipulate its state, send messages to
processes (including possibly itself), or receive messages from processes (again including
possibly itself).

A process sends and receives messages via named input or output ports. In Figure 3.1,
p1, p2, and p3 are input ports, and p4, p5, and p6 are output ports. An output port may
be connected to an input port via a channel that carries a sequence of messages. Each
message is called a token, and a sequence of tokens is called a signal. In Figure 3.1, s1,
s2, and s3 represent signals. A signal may consist of a finite or infinite sequence of tokens.

A key assumption in process networks is that tokens are delivered to the destination input
port reliably and in order. The channel will buffer tokens for later delivery to the receiving
process, and it will never lose tokens. A process can always send a token. It does not need
to wait for the recipient to be ready to receive.
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2. PROCESS NETWORKS

We begin with a special case of process networks that is easier to understand than the gen-
eral case. This special case was introduced by Kahn and MacQueen (1977), and has been
the subject of considerable study ever since. A Kahn-MacQueen network is a process
network with blocking reads. This means that the only mechanism that a process has to
receive a token is to attempt to read a token from an input port; that attempt blocks exe-
cution of the process if there is no available input token. The process will remain blocked
until a token is available. In particular, a process cannot determine a priori whether a
token is available. The only operation it has available is a blocking read.

A Kahn-MacQueen process is a program in an imperative language augmented with a
blocking read statement and nonblocking write statement that reference the input and
output ports of the process. Here, we describe Kahn-MacQueen processes using a C-like
pseudo language that has structured control statements like while and if-then-else,
plus statements like

t = read(p);

which performs a blocking read on input port p and returns a token t, and

write(p, t);

which writes the token t to port p. The read procedure call does not return until there is
a token available at port p. The write statement returns immediately. Our language is a
pseudo language in that we do not fully define it, and we omit important details like data
types.

Example 2.1: Suppose that A in Figure 3.1 executes the following Kahn-
MacQueen procedure,

1 write(p5, 0);
2 while(true) {
3 t = read(p1);
4 write(p5, t);
5 }

This procedure first produces an output token with value 0 and then enters an infi-
nite loop where it reads an input token and sends it to the output port. If the input
is a sequence tokens (1,2,3), for example, then the output will be (0,1,2,3).
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2.1. KAHN-MACQUEEN PROCESS NETWORKS

An actor with this behavior is called a unit delay because the input tokens appear at
the output delayed by one step in the sequence. In practice, the value of the initial
output (0 in this case) would typically be a parameter of the actor rather than a
built-in constant.

Let a.b refer to the concatenation of sequences a and b. That is, a.b is a sequence with
prefix a followed by b. If a is infinite, then a.b = a. Using this notation, the process of
Example 2.1 defines its output sequence as a function of its input sequence.

Example 2.2: If the input to the process of Example 2.1 is a sequence denoted by
b, then the output is A(b) = (0).b.

We can use the definition of actor A from Example 2.1 to build a complete process network
in Figure 3.1.

Example 2.3: Suppose that B executes the following procedure,

1 while(true) {
2 t2 = read(p2);
3 t3 = read(p3);
4 write(p4, t2+t3);
5 }

Suppose further that C executes the following procedure,

1 while(true) {
2 write(p6, 1);
3 }

An execution of the process network in Figure 3.1 yields the following sequences:

s1 = (1,2,3,4, · · ·)
s2 = (0,1,2,3, · · ·)
s3 = (1,1,1,1, · · ·)
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In the previous example, an execution of the process network yields infinite sequences.
This is not always the case.

Example 2.4: Suppose that instead of the unit delay given in Example 2.1, A in
Figure 3.1 executes the following Kahn-MacQueen procedure,

1 while(true) {
2 t = read(p1);
3 write(p5, t);
4 }

Such an actor is called an identity actor, because the output sequence is the same
as the input sequence. An execution of the resulting process network yields

s1 = ⊥
s2 = ⊥
s3 = (1,1,1,1, · · ·)

where ⊥ is the empty sequence. Processes A and B both block immediately at-
tempting to read a token provided by the other. Process C, on the other hand, is
able to execute and produce an infinite sequence of outputs. Since the semantics of
process networks requires that tokens on channels not be lost, the tokens produced
by C must be stored until they are consumed by B. In this case, however, they will
never be consumed by B, and eventually, any execution platform will run out of
memory to store the tokens.

The previous example illustrates two phenomena that can occur with process networks.
The first is deadlock, where the actors on a directed cycle of the network are blocked
waiting for tokens for each other. In this case, we have a local deadlock, because only
part of the process network is deadlocked. In particular, C is not blocked.

The second phenomenon illustrated by this example is unbounded memory. This pro-
cess network cannot correctly execute without an unbounded amount of memory for stor-
ing unconsumed tokens.

We will see below that, in general, whether a Kahn-MacQueen process network deadlocks
is undecidable, even if we constrain the actors to a few very simple primitive ones. It is
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also undecidable whether such a process network can be executed with bounded memory.
These two limitations are actually a consequence of the rich expressiveness of the model
of computation. We will see that a very few primitive actors are sufficient to make the
model of computation Turing complete, which means that it can describe every effectively
computable function.

2.2 Semantics of Process Networks

Example 2.2 suggests that a Kahn-MacQueen process can be defined as a function that
maps input sequences to output sequences. Consider an actor with a single input port and
single output port. The data type of a port p is a set Tp of token values that the port
consumes or produces. The set T ∗∗p is the set of finite and infinite sequences of tokens of
type Tp (see Chapter 1). An actor is therefore a function defined on such sequences.

Example 2.5: Suppose that in Example 2.2, the input and output data types are
T = N, the natural numbers. Then the unit delay is a function of form

A : N∗∗→ N∗∗

where for all b ∈ N∗∗,
A(b) = (0).b.

As we pointed out before, normally the initial output 0 would be a parameter of the
actor rather than a built-in constant.

In general, the semantics of a program is its meaning. In the case of process networks,
the semantics is the signals defined by the network. Each signal is a finite or infinite
sequence of tokens. In this section, we will show that if processes define functions that
satisfy a particular constraint (they are continuous), then the semantics of the network is
unique (i.e., the network defines exactly one sequence of tokens for each signal), and we
can give a constructive procedure for building the signals defined by the network (i.e., a
mechanism for executing the network). For this section, you will want to have mastered
the material on the prefix order and complete partial orders, in Chapter 1.
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Historical Notes: Process Networks

The notion of concurrent processes interact-
ing by sending messages is rooted in Conway’s
coroutines (Conway, 1963). Conway described
software modules that interacted with one an-
other as if they were performing I/O operations.
In Conway’s words, “When coroutines A and
B are connected so that A sends items to B, B
runs for a while until it encounters a read com-
mand, which means it needs something from A.
The control is then transferred to A until it wants
to write, whereupon control is returned to B at
the point where it left off.” The key idea is that
both A and B maintain as part of their state their
progress through their procedures, and transfer
of control occurs to satisfy demands for data.

Gilles Kahn (1946 – 2006), French
computer scientist who developed
Kahn process networks.

The least fixed-point semantics is due to Kahn (1974), who developed the model
of processes as continuous functions on a CPO. Kahn and MacQueen (1977) de-
fined process interactions using non-blocking writes and blocking reads as a special
case of continuous functions, and developed a programming language for defining
interacting processes. Their language included recursive constructs, an optional
functional notation, and dynamic instantiation of processes. They gave a demand-
driven execution semantics, related to the lazy evaluators of Lisp (Friedman and
Wise, 1976; Morris and Henderson, 1976). Berry (1976) generalized these pro-
cesses with stable functions.

Sequences of tokens communicated by process networks are unbounded lists.
The notion of unbounded lists as data structures first appeared in Landin (1965).
This underlies the communication mechanism between processes in a process net-
work. The UNIX operating system, due originally to Ritchie and Thompson (1974),
includes the notion of pipes, which implement a limited form of process networks.

Kahn (1974) stated but did not prove that a maximal and fair execution of process
network yields the least fixed point. This was later proved by Faustini (1982) and
Stark (1995). It has come to be known as the Kahn principle.
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2.2.1 Least Fixed Point Semantics

Recall that a fixed point of a function F : X → X is an element x ∈ X such that F(x) = x.
Execution of every process network can be reduced to finding a fixed point of a function.
The function is a composition of the functions defined by the individual actors.

Example 2.6: Consider the process network in Figure 3.1. This network is re-
drawn in Figure 2.2(a). In Figure 2.2(b), we reorganize the drawing and draw a box
around the three actors. This box can itself be a considered an actor with three in-
put ports and three output ports, as illustrated in Figure 2.2(c). Figure 2.2(d) further
abstracts this by aggregating the three signals into one.

Figure 2.2: Execution of every process network can be reduced to finding a fixed
point of a function, as illustrated by this sequence of transformations of a network.
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Suppose that the three signals in Figure 2.2 have data type T . Then each signal si,
i = 1,2,3, is a member of the set T ∗∗ of sequences of tokens of type T . In Figure
2.2(d), the function F therefore has the form

F : (T ∗∗)3→ (T ∗∗)3.

Using the process definitions from Examples 2.1 and 2.3, we see that if the input is

s = ((a1,a2, · · ·),(b1,b2, · · ·),(c1,c2, · · ·)),

a three-tuple of sequences, then the output is

F(s) = ((b1 + c1,b2 + c2, · · ·),(0,a1,a2, · · ·),(1,1, · · ·)),

which is also a three-tuple of sequences.

Because of the feedback loop, we seek a sequence s that satisfies F(s) = s, so in
this case, we require that

a1 = b1 + c1

a2 = b2 + c2

b1 = 0

b2 = a1

c1 = 1

c2 = 1

· · ·

which implies that

a1 = 1

a2 = 2

b1 = 0

b2 = 1

c1 = 1

c2 = 1

· · ·

which is the same result we obtained before in Example 2.3.
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Execution of a process network with n signals of type T can be reduced to finding a fixed
point of a function of the form

F : (T ∗∗)n→ (T ∗∗)n.

If a process network has signals with different types, then the domain and codomain of the
function will be a cartesian product of the sets of sequences of those types. The notation
gets more complex, but not the concept. It may be surprising that all process networks
can be reduced in the same way to finding a fixed point of a function.

Example 2.7: Consider the network in Figure 2.3(a). It may seem that this would
be difficult to reduce to a fixed point problem because there is no feedback in the
network. However, this can be redrawn as shown in Figure 2.3(b), and abstracted
as shown in Figure 2.3(c). In this case, the function F is a rather trivial function.
Regardless of the input signal, it always produces the same output signal. It is a
constant function, where the output is independent of the input.

To be concrete, suppose that the data type is T = N, the natural numbers, and that
actor A produces the sequence (0,1,2,3, · · ·). Then F : N∗∗ → N∗∗ is a function
such that for all s ∈ N∗∗,

F(s) = (0,1,2,3, · · ·).
Hence, s = (0,1,2,3, · · ·) is a fixed point of F (the only fixed point, in fact).

Figure 2.3: Even a process network with no feedback loops can be reduced to
finding a fixed point of a function, as illustrated by this sequence of transforma-
tions of a network.
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Figure 2.4: A process network with multiple fixed points, where I is the identity
actor.

For the above examples, the function F has exactly one fixed point. This is not always the
case.

Example 2.8: Consider an identity actor I, described in Example 2.4, where for
all s ∈ T ∗∗,

I(s) = s.

Suppose that this actor is used the process network shown in Figure 2.4. This
process network has multiple fixed points. In fact, any signal s ∈ T ∗∗ is a fixed
point.

Recall from Chapter 1 that the prefix order is a partial-order relation v over sets of se-
quences T ∗∗. For any two a,b ∈ T ∗∗, a v b if the sequence a forms the leading part of
sequence b. If a is infinite, then av b if and only if a = b.

When a process network has multiple fixed points, we will choose the least fixed point,
where “least” is in the prefix order.

Example 2.9: For the process network in Figure 2.4, the least fixed point is s =⊥,
the empty sequence. This choice is indeed the least fixed point because for all
other fixed points s, ⊥ v s. Moreover, it is exactly the fixed point that results
from executing the Kahn-MacQueen process! The process deadlocks immediately,
blocked on the first read. Hence, the result of execution is the empty sequence.

E. A. Lee, Concurrent Models of Computation 37

http://Ptolemy.org


2.2. SEMANTICS OF PROCESS NETWORKS

We will see next that with Kahn-MacQueen process networks, the least fixed point is
always uniquely defined, and execution of the network produces that least fixed point. We
will then show that some actors that cannot be defined as Kahn-MacQueen processes also
yield a uniquely defined least fixed point.

2.2.2 Monotonic and Continuous Functions

Recall that a function A : T ∗∗→ T ∗∗ is monotonic if a v b implies that A(a) v A(b). A
Kahn-MacQueen process defines a function from input sequences to output sequences as
long as the imperative language used to define the language is determinate. This means
that given particular input signals at the input ports, the output signals are fully defined
by the process. More interestingly, Kahn-MacQueen processes are monotonic.

Example 2.10: The unit delay function considered in Example 2.5 is monotonic.
Consider two possible input signals a,b∈N∗∗. The corresponding output sequences
are A(a) = (0).a and A(b) = (0).b. Clearly, if av b, then A(a)v A(b).

The fact that Kahn-MacQueen processes are monotonic is easy to see by considering
their execution. Suppose a,b ∈ N∗∗ are two possible input signals where av b. A Kahn-
MacQueen process that is presented with input b will first read a sequence of tokens equal
to a. Since the process its determinate, once it has read this prefix of b, its output will be
exactly the output sequence it would have produced had it been presented with input a.
Upon continuing to read tokens from b (which now differ from a), it will only extend the
output signal. It has no mechanism for retracting previously produced tokens, and hence
the output produced in response to b is an extension of the output produced in response to
a.

Notice that the blocking reads of a Kahn-MacQueen process play an important role in
ensuring monotonicity.

Example 2.11: Consider an actor A with one input port and one output port that
produces on its output the sequence (0) if the input is the empty sequence, and
otherwise produces the output (1). This actor clearly defines a function, in that
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the output is fully defined by the input. However, this function is not monotonic.
Suppose that a =⊥, the empty sequence, and b = (0). Then av b, but A(a) = (0)
is not a prefix of A(b) = (1).

Notice that this actor cannot be implemented as a Kahn-MacQueen process. In
order to produce the output (0), the actor needs to know that that input is the empty
sequence. But the only operation it has available on the input port is to perform a
blocking read. If the input is indeed empty, then it will remain blocked forever, and
hence will not be able to produce the output (0).

As explained in Example 1.15 of Chapter 1, the poset (T ∗∗,v) is a complete partial order
(CPO). Moreover, by Proposition 1.3, the poset ((T ∗∗)n,v) is also a CPO, where v is
the pointwise prefix order. A function F : (T ∗∗)n→ (T ∗∗)n is continuous if for all chains
C ⊆ (T ∗∗)n,

F(
∨

C) =
∨

F̂(C) ,

where F̂ is the lifted version of F . By Proposition 1.5, every continuous function is
monotonic.

In practice, every Kahn-MacQueen process is not only monotonic, but also continuous.
Why? Intuitively, continuity means that a function does not “wait forever” before produc-
ing output. Suppose that the chain C = {s0,s1,s2, · · ·} represents a sequence of partially
constructed inputs to a Kahn-MacQueen process. Then

∨
C = s represents the eventual,

complete input. The set

F̂(C) = {F(s0),F(s1),F(s2), · · ·}

represents the partially constructed outputs, given partially constructed inputs. Then con-
tinuity requires that

∨
F̂(C) be equal to the eventually complete output F(s).

Example 2.12: Suppose that A is an actor with one input port and one output port.
Suppose that its input is eventually going to be the infinite sequence

s = (0,1,2,3, · · ·)

E. A. Lee, Concurrent Models of Computation 39

http://Ptolemy.org


2.2. SEMANTICS OF PROCESS NETWORKS

Suppose that C = {s0,s1,s2, · · ·}, where

s0 = (0)

s1 = (0,1)

s2 = (0,1,2)

· · ·

C is clearly a chain. Moreover, ∨
C = s.

Suppose further that A is the function

A(s) =
{
⊥ if s is finite
(1) otherwise

This function is clearly monotonic, but it is not continuous. In particular, when the
function is applied to each partially constructed input in C, the output is ⊥. Hence,

F̂(C) = {F(s0),F(s1),F(s2), · · ·}= {⊥}.

Hence, ∨
F̂(C) =⊥ .

However,
F(

∨
C) = F(s) = (1).

These two are not equal. Intuitively, the function F has to wait forever to determine
whether the input is finite or not.

Notice that this function cannot be implemented by a Kahn-MacQueen process. We
might try to specify it as follows,

1 while(true) {
2 read(p1);
3 }
4 write(p2, 1);

That is, after reading an infinite number of inputs, we output a 1. If the input
is finite, this process will block forever on one of the reads. But in practice, it
will never reach the point of producing the 1, so this procedure does not really
implement the function.
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The Kleene fixed-point theorem (Proposition 1.7) then provides what we need. It states
that if F is a continuous function, then it has a unique least fixed point. Moreover, it
asserts that the least fixed point is the result of applying the function first to ⊥, and then
recursively to the result, etc., as follows:

s0 = ⊥
s1 = F(⊥)
s2 = F(F(⊥))
· · ·
sm = Fm(⊥)
· · ·

Thus, instead of solving a system of equations, as we did in Example 2.6, we can construct
the solution by just repeatedly applying the function F .

Example 2.13: Consider the same process network of Example 2.6. Recall that
the function F : (T ∗∗)3→ (T ∗∗)3 is given by

F(s) = ((b1 + c1,b2 + c2, · · ·),(0,a1,a2, · · ·),(1,1, · · ·)),

where the input is

s = ((a1,a2, · · ·),(b1,b2, · · ·),(c1,c2, · · ·)),

This function is easily shown to be continuous.

In this case, the bottom of the CPO is the three-tuple of empty sequences, so the
constructive procedure given by the Kleene fixed-point theorem proceeds as fol-
lows,

F((⊥,⊥,⊥)) = (⊥,(0),(1,1, · · ·))
F(F((⊥,⊥,⊥))) = ((1),(0,1),(1,1, · · ·))

F(F(F((⊥,⊥,⊥)))) = ((1,2),(0,1,2),(1,1, · · ·))
· · ·

This eventually converges to the same sequences found in Example 2.3.
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Notice that this procedure immediately creates a practical problem. The very first invoca-
tion of the function F yields as the third element of the output tuple an infinite sequence.
If we were to literally implement this procedure in a computer, then we would never get
past the first step, and we would exhaust available memory in any attempt to generate this
infinite sequence. The following section will consider practical execution policies.

Example 2.14: For the variant given by Example 2.4, which has a local deadlock,
the Kleene procedure immediately converges to the final answer,

F((⊥,⊥,⊥)) = (⊥,⊥,(1,1, · · ·)).

Example 2.15: For the process network in Figure 2.4, recall that the least fixed
point is s =⊥. The Kleene procedure immediately converges to this solution.

Example 2.16: Recall that the unit delay actor of Example 2.1 is a function of
form

A : N∗∗→ N∗∗

where for all b ∈ N∗∗,
A(b) = (0).b.

This function is continuous. Suppose we put it in a feedback loop, as we did with
the identify function in Figure 2.4. Then the Kleene procedure would yield

A(⊥) = (0)

A(A(⊥)) = (0,0)

A(A(A(⊥))) = (0,0,0)

· · ·

The least upper bound of this chain is the infinite sequence (0,0,0, · · ·).
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2.3 Execution of Process Networks

The least fixed point of a process network often includes infinite sequences. In practice, no
computer program can construct an infinite sequence. Our interpretation is that process
networks whose semantics include infinite sequences do not terminate. They are able
to continue to execute for as long as we would like them to execute. But at any point
during the execution, the sequences that they have produced are mere approximations
of the semantics of the network. When there are multiple infinite sequences defined by
a network, then there are many possible approximations. In this section, we consider
execution policies that provide useful approximations.

First, we define a correct execution of a process network to be one which, at any time
during execution, has constructed a prefix of each signal defined by the semantics of
the network. These prefixes will always be finite, even if the semantics of the network
includes infinite sequences.

Second, we define a maximal execution to be a correct execution that either does not
halt, or if it halts, has produced exactly every sequence defined by the network. What
we mean by “halt” in this case is that the execution no longer appends tokens to signals.
A maximal execution will only halt if the semantics of the network defines only finite
signals. An infinite execution is an execution that does not halt. All infinite executions
are maximal.

Third, we define a fair execution to be one that ensures that if any process is able to
produce an output token or read an input token, then it will eventually be allowed to do
so.

The following proposition, known as the Kahn principle, stated by Kahn and MacQueen
(1977) and later proved by Faustini (1982) and Stark (1995), provides key guidance for
execution policies.

Proposition 2.1. Any two fair and maximal executions of a process network produce the
same sequences of tokens, matching the least fixed point in the Kahn semantics.

The Kahn principle seems to suggest that practical executions of process networks should
always be fair and maximal. This is not in fact obvious. The following example shows
that fair and maximal executions are not always desirable.
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Figure 2.5: Example of a process network where unfair execution is desirable
because fair execution will exhaust available memory.

Example 2.17: Consider the process network in Figure 2.5. Suppose that actors
A and B produce infinite sequences, and C is able to consume an infinite sequence.
Suppose that the actor labeled true produces an output of type T= {true, false} that
is a constant infinite sequence

s3 = {true, true, true, · · ·}.
The remaining actor in the center, which has no label, is a Select actor. It ac-
cepts a sequence of control tokens on the bottom port, and uses these to merge the
sequences at its other two input ports. The merged sequence is the output. Specif-
ically, the Select actor has three input ports, T, F, and control, where the control
port is shown on the bottom of its icon. It has a single output port p. The actor is
defined by the following Kahn-MacQueen procedure,

1 while{true} {
2 c = read(control);
3 if (c) {
4 t = read(T);
5 } else {
6 t = read(F);
7 }
8 write(p, t);
9 }

Any fair execution of this process network has to permit B to produce its infinite
sequence of tokens, even though those tokens will never be consumed. This will
require unbounded memory to store unconsumed tokens.
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There is, however, a maximal execution of this network that runs in bounded mem-
ory. Such an execution would only permit actor B to produce a finite number of
tokens. Such an execution is maximal and correct, but not fair.

A bounded execution is an execution of a process network where there is a natural num-
ber M ∈ N such that at all times during the execution there are no more than M uncon-
sumed tokens. A fair and maximal execution of the network in Figure 2.5 is not bounded.

An effective process network is one where every token that can be produced by an actor
will eventually be read by the destination actor(s) (Geilen and Basten, 2003). The process
network in the previous example is not effective. For networks that are not effective, we do
not necessarily want fair and maximal execution, because such execution will eventually
fail due to running out of memory.

Even for networks that are effective, executing them with bounded memory is not always
easy. Suppose that we modify the network in Figure 2.5 so that the actor labeled true
produces a random sequence of true and false values. How can we ensure that A and B so
not overflow available memory on their outputs? Even for much simpler networks there
is risk of memory overflow.

Example 2.18: Suppose that in the network in Figure 2.3(a), actor A produces
tokens faster than actor B. Then eventually, we will run out of memory.

We seek, therefore, an execution policy that will deliver maximal executions for all pro-
cess networks, bounded executions for networks for which bounded execution is possible,
and fair executions for effective process networks. We call these effective executions.
Effective executions are not required to be fair for networks that are not effective. They
are not required to be bounded for networks that have no bounded execution. They are
required to be maximal for all networks.

There is a long history of failed attempts to achieve this goal. One popular proposed
technique is demand-driven execution, related to the lazy evaluators of Lisp (Friedman
and Wise, 1976; Morris and Henderson, 1976), where no token is produced unless there
is a downstream actor that is ready to consume it. Unfortunately, this does not solve the
problem, as illustrated by the following example.
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Figure 2.6: Example of a process network where demand-driven execution fails
to deliver a bounded execution.

Example 2.19: A variant of Figure 2.5 is shown in Figure 2.6. The only difference
is that is a new actor D has been added that consumes tokens from actor B. Each
token produced by B needs to be routed to both the Select actor and to D. This
can be accomplished by a fork process, indicated in the figure by a small black
diamond. The fork can be implemented, for example, by the Kahn-MacQueen
procedure

1 while (true) {
2 t = read(in);
3 write(out1, t);
4 write(out2, t);
5 }

Thus, there will be two buffers, one storing tokens destined for the Select, and one
storing tokens destined for D.

Assume that D is able to read an infinite input sequence. As a consequence, it will
demand tokens. In demand-driven execution, the fork will respond by demanding
inputs. Once the fork receives an input, the above Kahn-MacQueen implementation
will send the token to both outputs, and hence the buffer at the F input of the Select
will eventually overflow. If the fork is implemented differently so that it only sends
outputs in response to demands, then it will be obligated to store the token locally
in case the token is later demanded. This too will overflow available memory.
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In the previous example, demand-driven execution can deliver bounded execution only
if we somehow regulate the demands issued by the two sink actors, C and D. But how
would we do that? Moreover, suppose that network contains cycles, or more interestingly,
a multiplicity of cycles. How would demands be generated?

Data-driven execution is the complement of demand-driven execution. Instead of sink
actors driving the execution (actors with no output ports), source actors drive the exe-
cution (actors with no input ports). An actor is permitted to execute only when it has
available input data, except source actors, which are always permitted to execute. This
obviously does not achieve the goal, since even a network as simple as that in Figure
2.3(a) cannot be assured of remaining bounded.

The problem of achieving effective executions is harder than it first appears. Fair exe-
cution, demand-driven execution, and data-driven execution all fail. It is not surprising
that the problem is hard, however. It turns out that whether a bounded execution exists is
undecidable, as is whether an infinite execution exists. We defend this claim in the next
subsection. After that (Section 2.3.2), we show how to solve the undecidable problem by
giving a policy that delivers effective execution.

2.3.1 Turing Completeness of Process Networks

(FIXME: Fill in this section)

2.3.2 Effective Execution

A partial solution to the problem of delivering effective execution was given by Parks
(1995). Parks’ solution delivers bounded and maximal execution for every process net-
work that has a bounded execution. But it does not guarantee a fair execution.

Parks’ algorithm is simple. An execution starts with bounded buffers on all connections
between actors. It does not matter what the bound is. When a process attempts to write
to a buffer that is full, the write blocks. That is, the process stalls, waiting for room
to become available. Now, one of three things can happen. First, the network might
execute forever, continuing to produce and consume tokens, even though some processes
are blocked on a write. This achieves an infinite (hence maximal) bounded execution.
Second, the network might deadlock where all processes have either terminated or are
blocked on a read. In this case, the process network specified a finite execution, and the
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finite execution has been completed. The execution is again maximal and bounded. Third,
the network might deadlock where at least one process is blocked on a write. In this third
case, Parks’ strategy finds the smallest buffer on which a process is write blocked and
increases its capacity so as to unblock the write-blocked process. Execution continues
until again one these three scenarios occurs.

For many process networks, Parks’ strategy achieves an effective execution. But not for
all, as illustrated by the following example.

Example 2.20: Consider the process network in Figure 2.7. Suppose that all four
processes can produce and consume infinite signals. Moreover, suppose that C is
defined by the following Kahn-MacQueen procedure,

1 while (true) {
2 t = read(in);
3 write(out1, t);
4 write(out1, t);
5 write(out2, t);
6 }

Suppose further that D is defined by the following Kahn-MacQueen procedure,

1 write{out, 0);
2 while (true) {

Figure 2.7: Example of a process network where Parks’ algorithm does not yield
an effective execution.

48 E. A. Lee, Concurrent Models of Computation

http://Ptolemy.org


2. PROCESS NETWORKS

3 t = read(in2);
4 t = read(in1);
5 t = read(in1);
6 write(out, t);
7 }

It is easy to see that the least fixed point yields the infinite signal s2 = (0,0,0, · · ·).
Now suppose that we execute this network using Parks’ algorithm, starting with
initial buffer sizes of 1. D successfully produces its first output, enabling C to
complete the read on line 2. C will then perform the write on line 3, but the write on
line 4 will block because the buffer capacity has been reached. As a consequence,
D will block on the read on line 3. A local deadlock occurs.

Under Parks’ algorithm, no corrective action is taken because actors A and B are
able to continue running indefinitely. As a consequence, this is not a fair execution.
To be fair, every actor that is able to produce outputs must be allowed to do so. C
is able to produce outputs, but we have blocked it artificially as part of our exe-
cution policy (for this reason, the state of the execution is called a local artificial
deadlock).

Geilen and Basten (2003) identified this flaw in Parks’ algorithm, and proposed an alter-
native execution strategy. Their strategy is similar to that of Parks in that execution starts
with arbitrarily bounded buffers. But while Parks’ algorithm looks only for a global ar-
tificial deadlock (all processes are blocked, at least one on a write), Geilen and Basten’s
strategy looks for local artificial deadlock.

Specifically, if at any time during the execution there is a sequence of actors (A1,A2, · · · ,An),
n≥ 1, where Ai is connected to Ai+1 and An is connected to A0, where all of these actors
are blocked, at least one on a write, then we have a local artificial deadlock. Note that
when we say “Ai is connected to Ai+1,” we mean that either Ai send tokens to Ai+1 or vice
versa. So (A1,A2, · · · ,An) is an (undirected) cycle of blocked actors. When an artificial
deadlock is detected, the Geilen and Basten strategy will increase the size of at least one
buffer on which a process in the cycle is write blocked.

Geilen and Basten (2003) prove that this strategy delivers an effective execution for effec-
tive process networks. But they make no guarantee about networks that are not effective.
In fact, for the network in Figure 2.5, the strategy will overflow memory. Specifically, ac-
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Figure 2.8: A process network for which it is difficult to determine appropriate buffer
sizes.

tor B alone forms an undirected cycle (trivially), so whenever it write blocks, the capacity
of its output buffer will be increased. Since the tokens it writes to the buffer are never
read, the buffer will grow without bound.

For all of the examples we have considered so far, it is relatively easy to determine whether
a bounded execution exists. This is not always the case, as illustrated by the following
example.

Example 2.21: Consider for example the network shown in Figure 2.8. The out-
put is an ordered sequence of integers of the form 2n3m5k, where n, m and k are
non-negative integers. These are known as the Hamming numbers, and this pro-
gram for computing them was studied by Dijkstra (1976) and Kahn and MacQueen
(1977).

To understand how this network works, we need to understand what each of the
actors does. The ones labeled ScaleN simply read an integer-valued input token,
multiply it by N, and send the product to the output port. They repeat this sequence
forever, as long as there are input tokens. The UnitDelay actors are parameterized
versions of the unit delay that we saw in Example 2.1. They first produce an output
token with value N, then repeat forever the following sequence: read the input token
and send it to the output. As before, the black diamonds are fork actors. They direct
a single token sequence to multiple destinations (over separate, unbounded buffers).
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The processes labeled OrderedMergeM are the only nontrivial processes in this
program. Given a sequence of numerically increasing tokens on each input port,
they produce a numerically increasing merge of the two input sequences on their
output ports (see Exercise 4 for a Kahn-MacQueen implementation of such an or-
dered merge). You can now understand how this program generates the Hamming
numbers. The loop at the upper left produces the sequence

(5,25,125, · · · ,5n, · · ·).

That sequence is merged into the the second loop, which as a result produces the
sequence

(3,5,9,15,25, · · · ,5n3m, · · · .
That sequence is merged into the final loop, which produces the Hamming numbers,
in numerically increasing order, without repetitions.

Although it is far from easy to see at a glance, it is possible to prove that any finite
bound on buffer sizes will cause the network to fail to produce all the Hamming
numbers. This network intrinsically requires unbounded buffers. It is effective, and
both Parks’ and Geilen and Basten’s strategies deliver an effective execution.

2.4 Convergence of Execution to the Semantics

The Kahn principle states that maximal and fair executions produce sequences that match
that the least fixed point. But what do we mean by “match?” Every execution is finite
at all times, and can only have produced a prefix of the least fixed point. Intuitively, we
would like such executions to converge in the limit to the least fixed point. But to make
this intuition precise, we have to define a notion of convergence for sequences.

We use the notion of a topology. Let X be any set. A collection τ of subsets of X is called
a topology if three conditions are satisfied:

1. X and /0 are members of τ.
2. The intersection of any two members of τ is in τ.
3. The union of any collection of members of τ is in τ.
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For any topology τ, the members of τ are called the open sets of the topology. See the
sidebar on page 54 for an explanation of how this relates to the usual notion of open sets
of real numbers. In our case, we are not concerned with real numbers, but rather with
sequences of tokens of arbitrary type.

There is an important but subtle distinction between conditions (2) and (3) above. A
“collection of members of τ” may be infinite. Thus, in a topology, the union of an infinite
number of open sets is an open set. But the intersection of an an infinite number of open
sets may not be an open set. The intersection of any finite number of open sets is required
to be an open set, but not of an infinite number of open sets.

Consider a set T and the set T ∗∗ of finite and infinite sequences of elements of T . Given
a finite sequence s ∈ T ∗∗, an open neighborhood Ns around s is the set

Ns = {s′ ∈ T ∗∗ | sv s′}.
Ns is the set of sequences with prefix s.

Let τ be the collection of all sets that are arbitrary unions of such open neighborhoods.
Then τ is a topology. This topology is a particular kind of Scott topology, named af-
ter Dana Scott (1932–present), a renowned computer scientist and mathematician. See
Exercise 9 for some properties of this topology.

Notice that an open neighborhood is defined by a finite prefix. Were we to allow an
infinite prefix, then a singleton set consisting of a single infinite sequence would be an
open neighborhood. So infinite prefixes are not allowed.

Note further that an arbitrary intersection of open sets is not necessarily an open set.
Consider any infinite chain C⊂ T ∗∗ containing only finite sequences. Each ci ∈C defines
an open neighborhood (the set of all sequences with ci as a prefix). The intersection of all
of these open neighborhoods can only contain sequences that have every ci ∈C as a prefix.
There is only one such sequence,

∨
C, so this intersection of open sets is a singleton set

containing exactly one infinite sequence. This singleton set is not an open set.

Using our Scott topology, we can now define a notion of convergence of a sequence of
sequences. Consider a sequence of sequences

S : N→ T ∗∗.

This sequence is said to converge to a sequence a ∈ T ∗∗ if for all open sets A containing
a, there exists an integer n ∈ N such that for all integers m > n, the following holds:

S(m) ∈ A.
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Intuitively, this means that for any finite prefix p v a, the sequences in S eventually all
have prefix p.

In summary, in the Scott topology, for a sequence of sequences to converge to an infi-
nite sequence, it is necessary for the sequences to grow without bound. They need to
eventually produce every finite prefix of the infinite sequence.

This notion of convergence creates an interesting conundrum. A convergent execution
of a process network is one that eventually produces every finite prefix of the least fixed
point. A maximal execution, by contrast, is only required to produce some prefix of the
least fixed point. A maximal execution does not necessarily converge to the least fixed-
point.

Example 2.22: For the example in Figure 2.5, a maximal execution is permitted
to avoid executing actor B. In particular, the output s3 of actor true is an infinite
sequence of boolean true tokens, so the output s2 of actor B is never needed and
will never be consumed by the Select. But if B is capable of producing an infinite
sequence, then the least fixed point solution for s2 is an infinite sequence. Any
execution that converges to this least fixed point solution will exhaust available
memory because tokens produced by B will not be consumed.

Maximal and fair executions, however, do converge. For effective process networks,
Geilen and Basten’s execution strategy, described in Section 2.3.2, will deliver an ef-
fective execution, and that effective execution will converge to the least fixed point. For
networks that are not effective, however, the strategy is less satisfactory because it may
exhaust available memory. For such networks, Parks’ algorithm may be preferable, even
though it does not converge to the least fixed point.

2.5 Stable Functions

(FIXME: Section on functions that are not sequential)
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2.6 Nondeterminism

(FIXME: nondeterminate merge and the Brock-Ackerman anomaly.)

2.7 Rendezvous

(FIXME: Rendezvous as PN with buffer size zero.)

Sidebar: Limit of a Sequence of Real Numbers

An open neighborhood around a in R is the set

Na,ε = {x ∈ R | a− ε < x < a+ ε}

for some positive real number ε. An open set A in the reals is a subset of R such that for
all a ∈ A, there is an open neighborhood around a that is a subset of A. The collection of
such open sets in the reals is called the standard topology for the reals. It is a topology
because it includes both R itself and /0, it includes the intersection of any two such open
sets, and it includes an arbitrary union of such open sets. Notice that it does not include
any arbitrary intersection of open sets. Consider for example the intersection of the sets

N0,ε, where ε = 1/n, n ∈ {1,2,3, · · ·}.

The intersection of these sets is the singleton set {0}, which is not an open set.
Consider a sequence of real numbers

s : N→ R.

This sequence is said to converge to a real number a if for all open sets A containing a
there exists an integer n ∈ N such that for all integers m > n the following holds:

s(m) ∈ A.

This notion of convergence captures the intuition that the sequence eventually gets arbi-
trarily close to a.
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2.8 Summary

(FIXME: Summary here)
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Exercises

1. Given a set A and the CPO (A∗∗,v), for each of the following functions, state
whether it is monotonic, continuous, both, or neither. Assume the domain and
codomain of every function is A∗∗. Assume the period operator represents concate-
nation of sequences.

(a) The unit delay function d given by ∀ s ∈ A∗∗, d(s) = (a).s where a ∈ A.

(b) The trailer function t given by, ∀ s ∈ A∗∗,

t(s) =
{

s.a if s is finite
s otherwise

where a ∈ A.

(c) The is finite function f given by, ∀ s ∈ A∗∗,

f (s) =
{

(a) if s is finite
(a′) otherwise

where a,a′ ∈ A, a 6= a′.

(d) An alternative is finite function f ′ given by, ∀ s ∈ A∗∗,

f (s) =
{

(a) if s is finite
(a,a) otherwise

where a ∈ A.

(e) Let m : (A∗∗)2→ A∗∗ be the fair alternating merge function, defined as fol-
lows. Given two infinite sequences s1 = (a0,a1, · · ·) and s2 = (b0,b1, · · ·) it
outputs the infinite sequence m(s1,s2) = (a0,b0,a1,b1, · · ·). That is, it alter-
nates the elements of the sequences. If either or both of the inputs is finite,
then it alternates their elements until the shorter of the two runs out of ele-
ments, and then it outputs the remaining values from the longer of the two.
For example, if s1 = (a0,a1, · · · ,an) is finite, but s2 is infinite, then it produces

m(s1,s2) = (a0,b0,a1,b1, · · · ,an,bn,bn+1,bn+2, · · ·) .

If s2 is also finite, but longer than s1, then the result will be similar to the
above, but finite, ending with the last value of s2
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(f) Let m : (A∗∗)2→ A∗∗ be the unfair merge function, defined as follows.

m(s1,s2) =

{
s1 if s1 is infinite
s1.s2 otherwise

2. Consider a function f : B∗∗ → B∗∗, where B = {0,1} is the set of binary digits.
Given an input sequence, this function outputs the same sequence, but with a 0
inserted at the start and between any two tokens. That is, if the input is

s = (b1,b2, · · · ,bn),

then the output will be

f (s) = (0,b1,0,b2, · · · ,0,bn).

If the input is infinite, then the pattern simply continues. Assume that f (⊥) = (0).
Consider the poset (B∗∗,v), where v is the prefix order.

(a) Is f monotonic in (B∗∗,v)? Continuous?
(b) Give a Kahn-MacQueen process implementation of the function f , or argue

that there is no such implementation.
(c) Consider a use of this function in the following process network:

Give the least fixed point solution s, or show that there is no least fixed point
solution s.

(d) Can the feedback network above execute forever with bounded memory? Ex-
plain.
Repeat (a) through (d) where instead of assuming that f (⊥)= (0), you assume
that f (⊥) =⊥.

3. Consider a function f : B∗∗→ B∗∗ given by

f (s) =
{

(0), if s =⊥ or (0)v s
(1), if (1)v s

for all s ∈ B∗∗, where B= {0,1} is the set of binary digits.
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(a) Is f monotonic? Continuous? Justify your answer.
(b) Consider a use of this function in the following process network:

Give the least fixed point solution s, or show that there is no least fixed point
solution s.

(c) Give a Kahn-MacQueen process implementation of the function f , or argue
that there is no such implementation.

4. Exercise 2.21 considers the process network in Figure 2.8, which includes an Or-
deredMerge actor. Give a Kahn-MacQueen procedure implementing the Ordered-
Merge. Assume two inputs named in1 and in2 and one output named out.

5. The LUB of a chain can be interpreted as a limit, but it is not always the limit that
one would expect intuitively. This problem explores this issue for the set T = {t, f}
and the CPO (A = T ∗∗,v), and offers an alternative way to construct limits.

(a) As a warm up, find the LUB of the following set, or show that it has no LUB:

{(t),(t, f ),(t, f , t),(t, f , t, f ), ...}.

(b) Show that the following set has no LUB:

{a1,a2,a3, ...}= {(t, f ),(t, t, f ),(t, t, t, f ), ...}.

(c) Given a set A, a metric is a function d : A×A→ R such that three properties
are satisfied for all a,b,c ∈ A:

i. d(a,b) = d(b,a),
ii. d(a,b) = 0 ⇐⇒ a = b and

iii. d(a,b)+d(b,c)≥ d(a,c).
With A = T ∗∗, we can define a metric d where for all a,b ∈ A,

d(a,b) = 1/n

where n is the index of the first position at which a and b differ, and is zero if
a = b. For example, d((t),( f )) = 1 and d((t),(t, f )) = 1/2. Show that d is a
metric.
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(d) For the set in part (b), ai is defined to be the sequence starting with i instances
of t followed by one f . Let

a = (t, t, t, ...)

(an infinite sequence of t). Show that ai converges to a as i→ ∞ in the sense
that for any real number ε > 0, there is an integer K such that for all i > K,

d(ai,a)< ε.

6. Suppose that a function f : A→ B where A and B are CPOs is such that for all
joinable sets C ⊆ A, f̂ (C) is joinable and∧

f̂ (C) = f (
∧

C).

By itself, this does not imply that f is continuous, which is why the definition of a
stable function in section ?? has to first assume that the function is continuous. To
show that, we only need to find a function f that satisfies these conditions but is not
continuous. Such a function is given by

f (a) =
{
⊥ if a is finite
a otherwise

(a) Show that this function is not continuous.

(b) Show that for all joinable sets C ⊆ A, f̂ (C) is joinable and∧
f̂ (C) = f (

∧
C).

7. Consider an actor (called followed by (FBY) in the literature) with two input ports,
first and rest, and one output port. Suppose that this actor first waits for an input
on first, and when this arrives, it produces it on the output. After this, it henceforth
waits for an input on rest and produces that on the output. However, while it is
waiting for an input on rest, it can accept any input on first; it discards such an
input. Show that this actor is sequential. Note, however, that this actor cannot be
implemented with blocking reads.

8. This problem studies a determinate PN actor with behavior similar in some ways to
the nondeterminate merge. Suppose D is a set of data values and f : (D∗∗)2→ D∗∗

is a function defined by
f (s1,s2) = (e,e, · · · ,e)︸ ︷︷ ︸

N times
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for all s1,s2 ∈D∗∗, for some e∈D, and where N = |s1|+ |s2|, the sum of the lengths
of the sequences s1 and s2. If either input sequence is infinite, then the length of the
output is infinite.

(a) Suppose this function is used in the following PN model:

where d ∈D∗∗ is a finite sequence of length 5 produced by the left actor. What
is the output of f ?

(b) Is this function monotonic? Continuous?
(c) Is this function sequential?

9. This problem studies properties of the Scott topology over T ∗∗.

(a) For a poset (X ,≤) and subset A⊆ X , an upper set ↑ A of A is defined to be

↑ A = {x ∈ X | a≤ x for some a ∈ A}.
That is, an upper set of A is the set of all upper bounds of elements of A.
Show that for the poset (T ∗∗,v), the open sets of the Scott topology are upper
sets.

(b) A Hausdorff space is a topology in which distinct points have disjoint neigh-
borhoods. Specifically, if X is a set and τ is a topology over X , then for any
two x1,x2 ∈ X where x1 6= x2, there are two open sets X1,X2 ∈ τ where x1 ∈ X1,
x2 ∈ X2, and X1∩X2 = /0. As a mnemonic, in a Hausdorff space, two distinct
points can be “housed off” by open sets.
Show that the Scott topology over T ∗∗ is not a Hausdorff space. This property
of the Scott topology accounts for much of the difficulty in reasoning about
this topology, because the standard topology over the reals is Hausdorff.

(c) A Kolmogorov space is a topology in which given two distinct points, at least
one of them has an open neighborhood not containing the other. Specifically,
if X is a set and τ is a topology over X , then for any two x1,x2 ∈ X where
x1 6= x2, there is an open set A ⊂ X that contains only one of the two points
x1 and x2. This condition intuitively means that the points are topologically
distinguishable.
Show that the Scott topology over T ∗∗ is a Kolmogorov space.
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