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Abstract

This paper addresses the question of whether message passing provides an ad-
equate programming model to address current needs in programming multicore
processors. It studies the pitfalls of message passing as a concurrency model, and
argues that programmers need more structure than what is provided by today’s
popular message passing libraries. Collective operations and design patterns can
help a great deal, but as the use of concurrency in programming increases, applica-
tion programmers will have increasing difficulty identifying and combining these
into complex operations. Moreover, some challenges, such as ensuring data de-
terminacy and managing deadlock and buffer memory, are extremely subtle, and
require considerable expertise to implement correctly. This paper illustrates this
point by giving a few problematic examples. I argue that application programmers
should not have to deal with many of these challenges, but with today’s message
passing libraries, they have no choice. The solution is to provide infrastructure-
level support implementing more disciplined concurrent models of computation
(MoCs). I show how process networks and dataflow models can provide excellent
implementations of the requisite mechanisms, thus enabling application program-
mers to focus on the functionality of the application rather than on avoiding the
pitfalls of concurrent programming.

1 Introduction
Today, a great deal of attention is going into concurrent programming models because
of the rise of multicore machines. The question I address in this paper is whether mes-
sage passing libraries, as currently designed, provide an adequate programming model
to address this need. The conclusion is that although these libraries offer improvements
over some of the alternatives, they have a long way to go to really solve the problems.
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A program is said to be concurrent if different parts of the program conceptu-
ally execute simultaneously. A program is said to be parallel if different parts of the
program physically execute simultaneously on distinct hardware (such as on multicore
machines or on server farms). Non-concurrent programs can typically be executed
in parallel (witness multi-issue instruction streams), and concurrent programs can be
executed without parallelism. Thus, the two concepts, though related, are distinct.

Programs are typically executed in parallel to improve performance. Hence, one
may develop a concurrent program to facilitate exploiting parallel hardware. However,
there are other reasons for developing concurrent programs. One reason is I/O. Portions
of a program may stall to wait for inputs from the environment, for example, or to wait
for the right time to produce some output. Another reason is to create the illusion
of parallel hardware. Time-sharing operating systems, for example, were originally
created to give each user the illusion of having their own machine. Of course, these two
reasons are intertwined, since interaction with such users is about I/O and its timing.

Techniques for developing concurrent programs divide into two families, message
passing and shared memory [29]. The term “shared memory” is used in the literature
to refer to both a hardware architecture technique and a programming model. In this
paper, I am concerned only with the programming model, so in an attempt to avoid
confusion, I will use the term “threads” to refer to the programming model. Threads
are sequential procedures that share variables and data structures. They can be imple-
mented on hardware that does not physically share memory (and conversely, message
passing can be implemented on hardware that does physically share memory). Java,
for example, includes threads in its programming model, and can be implemented on a
variety of hardware.

Many programmers are familiar with threads and appreciate the ease with which
they exploit parallel underlying hardware. It is possible, but not easy, to construct re-
liable and correct multithreaded programs. See for example Lea [30] for an excellent
“how to” guide to using threads in Java. Recently, Java acquired an extensive library
of concurrent data structures and mechanisms based on threads [31]. Libraries like
OpenMP [10] provide support for commonly used multithreaded patterns such as par-
allel loop constructs.

Nonetheless, threads have a number of difficulties that make it questionable to ex-
pose them to programmers as a way to build concurrent programs [42, 46, 34, 23].
Nontrivial multithreaded programs are astonishingly difficult to understand, and can
yield unexpected behaviors, nondeterminate behaviors, deadlock, and livelock. Prob-
lems can lurk in multithreaded programs through years of even intensive use of the
programs. These problems do not yield easily to regression testing techniques because
the number of interleavings that a thread scheduler can deliver is vast. They also do
not yield easily to static analysis techniques because of decidability problems and other
more pragmatic concerns.

In message passing, rather than sharing variables and data structures, sequential
procedures invoke library mechanisms for sending messages to one another. Two pop-
ular such libraries are MPI [22, 40] and PVM [17].

There has been considerable debate about the merits of message passing schemes
(or their cousins, event-based mechanisms) vs. threads. Some argue that message
passing is a bad idea [5]. Some argue the contrary [42, 48, 50]. Gorlatch [20] argues
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against the direct use of send-receive primitives in message-passing libraries, advocat-
ing instead the use of collective operations (like MPI’s broadcast, gather, and scatter).
He draws an analogy between send-receive and goto, invoking Dijkstra’s famous in-
dictment of goto [12]. Collective operations, he argues, are analogous to structured
programming. These points are valid, as far as they go.

The collective operations of MPI can be viewed as infrastructure supporting de-
sign patterns. There are many more design patterns of interest, however, than those
supported directly by MPI [39]. Hence, I would even go further, arguing that no fixed
set of collective operations can be adequate. The examples I use below do not in fact
fit the patterns of any of the MPI collective operations. What is needed is a notion of
higher-order components [37], where patterns of send-receive structures are codified as
combinators that can be reused in various scenarios. These higher-order components
can be coded in executable pattern languages such as Ptalon [9]. However, even this
does not solve many of the problems I identify in this paper. It provides only part of
the solution.

Agha [2] makes a similar indictment against send-receive primitives, also drawing
analogies with the infamous goto. His conclusions are more similar to mine, however,
in that he advocates the use of “interaction patterns,” which relate closely to what I
call concurrent models of computation. He advocates a particular concurrent MoC that
he calls “actors.” In my research group, we have been using the term “actor-oriented
design” for a broader class of message-passing concurrent MoCs than Agha’s, but a
class where many of the core principles are the same.

Some researchers equate message passing and event-based schemes (see for exam-
ple [5]). The term “events” is generally used to refer to the kind of processing that
goes on in GUI design. As defined by Ousterhout [42], event-driven programming has
one execution stream (no “CPU concurrency”), registered callbacks, an event loop that
waits for events and invokes handlers, and no preemption of handlers. However, mes-
sage passing libraries like MPI are not (to my knowledge) used in this way. They are
used in highly parallel settings for scientific computing. So while we could consider
events a special case of message passing, we should consider them to be a rather par-
ticular special case, best suited for GUI design. In this sense, I agree with Adya et al.,
who say “the popular term ‘event-driven’ conflates several distinct concepts.” [1].

In this paper, I consider a broad class of message-passing systems, where the key
operating principle is concurrency without shared memory. For concurrent processes to
communicate, they send messages rather than directly accessing shared data structures.
GUI-style events have this character, but also much more specific structure (callbacks,
handlers, no preemption) that are not intrinsic to message passing. My broad interpre-
tation here is consistent with that of Lauer and Needham [29].

The debate between threads and message passing is quite old. Lauer and Needham
in 1978 showed that “message-oriented systems” and “procedure-oriented systems” are
duals [29]. “The principal conclusion is that neither model is inherently preferable, and
the main consideration for choosing between them is the nature of the machine archi-
tecture upon which the system is being built, not the application which the system will
ultimately support.” This conclusion is less valid today, however, because machine ar-
chitectures have evolved to support both quite efficiently. The duality of these models,
however, remains important.
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Although message passing may provide a better programmer’s model than threads,
it is far from perfect. I will show that message passing can be improved considerably
using known techniques, by providing programmers with more structure (and more
constraints) than what is found today in message-passing libraries. This can maintain
the flavor of message passing libraries, and can be used like libraries with legacy pro-
gramming languages. This contrasts with other solutions that require programmers to
adopt new languages that support concurrency, such as Erlang.

Message passing suffers from three key difficulties that I will elaborate on. First, it
lacks sufficient discipline to yield nontrivial programs that are determinate and/or easily
understood. Programmers will be surprised by unexpected behavior. Of course, there
are trivially simple applications of message passing that are easily understood, and
more complicated patterns that have become well understood. But with the drive for
ever greater concurrency in order to exploit multicore machines, fewer programmers
will constrain themselves to these simple forms and well-understood patterns.

Second, message passing programs are difficult to make modular. The code for
each process must be written with explicit knowledge of which processes will provide
it with input data and which processes will use its output data, and with explicit knowl-
edge of how those data that are provided are used (for example, the order in which
messages are read, and whether the read is blocking). The code for a process cannot
usually be reused in another scenario without rewriting. Some libraries, notably MPI
with its notion of groups, have improved the modularity of such programs, but I will
show that the improvements fall far short of truly modular design.

Third, message passing interacts in very subtle ways with scheduling, and message
passing libraries give little or no control over scheduling. Programmers have to be-
come quite expert in the subtleties, and then are often forced to play operating-system-
specific tricks to avoid buffer overflows and deadlock.

These difficulties can all be overcome by using more disciplined programming
models. By this, I mean that programs should be built to conform with a concurrent
model of computation (MoC) that emphasizes understandable and predictable behavior
(over flexibility). The problem with overly flexible models is that every programmer is
forced to discover and circumvent the pitfalls, some of which can be extremely subtle.
Consider for example the question of whether a program requires fairness, and if it
does, how to achieve that fairness. Consider also determinacy. Some programs require
nondeterminate behavior to achieve their objectives, but programmers do not want to
be surprised by nondeterminism. Unfortunately, it is common for programmers to use
intrinsically nondeterminate means to accomplish determinate ends. But is the result
really determinate? How can you know? Testing will not answer that question. Con-
sider also boundedness. How can a programmer of a message-passing system be sure
that buffers will not overflow? Ensuring this by using a synchronous send is draconian,
changes the semantics of programs, and often makes it very difficult to avoid deadlock.
Requiring the programmer to set fixed buffer sizes is also asking quite a bit, since good
choices (or even correct choices) may require holistic analysis of the application.

A well-chosen MoC (and its implementation) will provide programmers with easily
understood and used mechanisms that will do the job most of the time. Let’s give the
programmers these mechanisms rather than giving them the tools to re-invent them.
Unfortunately, what we mostly do today is the latter.
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Figure 1: A simple five-process program, where messages from two SOURCE pro-
cesses are merged based on messages from the CONTROL process and displayed by
the DISPLAY process.

2 Motivating Example
In this section, I consider first a simple scenario that we can use to illustrate some
of the weaknesses of design approaches based on message passing libraries. In this
example, we use the popular library MPI [40], but similar arguments apply as well
to other libraries that programmers use. I begin with a simple, small-scale version
of the example, developing an MPI implementation and analyzing its effectiveness. I
then show that the example represents a pattern with very real, practical applications,
that these applications immediately scale up to large amounts of concurrency, and that
the MPI solution that I constructed is not satisfactory. In subsequent sections, I will
show that a satisfactory solution requires going beyond the built-in capabilities of MPI,
and argue that in fact it requires mechanisms that would not naturally be included in
a message passing library, treading instead on the turf of the operating system. The
principles such a library appear to be at odds with finding a satisfactory solution.

2.1 The Simple Version
The scenario is illustrated graphically in figure 1. There are five processes, four of
them depicted by boxes and one (SELECT) depicted by a suggestive icon. The two
SOURCE processes send messages to the SELECT process using MPI statements like
this one:

MPI_Send(&value, count, MPI_INT, SELECT, ...);

This statement sends an array of count elements in the variable value, each of which
has type MPI INT, to a process whose rank (ID) is SELECT. The remaining arguments
are not important for our purposes here.

Using a similar MPI Send statement, the CONTROL process sends a sequence of
boolean values (or, in C, zero and non-zero), that tell the SELECT process whether it
should receive data from SOURCE1 or SOURCE2. The SELECT process looks like
this:
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while (1) {
MPI_Recv(&control, 1, MPI_INT, CONTROL, ...);
if (control) {

MPI_Recv(&selected, 1, MPI_INT, SOURCE1, ...);
} else {

MPI_Recv(&selected, 1, MPI_INT, SOURCE2, ...);
}
MPI_Send(&selected, 1, MPI_INT, DISPLAY, ...);

}

The DISPLAY process reads data sent by SELECT using a similar MPI Recv state-
ment.

Assume this program is to process a large amount of data. That is, the SOURCE
and CONTROL processes provide an unbounded number of messages. It is not hard to
imagine applications that fit this pattern. The pattern is easily elaborated, for example
by replacing the DISPLAY process with a process that does data analysis. The pattern
is simple: multiple sources of data are merged in some way for analysis.

There are a number of major problems with this program, as described. First, the
MPI standard [40] does not give a definitive semantics to the MPI Send procedure. The
procedure is described as a “blocking send,” which means simply that it does not return
until the memory storing the value to be sent can be safely overwritten. In the above
MPI Send statement, that is the memory pointed to by value. The MPI standard
allows implementations to either copy the data into a “system buffer” for later delivery
to the receiver, or to rendezvous with the receiving process and return only after the
receiver has begun receiving the data.

There are enormous practical and semantic differences between these two choices.
Suppose that an MPI implementation uses a system buffer. Then how can we keep that
system buffer from overflowing? In practice, if the two SOURCE processes and the
CONTROL process send unbounded streams, the system buffer will rapidly overflow
and the program will fail when it runs out of memory. Explicitly allocating buffers us-
ing MPI Buffer attach doesn’t help because, first, MPI does not limit the buffer-
ing to the specified buffers, and second, the result is still an error when the buffers
overflow. Yet it is easy to see by inspection that this program can be run with bounded
buffers. We need somehow to exercise control over the process scheduling.

One way to exercise such control is to force MPI to use a rendezvous style of
communication by using MPI Ssend instead of MPI Send. MPI Ssend does not
return until the receiving process has at least begun to receive the message (it has
reached a matching MPI Recv statement). However, this is semantically very different
from the asynchronous message send. In MPI, we are forced to modify the process code
based on how the outputs from the process are being used. This is poor programming
practice. We cannot re-use the same process code for the SOURCE components in
another setting where rendezvous is not desired. The resulting code is not modular.1

1Interestingly, one of the design goals of MPI was modularity, and it has been argued to be more modular
than PVM [21]. MPI includes the notion of a process group, and sources and destinations are given as a
rank within a group, rather than an absolute ID. This provides a partial form of modularity, in that groups
of processes can be designed together and reused. In fact, this mechanism can help quite a bit when scaling
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Figure 2: A variant of the program in figure 1 where the CONTROL process analyzes
the data from the SOURCE processes before deciding how to merge them.

To underscore this point, consider the variant shown in figure 2. This figure has
added one more visual notation, a black diamond, which means simply that the mes-
sages from the SOURCE processes should now go to both the SELECT and CON-
TROL processes. One way to accomplish this in MPI is to modify both SOURCE
processes to issue two MPI Send statements instead of one, as follows,

MPI_Send(&value, count, MPI_INT, SELECT, ...);
MPI_Send(&value, count, MPI_INT, CONTROL, ...);

This approach is unfortunate, of course, because the code for the SOURCE processes
is being modified based on how the messages are used, which is not modular. An
alternative would be to create two additional processes whose task it is to route copies
of the messages to both destinations, but this will result in considerable overhead.

The CONTROL process might be written as shown in figure 3. Here, the process
first reads once from each input channel. Depending on the values read from the in-
put, it chooses to send a true or a false control message to the SELECT process (the
someCondition() procedure makes the choice). This instructs the SELECT pro-
cess to forward one of the two data values. Once the message is sent to the SELECT
process, it then reads from whichever input stream it instructed the SELECT to forward
data from. Thus, each time through the loop, it compares the two data values available
to the SELECT process, chooses one, an instructs the SELECT to forward that one.

Note that as written now, if synchronous message passing is used (either because
the MPI implementation realizes MPI Send synchronously or because we use MPI Ssend
instead of MPI Send in the code above), then the system will deadlock immediately.
The two SOURCE processes will attempt to rendezvous with the SELECT, which is
attempting to rendezvous with CONTROL, which is attempting to rendezvous with the
SOURCE processes.

We can fix this by reversing the order of the two sends in the SOURCE processes,

up programs, as for example in moving from figure 2 to figure 4, discussed below. But within a group, each
process must still specify in its source code which processes it receives from and which processes it sends to.
The fact that this is specified in the source code for the process is what makes this non-modular. Moreover,
changing any communication across groups also requires modifying source code in the process definitions.
This is a rather weak form of modularity.
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MPI_Recv(&data1, 1, MPI_INT, SOURCE1, ...);
MPI_Recv(&data2, 1, MPI_INT, SOURCE2, ...);
while (1) {

if (someCondition(data1, data2)) {
MPI_Send(&trueValue, 1, MPI_INT, SELECT, ...);
MPI_Recv(&data1, 1, MPI_INT, SOURCE1, ...);

} else {
MPI_Send(&falseValue, 1, MPI_INT, SELECT, ...);
MPI_Recv(&data2, 1, MPI_INT, SOURCE2, ...);

}
}

Figure 3: The CONTROL process definition for figure 2.

MPI_Send(&value, count, MPI_INT, CONTROL, ...);
MPI_Send(&value, count, MPI_INT, SELECT, ...);

Again, we need to modify the process code depending on how it is used. Worse, the
modification is very subtle and brittle. Any small change in the usage pattern, and the
program will again fail with a deadlock. Reasoning about the cause of the deadlock
quickly gets difficult.

No such deadlock would occur if asynchronous message passing were used, which
is probably what we really want. But without some way to control process scheduling,
we cannot prevent buffer overflow. And even if we were given a way to control process
scheduling, what policy should we follow? Fair? Data-driven? Demand-driven? I will
show that all three fail, leaving the programmer with quite a conundrum. Yet policies
that work well exist. We should not require programmers to reinvent them for every
program.

This example can, of course, be made to work. But the programmer is suddenly
forced to do some rather sophisticated reasoning about the concurrency and memory
management properties of the system. Yet this is a rather simple application. The result
is code that is highly non-modular, where every process has to be customized for the
particular way its input messages are provided and its output messages are used.

2.2 Discussion of the Example
Consider a practical problem. Suppose that we have a record of time-stamped stock
or commodity transactions in markets around the world, sorted by time stamp. These
would certainly be large data files. Suppose further that we wish to merge these in
time-stamp order in order to perform analysis of global dynamics of the markets. If
we had only two such files, from two markets, then the program in figure 2 would do
the job. The CONTROL process in figure 3 will work if the someCondition()
procedure returned true if the time stamp of data1 is less than the time stamp of
data2.
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Figure 4: A variant of the program in figure 2 that merges 8 sources rather than two.

There are more than two markets in the world, however. We can easily scale up
this application using a tree structure, as suggested in figure 4, which assumes eight
markets. A full-scale application, of course, would be much larger.

If we choose the solution of using a synchronous send, then we will have effectively
sacrificed most of the available concurrency in the model. This would not yield good
performance on a multicore machine or server farm.

Von Behren, Condit, and Brewer argue in [5] that message-passing, which they
equate with event-based programming, is a bad idea for high-concurrency servers.
They argue instead for threads. This application seems to fit the high-concurrency
server class, but it also seems to fit what they describe as “dynamic fan-in” patterns.
Such patterns, they say, are the only ones they considered that are “less graceful with
threads [than with message passing].” Thus, even advocates of threads over message
passing would seem to agree that this example is well-suited to message passing. Yet
message passing, at least as realized in MPI, does not handle it well.

3 Concurrent Models of Computation
A message passing library like MPI realizes a concurrent model of computation. The
question is whether it is the right MoC. I will argue that it is not. We need more
structure to grow complex programs in a concurrent and parallel world.

Concurrent MoCs that are more constrained can result in programs that are more
easily understood. Consider an old, but rather elegant, example: Unix pipes (and their
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extension, named pipes). Unix pipes provide a very simple mechanism for concurrently
executing interacting programs. The mechanism couples memory management and
process scheduling to yield provably bounded buffer memory and determinate com-
position. Given the same input data, every execution of programs communicating via
pipes yields the same data results.

But Unix pipes are too constraining. The example in figure 1 cannot be realized
with pipes alone because a process has only one standard input. A programmer can step
down a level of abstraction and resort to sockets, but this, in effect, is just choosing to
use a (rather old) message passing library. Sockets do not integrate process scheduling
like pipes, and the programmer will face all the same problems we illustrated with MPI
in the last section.

The question becomes simply: can we achieve the conceptual simplicity of pipes
with the expressiveness of message passing? I claim that the answer is yes, and that
in fact there are several well-understood mechanisms that could be provided to pro-
grammers. Each of them can be realized with message passing libraries, in principle,
but doing so correctly would require a great deal of sophistication from programmers.
More importantly, it is extremely inefficient to require programmers to reinvent these
techniques every time they write a program. Few of them will get it right. Let’s codify
what we know and provide suitable programming frameworks.

In this section, I will describe a few disciplined concurrent MoCs, namely Kahn
process networks (KPN), extended process networks (EPN), and dataflow models (specif-
ically, synchronous dataflow or SDF). These vary in the expressiveness, determinacy,
and understandability, but each provides much more structure than what is found in
message-passing libraries. I will illustrate some of the (considerable) subtleties in im-
plementing these well, in an effort to convince the reader definitively that we cannot
continue to demand that programmers reinvent these techniques each time they write
a program. There are several more concurrent MoCs that I will not discuss in this pa-
per, including rendezvous-based models (CSP [25], Reo [3]), Synchronous/Reactive
(SR) [6], Discrete Events (DE) [32], and time-driven models (e.g. Giotto [24]). These
are interesting and potentially very useful, but the point of this paper is not to catalog
the available disciplined concurrent MoCs, but rather to convince the reader that we
need them.

3.1 Kahn Process Networks
Concurrent processes that communicate via streams of messages have been around for
some time. Unix pipes, mentioned above, are a particularly constrained form of this
pattern. A more general form with many of the same attractive properties is known as
Kahn Process Networks (KPN) [26, 27, 37]. KPN provides an elegant solution to the
problems considered above, and to many others. Moreover, KPN can be generalized to
support nondeterminism in a disciplined way (as discussed below), and be specialized
to yield to extensive static analysis and optimization (also discussed below).

In our realization of KPN in Ptolemy II [14], there is a level of indirection between
the process code and the message passing infrastructure. In particular, the SOURCE
processes of figure 1 are written using statements like this:
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output.send(data);

where output is an output port. The notion of an output port permits us to write
process code that makes no reference to the processes that will receive its messages,
nor even to how many processes will receive its messages. The connections between
processes are declared separately, so the code is much more modular. A similar level
of indirection is used in nesC to improve modularity [15]. A process definition can
be easily reused in multiple contexts. The code does not change based on how many
recipients there are for the message, and it makes no reference to buffer sizes. Yet
a correct implementation of KPN can guarantee that every process composition will
execute with bounded buffers if there exists a bounded buffer execution.

Processes that receive messages have statements like

data = input.get();

where input is an input port. Again, there is no direct reference to the source of
the messages. Following Kahn-MacQueen semantics [27], this call blocks until the
required input data is available.

Using ports with get() and send() methods provides for much more modular pro-
gramming than direct MPI calls. As a result, process definitions can be effectively
reused in different scenarios. In fact, a current usage of KPN is to construct scientific
workflows [38], where programs are constructed graphically as in figure 1 from mostly
predefined components in a library. Each component defines a reusable process (these
processes do data analysis, for example, or more interestingly, wrap database, grid, or
web services).

The reader may object that this extra modularity must come at the cost of perfor-
mance. Parks compares the performance of MPI with a Java implementation of KPN,
and concludes that the overhead is modest with primitive data types [44]. For non-
primitive data types, he attributes much of the performance penalty to serialization and
deserialization of Java objects.

The semantics of KPN is elegant and simple. At its root, it assumes that buffers are
unbounded. I will show below that this does not result in overflowing memory, as the
above MPI example did. Semantically unbounded does not imply that the implemen-
tation must be unbounded, unless the program itself requires it.

As elaborated below, KPN programs are determinate. All executions yield the
same sequence of messages on each connection between processes. It is very difficult
to make any such assertion about an MPI program unless the programmer exercises
enormous restraint. The MPI API is both too rich, providing tempting capabilities to
deviate from the constraints, and too impoverished, providing little control over pro-
cess scheduling. The latter problem of course can be fixed by enriching MPI. This is
the standard approach in libraries when limitations are discovered. Enrich the API to
provide more capability. But as I will show below, this leaves the programmer with
the extremely challenging task of correctly implementing something that several Ph.D
dissertations have been written about.
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Figure 5: A message-passing model for which it is difficult to determine appropriate
buffer sizes.

3.2 Buffer Management in KPN
Consider first buffer management. KPN semantics depend on unbounded buffers. But
any reasonable implementation of either figures 1 or 2 would use a finite (and small)
amount of memory for buffering messages. How can that be achieved with KPN se-
mantics?

One answer is to require that the programmer specify buffer sizes for each connec-
tion between processes, and to implement the send method of output ports to block
when buffers are full. This is done in SEDA, for example [49]. The problem here is
that the programmer may have considerable difficulty determining appropriate buffer
sizes. Buffers that are too small can result in an artificial deadlock (a deadlock that is
due only to the bound on the buffers). Buffers that are too large waste resources.

Consider for example the model shown in figure 5. The output is an ordered se-
quence of integers of the form 2n3m5k, where n, m and k are non-negative integers.
These are known as the Hamming numbers, and this program for computing them was
studied by Dijkstra [13] and Kahn and MacQueen [27].

To understand how this program works, we need to understand what each of the
processes does. The ones labeled ScaleN simply read an integer-valued input mes-
sage, multiply it by N, and send the product to the output port. They repeat this se-
quence forever, as long as there are input messages. The SampleDelayN processes
first produce an output message with value N , then repeat forever the following se-
quence: read the input message and send it to the output. As before, the black diamonds
direct a single message sequence to multiple destinations (over separate, unbounded
buffers).

The processes labeled OrderedMergeM are the only nontrivial processes in this
program. These have a logic similar to the two-input CONTROL process in figure 3.
Given a sequence of numerically increasing messages on each input port, they produce
a numerically increasing merge of the two input sequences on their output ports. You
can now understand how this program generates the Hamming numbers. The loop at
the upper left produces the sequence 5, 25, 125, · · ·, 5n, · · ·. That sequence is merged
into the the second loop, which as a result produces the sequence 3, 5, 9, 15, 25, · · ·,
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Figure 6: An illustration that demand-driven (lazy) execution does not solve the bound-
edness problem in general.

5n3m, · · ·. That sequence is merged into the final loop, which produces the Hamming
numbers, in numerically increasing order, without repetitions.

It is a simple exercise to prove that any finite bound on buffer sizes for the inter-
process communications in figure 5 will cause the program to fail to produce all the
Hamming numbers. What will happen when a buffer fills up and blocks an upstream
process on a send operation? Does the program deadlock? These questions are subtle.

I claim that the execution platform should support the application designer by exe-
cuting concurrent programs with bounded use of buffers when it is possible to do so. It
should not be up to the application designer to figure out how to do that (by, for exam-
ple, guessing at the buffer bounds and enforcing them). And the application designer
should not be forced to do without buffering or implement the buffering as part of the
application, as would be required in MPI, where the only real option for applications
like those in figures 1 and 2 is to use synchronous communication or resort to explicit
buffer management.

But executing programs with bounded buffers is not as easy as it might seem, as
elaborated in the next three subsections.

3.3 Demand-Driven Execution
Looking at figures 1 and 2, it is tempting to note that a bounded execution would result
from demand-driven execution, also known as lazy evaluation. Under such a policy,
upstream processes are stalled until their outputs are required. This can be implemented
using MPI, with some effort, by designing processes that mediate the communication.
Although this delivers bounded execution for those particular examples, it does not
solve the problem in general.

Consider the example shown in figure 6. Here, a process labeled SWITCH directs
a stream of messages to two DISPLAY processes, depending on the messages from
the CONTROL process. Suppose that the CONTROL process happens to always issue
messages with value true. Then how should the system respond to demands from
DISPLAY2? Depending on the implementation, the result could be deadlock or buffer
overflow. The only way to prevent this result would be for the DISPLAY processes to
have knowledge of the signal from CONTROL to regulate their issuance of demands.
This would be extremely awkward.
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Figure 7: An illustration that output demand can trigger unbounded memory usage.

It is tempting to observe that for this example, data-driven execution would prevent
buffer overflow. In data-driven execution, downstream processes would be scheduled
to execute only when they have unprocessed input data, which would seem to solve the
problem in this case. But this example could be naturally combined with the market
data example of section 2.2. For example, after merging market data sorted by time
stamp, we may want to then separate the data by security type. In that case, we have a
mixed system, where neither data-driven nor demand-driven execution works.

Unless there is only exactly one consumer of data in the program, the question of
when to generate “demand” can be quite subtle. Consider the example shown in figure
7. This is identical to figure 1 except for one additional DISPLAY process monitoring
the output of SOURCE2. Again suppose that the CONTROL. process happens to always
issue messages with value true. Unlike figure 1, there is an observer of the outputs of
SOURCE2. Should SOURCE2 generate an unbounded sequence of output messages?
If so, it will overflow the buffers on the communication link to SELECT.

The example in figure 6 will execute with bounded memory if executed under a
data-driven policy rather than a demand-driven policy. The example in figure 7 uses
unbounded memory under both policies, and yet there is a correct bounded execution
of this program. As programs grow in complexity, they are bound to include both of
these patterns, so both demand and data driven scheduling policies fail.

Consider another example, shown in figure 8. This program has a feedback loop.
If the process labeled IO PROCESS reads its input using a blocking read before pro-
ducing an output, then it will block immediately, and never be able to continue. The
feedback loop is deadlocked, but the overall program is not, as long as the CONTROL
process is able to produce outputs. If the CONTROL process is able to produce an
unbounded number of control messages, then it will continue to execute until the com-
munication buffers overflow.

Should this program be declared defective? If so, how can it be analyzed to deter-
mine that it is defective? What if IO PROCESS produces an output before reading an
input, and CONTROL generates an infinite sequence of true-valued messages? How
will demand-driven scheduling deal with this situation? How about data-driven execu-
tion?
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Figure 8: A program that has an infinite execution, but no bounded infinite execution.
The CONTROL process is able to send messages to the SWITCH, but the SWITCH is
unable to receive them because it is deadlocked with the IO PROCESS. If the CON-
TROL process can execute forever, sending control messages, then memory will over-
flow.

Figure 9: Five processes that, together with a boolean message data type, when con-
nected in a KPN, provide a Turing-complete model of computation.

3.4 Undecidability of Buffer Bounds
For many message passing programs, a programmer can determine required buffer
sizes without much difficulty. So given an implementation of bounded buffers with
blocking reads and writes, it would not be hard to achieve bounded execution. Perhaps
the Hamming numbers example and figure 8 of the previous section are anomalous.
However, programming methodologies have never succeeded by assuming that pro-
grammers won’t exercise their capabilities, sticking only to simple patterns. Moreover,
the complexity and scale of message passing programs is bound to increase consid-
erably with the drive towards multicore. What used to be anomalous may become
commonplace. If buffer management is hard for some programs, then it is important
for the software infrastructure to provide support for it.

The fact is that the buffer bounds question is fundamentally problematic. It can be
shown that the question of whether a KPN program can execute forever with bounded
buffers is undecidable [8]. This can be proven by showing that the five process defini-
tions in figure 9 connected in a KPN, with only boolean message types, are sufficient
to build a universal Turing machine. As a direct consequence, a number of questions
about KPN programs become undecidable.

The processes in figure 9 are defined as follows:

• The FORK process reads one input stream and replicates it to multiple recipients.
Although this can be implemented as a process, it is sufficiently fundamental that
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it is better implemented as part of underlying KPN infrastructure.

• The LOGIC FUNCTION process reads a boolean-valued message from each in-
put port, performs a memoryless logic function such as AND, NAND, OR, or
NOR on the data, and produces a boolean-valued message on the output with the
result (NAND alone is sufficient, since the others can all be implemented with
NAND).

• The SELECT process is the same one that we saw in figures 1 and 2.

• The SWITCH process performs the converse operation. It reads a boolean control
input from the bottom port, then reads a data input from the left input port. If
the control is true, then it produces the data value on the upper output port,
labeled T. If the control is false, it produces the data value on the lower output
port, labeled F. It then repeats this forever.

• Finally, the SAMPLE DELAY process is the same one we encountered in figure
5. It produces an initial output, which has value true or false in this case,
and then forever copies its input to the output.

We can build a universal Turing machine by interconnecting these processes ac-
cording to KPN semantics. As a direct consequence, the question of whether the pro-
gram deadlocks (halts) is undecidable, and the question of whether the program can
execute with bounded memory is also undecidable. Since given these process defini-
tions, the only (significant) memory is in the buffers, the question of whether a program
can execute forever with bounded buffers is undecidable.

3.5 Executing KPN with Bounded Buffers
Fortunately, this particular undecidable problem is solvable. Parks gives a scheduling
policy that executes every Kahn process network that can execute in bounded memory
in bounded memory [43]. Parks’ policy is quite simple. Begin with arbitrary bounds
on all buffers, and block processes that attempt to write to a full buffer. Execute until
the program deadlocks. If the program does not deadlock, then we have succeeded in
executing with bounded buffers. If it does deadlock, then if there is any process that
is blocked on a write to a buffer, increase the capacity of all buffers and continue.2 If
there is no process blocked on a write, then the program intrinsically deadlocks, and
we can halt execution.

There is no contradiction here with undecidability. Parks’ algorithm does not de-
liver the answer to the boundedness question in finite time. It does, however, ensure
boundedness if the answer is that the program can execute with bounded memory. It
does so for all programs, whereas fair, data-driven, or demand-driven policies always
fail for some programs.

Note that implementing this policy under MPI would be quite difficult. First, a
programmer would have to implement a bounded buffer with blocking reads and writes.

2There are more efficient alternatives than increasing the capacity of all buffers, but the proof is simple
with this strategy.
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Each buffer would be implemented by a process with synchronous send and receive.
Second, the programmer would have to implement deadlock detection, which would
be easier, though far from trivial, with shared data structures. This is simply too much
to ask of application programmers. To be useful, it must be provided as part of the
execution platform.

The correctness of this policy has not been entirely without controversy. Basten,
et al., argue that the policy prevents convergence to the least fixed point of the Kahn
semantics for some programs [4, 16]. This claim is somewhat tricky, since we need a
notion of convergence to infinite sequences. Nonetheless, the claim is valid, and we can
see that this it true with the examples in figures 1 and 2. Under the Kahn semantics, if
the SOURCE1, SOURCE2, and CONTROL processes are able to produce an unbounded
number of outputs, then the Kahn semantics is that all connections between processes
carry infinite sequences. Those infinite sequences are the least fixed point. Basten et
al. give a scheduling policy that is bounded (when a bounded policy exists) for a class
of Kahn networks that they call effective. In an effective Kahn network, every message
sent is eventually received. For non-effective programs, they provide no guarantee, and
in fact allow for a fallback to Parks’ algorithm, which will provide bounded execution
if this is possible.

Application programmers should not have to understand these subtleties. It is al-
most certainly not central to whatever they are trying to accomplish.

3.6 Determinism
A program is said to be determinate if given the same inputs, it produces the same
outputs on every execution. Although this definition seems straightforward, it is not.
What do we mean by inputs and outputs? Is the time at which an input is provided
part of the input? The time at which an output is provided? For some programs, in the
designer’s mind, these are definitely important. Any discussion of determinacy must
make clear what is considered part of the input and output.

In classical Turing-Church computation, the input and output are each a fixed body
of data that can be represented as a finite sequence of bits. For KPN, the question is a
bit more complex.

A closed KPN is a network of processes where every sequence of messages is
generated by a process in the network. An open KPN is one where at least one sequence
of messages is provided from outside the KPN. An open KPN can always be modeled
by a closed KPN if we consider the externally provided sequence of messages to be
produced by a process that has no input message sequences. Thus, we need to only
consider closed KPNs.

In a KPN, it is easy to define the inputs and outputs of an individual process. The
inputs are input message sequences, delivered in the figures in this paper by input
ports, and the outputs are output message sequences. Two sequences are identical if
they contain the same messages in the same order. The time at which a message is sent
or read is irrelevant, except that messages are read and written in order. A KPN process
is said to be determinate if every output sequence from the process is a function of the
input sequences. This must be true for finite or infinite sequences.
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If a KPN process has no input sequences, then it is determinate if it produces exactly
one possible output sequence on each output port. Since we model an open KPN as
containing such processes, those processes are determinate if and only if the input
sequences to the open KPN are known.

Two sequences may be related by a prefix relation. A sequence s1 is said to be a
prefix of another sequence s2 if every message in s1 is in s2 in the same order, and
any message in s2 that is not in s1 occurs after all of these messages. This is written
s1 v s2. This relation provides a nice mathematical structure exploited by Kahn [26].
Tutorial expositions can be found in [37, 35]. In this paper, we avoid the mathematics
and focus on the intuition.

A determinate KPN process with one input sequence and one output sequence is
said to be monotonic if s1 v s′

1 implies that F (s1) v F (s′
1), where F is the func-

tion from sequences to sequences implemented by the process. Intuitively, if an input
sequence is extended with additional messages, the output sequence may only be ex-
tended. The process cannot “change its mind” about outputs previously produced,
given additional input messages. The definition of monotonic processes is easily ex-
tended to processes with any number of input and output sequences. A process with no
input sequences is monotonic if and only if it is determinate. A process with no output
sequences is always monotonic.

A monotonic process is further said to be continuous if, intuitively, any output
message that it produces is produced after only a finite number of input message. That
is, it cannot produce outputs only in response to infinite input sequences. It cannot
“wait forever” to produce outputs. A determinate process with no input sequences is
always continuous. A process with no output sequences is also always continuous.
An MPI process that does not probe for input messages, but rather just does blocking
reads, is continuous as long as it does not interact with other processes via shared
data structures (by using, for example, random number generators or buffer occupancy
probes).

Kahn showed that any network of continuous processes is determinate [26]. This is
the key advantage of KPN as a concurrent MoC. Although it is highly concurrent, and
can result in very effective use of parallel resources, the results of a computation are
repeatable. Every execution, regardless of parallelism and scheduling, yields the same
results.

Without such a MoC to work with, programmers frequently use nondeterminate
mechanisms even when they are constructing determinate programs. This is risky be-
cause errors may not show up in testing. It is far preferable to provide programmers
with explicitly nondeterminate constructs that they only need to invoke when they ac-
tually need nondeterminism.

3.7 Extended Process Networks
A useful example of an explicitly nondeterminate construct is a nondeterminate merge
or fair merge. A use of this is shown in figure 10, another variant of figure 1. In this
variant, there is no CONTROL process, and instead we rely on the NONDETERMINATE MERGE.
This process probes both input channels, and when there is a message on either, it sends
that message to the output. This could be useful in combination with fair scheduling,
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Figure 10: A nondeterminate version of figure 1 using extended process networks.

assuming we don’t really care about the order in which messages from the SOURCE
processes are delivered. There are many applications that have this character.

Brock and Ackerman have shown that any stream merge must be either unfair or
nonmonotonic [7]. The SELECT process of figure 1 is, in fact, an unfair merge. It may
completely ignore the messages from one of the SOURCE processes, if told to do so by
the CONTROL process. SELECT is monotonic (and continuous). NONDETERMINATE MERGE
is not.

Extending an implementation of KPN to support NONDETERMINATE MERGE is
fairly straightforward, and has been done for example in Ptolemy II [14]. A pro-
grammer that wishes to build nondeterminism into an application does so explicitly
by invoking this process. In contrast, maintaining determinacy with message-passing
libraries like MPI requires that programmers know which capabilities to not use when.
It is too easy for programmers to inadvertently introduce nondeterminate mechanisms.

3.8 Dataflow
The KPN MoC can be shown to be a generalization of dataflow models [37]. All the
same scheduling issues apply to dataflow models; Parks’ algorithm and Basten et al.’s
extension, for example, are effective for executing dynamic dataflow programs with
bounded memory [43, 4, 16].

In dataflow models, the components of a program have discrete, finite actions called
firings, rather than the (potentially) unbounded executions of processes. A firing con-
sumes some amount of input data from each input stream and produces some amount
of data on each output stream. In dataflow, the components are also called actors, al-
though they differ considerably from Agha’s actors [2], which are processes. I have
previously proposed broadening the use of the term “actors” to explicitly encompass
both of these models and any concurrency model where interactions between compo-
nents are via messages mediated by ports rather than via procedure calls [33].

A dataflow actor is defined by giving a firing procedure. An actor will fire re-
peatedly in response to available input data, and those repeated firings in fact define
a process [35]. In fact, any KPN process can be converted into a dataflow actor, at
the expense of requiring the programmer to do manual stack management, or “stack
ripping” [1]. Specifically, since a firing is a finite discrete action, if the next firing
must pick up where the current firing left off, then the programmer has to explicitly
keep track of where it left off. The one and only advantage of defining a KPN process
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Figure 11: A version of the program in figure 1 that does round-robin scheduling.

over a dataflow actor is that if a process blocks due to unavailable input (or full out-
put buffers), when the input becomes available (or room in the output buffers becomes
available) it automatically picks up where it left off. When actors have little or no state,
this cost is negligible. For example, the SWITCH and SELECT that we have been us-
ing have dataflow variants that have been called Distributor and Selector by Davis and
Keller [11].

In exchange for this cost, however, we can accrue considerable benefits. If the ac-
tors all conform, for example, to the synchronous dataflow (SDF) model [36], then pro-
grams become statically analyzable for deadlock and bounded buffering, and amenable
to static load balancing and scheduling.

Suppose, for example, that in figure 1 the application designer specifically designs
the CONTROL process to issue messages that alternate in value between true and
false. This property could be exposed to a compiler and/or scheduler by specifying
an SDF model instead of a KPN model. Such an SDF model is shown in figure 11.
Here, the SELECT process has been replaced with an SDF actor called COMMUTATOR,
named after the electromechanical part in generators. This actor requires a single mes-
sage on each input to fire, and when it fires, it produces those two messages, in order,
on the output. As a consequence of this rather simple production and consumption
pattern on messages, it is easy to analyze this program for deadlock, buffer sizes, and
load balancing.

An SDF program is a network of dataflow actors with fixed production and con-
sumption patterns for input and output messages. That is, for each actor, it is statically
declared how many input messages are required on each input port to fire the actor, and
how many messages will be produced on each output port when it fires. Such programs
can always be statically analyzed for deadlock, buffer sizes, and, if execution loads of
the fire procedures are known, for load balancing [45]. The model of computation is
not Turing complete, and none of these questions is undecidable.

Of course, analyzability comes at a price in expressiveness. Many researchers have
augmented the SDF MoC with more expressive formalisms that preserve decidability.
For example, the heterochronous dataflow (HDF) MoC defines an actor as a finite
state machine, where production and consumption patterns can vary in each state [18].
With careful constraints on when state transitions can be taken, this model remains
decidable. These analyzability properties have been heavily exploited in StreamIT [47]
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and LabVIEW [28], which provide structured programming constructs for SDF and
some HDF patterns. Moreover, SDF and its variants can be combined with KPN or
extended PN [19], so we really have lost nothing in expressiveness.

4 Conclusion
There are many other concurrent MoCs that could prove interesting in the long run for
parallel and concurrent programming. We have only touched on the possibilities here,
merely to emphasize that solutions exist that provide much more structure to program-
mers than what today’s message passing libraries provide, and that this structure has
real value.

A good programming model is as much about constraints on the programmer as it is
about capabilities offered to the programmer. Message passing libraries provide rather
low-level mechanisms that give the programmer enormous freedom to implement a
variety of concurrent operations. But this freedom comes at a price. Programs may
have inadvertent nondeterminism, lack of portability, or brittleness, where for example
small changes in the operating environment can cause buffers to overflow. Probes of
message inputs to determine whether a message is available may seem innocent enough
to a programmer, but if a process branches based on the result, the result can easily turn
into inadvertent nondeterminism.

While these libraries are too rich, providing too few constraints or too little struc-
ture, they are at the same time too impoverished. I have given programming examples
where it is easy to see intuitively how they should be executed to avoid overflowing
communication buffers, but achieving this disciplined execution using MPI proves to
be extremely difficult. Such disciplined execution requires infrastructure-level support.

Gorlatch argues that send-receive are like the goto’s of concurrent programming [20].
In this paper, I support this indictment, but I have shown that his solution, the use of
collective operations like MPI’s gather and scatter is incomplete.3 Those operations
don’t cover, for example, the program in figure 4. And even if they were extended to
do so, they would not, by themselves, solve the problem of bounding the buffers while
maximizing concurrency. To solve those problems, we need a disciplined concurrent
model of computation.

Such low-level mechanisms may acceptable when performance is the overriding
concern. Programmers may be willing to construct non-portable programs that are
very laborious to get right. But such programming practice is not a practical alternative
for mainstream programming of mainstream computers, such as the next generation of
multicore machines.

There are many candidates for more disciplined models of computation, many of
which my group has implemented in Ptolemy II [14]. In fact, every graphical rendition

3Interestingly, Gorlatch’s solution and mine can be combined in an interesting way. The SWITCH and
SELECT actors that I have used in the examples in this paper are arguably as evil as goto statements in
imperative code. In fact, they are being used in these examples to have data flow imply control flow. Used
in an unstructured way, they can lead to incomprehensible programs even when a disciplined MoC is being
used. The solutions is to combine a disciplined MoC with collective patterns. Such a technique underlies the
structured dataflow model of LabVIEW [28] and StreamIt [47]. More extensible is to treat these patterns as
combinators or higher-order components [37].
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of a message passing program in this paper is a screen image of an executable Ptolemy
II program. Most use the PN director, which implements a Kahn process networks
model of computation extended with a nondeterminate merge. The others use the SDF
director, which implements a synchronous dataflow model of computation. There are
many more possibilities, including some that control timing of execution. Most of
these models of computation can be combined in a single program (see [18, 14, 19]),
providing interesting possibilities for systematically composing design patterns.

Disciplined concurrent models of computation can be implemented on top of threads
and/or message passing libraries. In my research group, we have done both. Thus, the
argument here is not that these mechanisms should be abandoned. The argument is
that they provide inadequate programming models for application programmers. They
should be used by infrastructure builders, not application programmers.

A number of interesting open questions remain, leaving considerable research to
be done. First, if message passing libraries are to be replaced with higher-level mech-
anisms, what form should those take? Do we need new programming languages? Lan-
guages like Scala [41], with its deep roots in Java and functional languages, could
overcome some of the innate resistance to new languages. An alternative is to treat
concurrency as a software component problem rather than a programming language
problem [33]. This may still require new languages, just as object-oriented compo-
nent technology did, but those new languages can be merely elaborations of familiar
languages, as Java and C++ are elaborations of C. Another interesting open question
strikes at the tired old debate of message passing vs. shared memory. Concurrent MoCs
with message passing roots do not always handle shared state well. Complex applica-
tions are likely to require some shared state. Can mechanisms for managing shared
state be cleanly integrated with disciplined concurrent MoCs that are based on mes-
sage passing? Finally, message passing overhead biases applications to coarse-grain
systems, where relatively large data sets are exchanged in messages. Can efficiency be
improved enough to be effective at fine granularity? There are many ideas out there,
but turning them into useful and understandable programming models has yet to occur.
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