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Abstract

Dataflow models of computation have intrigued computer scientists since
the 1970s. They were first introduced by Jack Dennis as a basis for
parallel programming languages and architectures, and by Gilles Kahn
as a model of concurrency. Interest in these models of computation has
been recently rekindled by the resurrection of parallel computing, due
to the emergence of multicore architectures. However, Dennis and Kahn
approached dataflow very differently. Dennis’ approach was based on an
operational notion of atomic firings driven by certain firing rules. Kahn’s
approach was based on a denotational notion of processes as continuous
functions on infinite streams. This paper bridges the gap between these
two points of view, showing that sequences of firings define a continuous
Kahn process as the least fixed point of an appropriately constructed
functional. The Dennis firing rules are sets of finite prefixes satisfying
certain conditions that ensure determinacy. These conditions result in
firing rules that are strictly more general than the blocking reads of the
Kahn-MacQueen implementation of Kahn process networks, and solve
some compositionality problems in the dataflow model1.

4.1 Introduction

Three major variants of the dataflow model of computation have emerged
in the literature: Kahn process networks [15], Dennis dataflow [10], and
dataflow synchronous languages [2]. The first two are closely related,
while the third is quite different. This paper deals only with the first
two, which have a key difference. In Dennis dataflow, a process is im-
plemented as an execution of atomic firings of actors. Although Dennis
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dataflow can be viewed as a special case of Kahn process networks [18],
the notion of firing has been absent from semantic models, which are
most developed for Kahn process networks and dataflow synchronous
languages.

Dennis and Kahn approach dataflow very differently. Dennis’ ap-
proach is based on an operational notion of atomic firings driven by the
satisfaction of firing rules. Kahn’s approach is based on a denotational
notion of processes as continuous functions on infinite streams. Den-
nis’ approach influenced computer architecture [1, 26], compiler design,
and concurrent programming languages [14]. Kahn’s approach has influ-
enced process algebras (see for example [6]) and semantics of concurrent
systems (see for example [4, 20]). It has had practical realizations in
stream languages [28] and operating systems (such as Unix pipes). Re-
cently, interest in these models of computation has been rekindled by the
resurrection of parallel computing, motivated by multicore architectures
[8]. Dataflow models of computation are being explored for programming
parallel machines [30], distributed systems [17, 21, 24], and embedded
systems [19, 13]. Considerable effort is going into improved execution
policies [31, 11, 32, 18] and standardization [22, 12].

This paper bridges the gap between Dennis and Kahn, showing that
the methods pioneered by Kahn extend naturally to Dennis dataflow,
embracing the notion of firing. This is done by establishing the relation-
ship between a firing function and the Kahn process implemented as a
sequence of firings of that function. A consequence of this analysis is a
formal characterization of firing rules and firing functions that preserve
determinacy.

4.2 Review of Kahn Process Networks

4.2.1 Ordered Sets

We begin with a brief review of ordered sets [9].
An order relation ! on a set A is a binary relation on A that is

reflexive (a ! a′), transitive (if a ! a′ and a′ ! a′′, then a ! a′′), and
antisymmetric (if a ! a′ and a′ ! a, then a = a′). Of course, we can
define a corresponding irreflexive relation, denoted by <, with a < a′ if
and only if a ! a′ and a != a′. The structure 〈A,!〉 is an ordered set. If
the order relation is partial, in the sense that there exist a, a′ ∈ A such
that a !! a′ and a′ !! a, then we will often refer to 〈A,!〉 as a partially
ordered set, or simply a poset. If, on the other hand, the order relation
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is total, in the sense that for all a, a′ ∈ A, a ! a′ or a′ ! a, then we will
refer to 〈A,!〉 as a totally ordered set, or a chain.

For any ordered set 〈A,!〉 and any B ⊆ A, an element a is an upper
bound of B in 〈A,!〉, iff for any b ∈ B, b ! a. a is the least upper
bound of B in 〈A,!〉 iff it is an upper bound of B, and for any other
upper bound a′ of B, a ! a′. We write

∨
B to denote the least upper

bound of B. The notion of lower bound and that of greatest lower bound
are defined dually. In the case of two elements a1 and a2, we typically
write a1 ∨ a2 and a1 ∧ a2, instead of

∨
{a1, a2} and

∧
{a1, a2}. These

are called the join and meet of a1 and a2.
A set D ⊆ A is directed in 〈A,!〉 iff it is non-empty and every finite

subset of D has an upper bound in 〈A,!〉. If every directed subset of
A has a least upper bound in 〈A,!〉, then 〈A,!〉 is a directed-complete
ordered set. If 〈A,!〉 is directed-complete and has a least element, then
〈A,!〉 is a complete partial order, or cpo. If 〈A,!〉 is directed-complete,
and every non-empty subset of A has a greatest lower bound in 〈A,!〉,
then 〈A,!〉 is a complete semilattice.

4.2.2 Sequences

We henceforth assume a non-empty set V of values. Each value repre-
sents a token, an atomic unit of data exchanged between the autonomous
computing stations. We consider the set of all finite and infinite se-
quences over V.

A finite sequence of values, or simply a finite sequence, is a function
from the set {0, . . . , n− 1} for some natural number n into the set V.
Notice that in the case of n = 0, {0, . . . , n− 1} → V = ∅ → V = {∅}.
The empty set is therefore a finite sequence, which we call the empty
sequence and denote by ε. We denote the set of all finite sequences of
values by V∗. This is of course the well known Kleene closure of the set
V.

An infinite sequence of values, or simply an infinite sequence, is a
function from the set of all natural numbers ω into the set V. We
denote the set of all infinite sequences of values by Vω. This is just
another notation for the set ω → V. We denote the set of all such
sequences of values, finite or infinite, by S; that is, S = V∗ ∪ Vω.

For any finite sequence s, the length of s is the cardinal number of
dom s, which we denote by |s|. This is just the number of elements in s.

Informally, a sequence is just an ordered list of values. For any particu-
lar sequence s, we often list its values explicitly, writing 〈v0, v1, . . . , v|s|−1〉
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if s is finite, and 〈v0, v1, . . .〉 if s is infinite. If s is the empty sequence ε,
then we simply write 〈 〉.

A sequence s1 is a prefix of a sequence s2, and we write s1 , s2, if and
only if s1 ⊆ s2. We make use of the set-theoretic definition of function
here, according to which the graph of a function is the function itself.
We caution the reader not to misread our statement: not every subset
of a sequence is a prefix. If that subset is a sequence, however, then it
must be a prefix of the original sequence.

Informally, s1 is a prefix of s2 if and only if the first |s1| values of s2

are the values of s1 in the same order as in s1; that is, for any natural
number i ∈ dom s1, s2(i) = s1(i).

The prefix relation , ⊂ S × S is of course an order relation, and for
any sequence s, ε , s. The ordered set 〈S,,〉 is actually a complete
semilattice. For any subset X of S, we write

!
X to denote the greatest

lower bound of X in 〈S,,〉, namely the greatest common prefix of the
sequences in X, and

⊔
X to denote the least upper bound of X in 〈S,,〉,

provided of course that this exists. In the case of two sequences s1 and
s2, we typically write s1 / s2 and s1 0 s2 for the meet and join of s1 and
s2.

If s1 is a finite sequence and s2 an arbitrary sequence, then we write
s1.s2 to denote the concatenation of s1 and s2. It is the unique sequence
s with dom s = {0, . . . , |s1| + |s2|− 1} if s2 is finite, and dom s = ω
otherwise, such that for any i ∈ dom s, s(i) = s1(i) if i < |s1|, and
s(i) = s2(i− |s1|) otherwise.

Informally, s1.s2 is the result of appending the ordered list of values
of s2 right after the end of s1. Note that any finite s1 is a prefix of a
sequence s iff there is a sequence s2 such that s1.s2 = s. It should be
clear that s2 is unique.

4.2.3 Tuples of Sequences

A sequence of values models the traffic of tokens over a single communi-
cation line. A typical process network will have several communication
lines, and a typical process will communicate over several of those. Thus,
it will be useful to group together several different sequences and ma-
nipulate them as a single object. We do this using the notion of tuple.

A tuple is just a finite enumeration of objects. Here we are inter-
ested in tuples of sequences. For any natural number n, an n-tuple of
sequences, or simply a tuple, is a function from {0, . . . , n− 1} into S.
We let Sn denote the set of all n-tuples of sequences. For convenience,
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we identify S1 with S. Note that when n = 0, Sn = ∅ → S = {∅}. The
empty set is thus a tuple, which we call the empty tuple.

We use boldface letters to denote tuples. If s is an n-tuple, then for
any i ∈ {0, . . . , n− 1}, we often write si instead of s(i). Also, we often
list the sequences within a tuple explicitly, writing 〈s0, . . . , sn−1〉.

We say that an n-tuple is finite if and only if for any i ∈ {0, . . . , n− 1},
si is a finite sequence. This is of course vacuously true for the empty
tuple.

The prefix order on sequences induces an order on n-tuples for any
fixed n. The order we have in mind is the pointwise order. We say that
an n-tuple s1 is a prefix of an n-tuple s2, and we write s1 , s2, if and
only if for any i ∈ {0, . . . , n− 1}, s1(i) , s2(i). Notice that the n-tuple
of empty sequences, denoted by εn, is a prefix of every other n-tuple.
The ordered set 〈Sn,,〉 is a complete semilattice, where infima and
suprema are calculated pointwise, simply because 〈S,,〉 is a complete
semilattice itself.

If s1 is a finite n-tuple and s2 an arbitrary n-tuple, then we write
s1.s2 to denote the pointwise concatenation of s1 and s2. It is the
unique n-tuple s such that for any i ∈ {0, . . . , n− 1}, s(i) = s1(i).s2(i).

When n = 0, Sn has only one element, the empty tuple ∅. Hence,
it must be the case that ∅.∅ = ∅. This is precisely what the pointwise
concatenation evaluates to. Note again that for any finite s1, s1 , s if
and only if there is some tuple s2 such that s1.s2 = s, in which case,
this tuple s2 is unique.

4.2.4 Kahn Processes

Before we can formalize the notion of a process, we must review a tech-
nical condition that we will need to impose.

A function F : Sm → Sn is monotone if and only if for all s1, s2 ∈ Sm,

s1 , s2 =⇒ F (s1) , F (s2).

Informally, feeding a computing station that realizes a monotone func-
tion with additional input can only cause it to produce additional output.
This is really a notion of causality, in that “future input concerns only
future output” (see [15]).

A function F : Sm → Sn is Scott-continuous, or simply continuous, if
and only if F is monotone, and for any subset D of Sm that is directed
in 〈Sm,,〉,

F (
⊔

D) =
⊔
{F (s) | s ∈ D}.
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Notice here that since F is monotone, the set {F (s) | s ∈ D} is itself
directed in 〈Sn,,〉, and hence has a least upper bound therein.

In order to better understand the importance of this notion, we must
take notice of the additional structure that our ordered sets have. For
any natural number m, the complete semilattice 〈Sm,,〉 is algebraic:
for every s ∈ Sm,

s =
⊔
{s′ , s | s′ is finite}.

The set {s′ , s | s′ is finite} is of course directed in 〈Sm,,〉. Hence,
we can obtain every m-tuple as the least upper bound of a set of finite
tuples that is directed in 〈Sm,,〉. The response of a continuous function
to an input tuple is therefore completely defined by its responses to the
finite prefixes of that tuple. This is really a computability notion, in
that a computing station cannot churn out some output only after it
has received an infinite amount of input.

We remark here that continuity in this context is exactly the topo-
logical notion of continuity in a particular topology, which is called the
Scott topology. In this topology, the set of all tuples with a particular
finite prefix is an open set, and the collection of all these sets is a base
for the topology.

A Kahn process, or just a process, is a continuous function F : Sm →
Sn for some m and n. If m = 0, then we say that F is a source;
Sm = S0 = {∅} has a single member, the empty tuple, and hence F is
trivially constant. If n = 0, then we say that F is a sink. In either case,
F is trivially continuous.

Not every monotone function is continuous, and thus a Kahn process.
For instance, consider a function F : S → S such that for any sequence
s,

F (s) =

{
〈 〉 if s is finite;
〈v〉 otherwise.

Here v is some arbitrary value. It is easy to verify that F is monotone
but not continuous.

For an example of a continuous function, consider the unit delay pro-
cess Dv : S → S, such that for any sequence s,

Dv(s) = 〈v〉.s, (4.1)

where v is an arbitrary but fixed value. The effect of this process is to
output an initial token of value v before starting to churn out the tokens
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Fig. 4.1. Examples of compositions of processes.

arriving at its input, in the same order in which they arrive. We will
have more to say about the unit delay below.

4.2.5 Compositions of Kahn Processes and Determinacy

A finite composition of Kahn processes is a collection {s1, . . . , sp} of se-
quences and a collection {F1, . . . , Fq} of processes relating them, such
that no sequence is the output of more than one process. Any sequence
that is not the output of any of the functions is an input to the compo-
sition.

A composition is determinate if and only if given the input sequences,
all other sequences are uniquely determined. Obviously, a Kahn process
by itself is determinate, since it is a functional mapping from input
sequences to output sequences.

Examples of finite compositions of Kahn processes are shown in Fig-
ure 4.1. In each of these examples, given the component processes, it
is obvious how to construct a processes that maps the input sequences
(those that are not outputs of any process) to the other sequences. Each
of these compositions is thus determinate. Following Broy [5], we can
iteratively compose processes using patterns like those in Figure 4.1 to
argue that arbitrary compositions are determinate. The most challeng-
ing part of this strategy is to handle feedback. (An alternative approach
to this composition problem is given by Stark [27]).

Feedback compositions of Kahn processes may or may not be deter-
minate. Consider for example the identity function I, such that for any
sequence s, I(s) = s. I is trivially continuous, and thus a Kahn process.
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Fig. 4.2. Feedback (a directed self-loop).

Suppose that we form a very simple composition of the identity process
by feeding back the output to the input, letting F = I in Figure 4.2.
There are no inputs to the composition, which is therefore determinate
if and only if the sequence s is uniquely determined. However, any se-
quence s satisfies the constraint of the composition, so it is not uniquely
determined.

4.2.6 Least-Fixed-Point Semantics

There is an alternative interpretation due to Kahn [15] that makes the
example in Figure 4.2 determinate. Under this interpretation, any pro-
cess composition is determinate. Moreover, this interpretation is con-
sistent with the execution policies often used for such systems (their
operational semantics), and hence it is an entirely reasonable denota-
tional semantics for the composition. This interpretation is known as
the least-fixed-point semantics, and in particular as the Kahn principle.

The Kahn principle is based on a well-known fixed-point theorem stat-
ing that a continuous function F : X → X on a cpo 〈X, !〉 has a least
fixed point x in 〈X, !〉; that is, there is an x ∈ X such that F (x) = x,
and for any other y ∈ X for which F (y) = y, x ! y. Furthermore, the
theorem is constructive, providing an algorithmic procedure for finding
the least fixed point: the least fixed point of F is the least upper bound
of all finite iterations of F starting from the least element in 〈X, !〉.

To put it into our context, suppose that F : Sn → Sn is a process,
and consider the following sequence of n-tuples:

s0 = εn, s1 = F (s0), s2 = F (s1), . . . . (4.2)

Since F is monotone, and the tuple of empty sequences εn is a prefix of
any other n-tuple, si , sj if and only if i ≤ j. Hence, {s0, s1, . . .} is
a chain, and thus directed in 〈Sn,,〉, and since the latter is directed-
complete, {s0, s1, . . .} has a least upper bound in 〈Sn,,〉. The fixed-
point theorem states that this least upper bound is the least fixed point
of F .
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s1 s2

s4

Fig. 4.3. Composition with a source of an infinite sequence.

This theorem is quite similar to the well-known Knaster-Tarski fixed-
point theorem, which applies to complete lattices rather than complete
partial orders. For this reason, this approach to semantics is sometimes
called Tarskian. The application of the theorem to programming lan-
guage semantics was pioneered by Scott [25]. However, Kahn [15] was
the first to recognize its potential in modeling and design of complex
distributed systems.

Under this least-fixed-point principle, the value of s in Figure 4.2 is
uniquely determined as the empty sequence ε when F is the identity
process I. This is consistent with our intuition; the identity process will
not produce an output token, unless there is some input token to cause
it to.

Notice that (4.2) might suggest a reasonable execution policy for a
network: start with every sequence empty, and begin iterating the eval-
uation of every process. In the limit, every sequence will converge to
the least fixed point of the composite process, in accordance with the
interpretation suggested by the Kahn principle.

4.2.7 Practical Issues

There are serious practical problems with using (4.2) as an execution
policy. If any process in the composition evaluates to an infinite tuple
at some stage of the iteration, then the execution of that process will
never terminate, and thus preclude the progress of the iteration. This
will happen immediately in a composition like the one in Figure 4.3,
where the process F2 is a source of an infinite sequence.

In practice, we need to partially evaluate processes, carefully control-
ling the length of each sequence. The problem is addressed by Parks
[23], who devises a general strategy to avoid accumulating unbounded
numbers of unconsumed tokens, whenever it is possible to do so. All par-
tially evaluated sequences are guaranteed to be prefixes of the sequences
corresponding to the denotational semantics of the process composition
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(although, as pointed out in [11], there is no assurance of convergence
to those sequences, which may not be desirable anyway).

4.3 Dataflow with Firing

4.3.1 Dataflow Actors

We begin with a simple definition and generalize later. Our first attempt
will serve as a gentle introduction, and help motivate the need for the
more general case.

A dataflow actor, or dimply an actor, with m inputs and n outputs is
a pair 〈R, f〉, where

(i) R is a set of finite m-tuples;
(ii) f : Sm → Sn is a (possibly partial) function defined at least on R;
(iii) f(r) is finite for every r ∈ R;
(iv) for all r, r′ ∈ R, if r != r′, then {r, r′} does not have an upper

bound in 〈Sm,,〉.

We call each r ∈ R a firing rule, and f the firing function of the actor.
The last condition is equivalent to the following statement: for any

given m-tuple s, there is at most one firing rule r in R such that r , s.
We remark here that because 〈Sm,,〉 is a complete semilattice, r and
r′ have an upper bound in 〈Sm,,〉 if and only they have a least upper
bound in 〈Sm,,〉, or alternatively, if their join r / r′ is defined.

If m = 0, then R is a subset of the singleton set {∅}, and condition (iv)
is trivially satisfied. If n = 0, then condition (iii) is trivially satisfied.

4.3.2 Dataflow Processes

Let 〈R, f〉 be a dataflow actor with m inputs and n outputs. We want
to define a Kahn process F : Sm → Sn based on this actor, and a
reasonable condition to impose is that for any m-tuple s,

F (s) =

{
f(r).F (s′) if there exists r ∈ R such that s = r.s′;
εn otherwise.

(4.3)

Of course, this is not a definition. It is by no means obvious that such an
F exists, nor that this F is unique, or even a process. Nonetheless, it is
possible to use the least-fixed-point principle to resolve these issues, and
turn (4.3) into a proper definition. But before we can do this, we will
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need to review some order-theoretic facts about functions over tuples of
sequences.

For fixed m and n, we write Sm → Sn to denote the set of all functions
from Sm into Sn. The prefix order on n-tuples induces a pointwise order
on this set. We shall say that the function F : Sm → Sn is a prefix of the
function G : Sm → Sn, and write F , G, if and only if F (s) , G(s) for
any m-tuple s. Notice that the function s 3→ εn mapping every m-tuple
s to the n-tuple of empty sequences is a prefix of any other function in
the set. The ordered set 〈Sm → Sn,,〉 is a complete semilattice, simply
because 〈Sn,,〉 is a complete semilattice. But for our purposes here, is
suffices to know that 〈Sm → Sn,,〉 is a cpo.

Now consider the functional φ : (Sm → Sn) → (Sm → Sn) associated
with the actor 〈R, f〉, defined such that for any F ∈ Sm → Sn and any
m-tuple s,

φ(F )(s) =

{
f(r).F (s′) if there exists r ∈ R such that s = r.s′;
εn otherwise.

(4.4)

Theorem 4.3.1 φ is monotone.

Proof Let F1 and F2 be arbitrary functions of type Sm → Sn, and
suppose that F1 , F2.

If there is a firing rule r ∈ R such that r , s, then by condition (iv), r
is unique, and hence φ(F1)(s) = f(r).F1(s′) and φ(F2)(s) = f(r).F2(s′),
where s = r.s′. However, by assumption, F1(s′) , F2(s′) for any m-
tuple s′, and hence φ(F1)(s) , φ(F2)(s).

Otherwise, φ(F1)(s) = εn = φ(F2)(s).
In either case, φ(F1)(s) , φ(F2)(s), and hence φ is monotone.

Since φ is a monotone function over the cpo 〈Sm → Sn,,〉, it has a
least fixed point F in 〈Sm → Sn,,〉 [9], which must satisfy (4.3). This is
reassuring, but we can actually go a step further, and give a constructive
procedure for finding that least fixed point.

Theorem 4.3.2 φ is continuous.

Proof Let D ⊆ Sm → Sn be directed in 〈Sm → Sn,,〉, and s an
arbitrary m-tuple.

If there is a firing rule r ∈ R such that r , s, then by condition (iv),
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r is unique, and hence for every F ∈ Sm → Sn, φ(F )(s) = f(r).F (s′),
where s = r.s′. Thus,

⊔
{φ(F )(s) | F ∈ D} =

⊔
{f(r).F (s′) | F ∈ D}

= f(r).
⊔
{F (s′) | F ∈ D}

= f(r).(
⊔

D)(s′)
= φ(

⊔
D)(s).

Notice that since D is directed in 〈Sm → Sn,,〉, it has a least upper
bound therein, 〈Sm → Sn,,〉 being a cpo.

Otherwise, for every F ∈ Sm → Sn, φ(F )(s) = εn, and hence
⊔
{φ(F )(s) | F ∈ D} = εn = φ(

⊔
D)(s).

In either case,
⊔
{φ(F )(s) | F ∈ D} = φ(

⊔
D)(s),

and hence φ is continuous.

Since φ is continuous, not only does it have a least fixed point, but
there is a constructive procedure for finding that least fixed point [9]. We
can start with the least element in 〈Sm → Sn,,〉, the function s 3→ εn

mapping every m-tuple s to the empty sequence, and iterate φ to obtain
the following sequence of functions:

F0 = s 3→ εn, F1 = φ(F1), F2 = φ(F1), . . . . (4.5)

Since φ is monotone, and s 3→ εn is a sequence of every other function,
the set {F0, F1, . . .} is a chain, and hence directed in 〈Sm → Sn,,〉.
Thus, it has a least upper bound therein, which is the least fixed point
of φ.

Let us examine this chain more closely for some fixed m-tuple s. Sup-
pose that there is some sequence of firing rules 〈r1, r2, . . .〉 such that
s = r1.r2. . . .. Then, for this particular m-tuple, we can rewrite (4.5) in
the following form:

F0(s) = εn

F1(s) = f(r1)
F2(s) = f(r1).f(r2)
. . .

(4.6)

This is an exact description of the operational semantics in Dennis
dataflow, with respect to a single actor. Start with the actor producing
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only the empty sequence. Then find the prefix of the input that matches
a firing rule, and invoke the firing function on that prefix, producing a
partial output. Notice here that because of condition (iv), no more than
one firing rule can match a prefix of the input at any time. Then find the
prefix of the remaining input that matches another firing rule, invoke
the firing function on that prefix, and concatenate the result with the
output.

In general, even when s is infinite, it is possible that there is only
a finite sequence of firing rules 〈r0, . . . , rp〉 such that s = r0. . . . .rp.s′,
with s′ having no prefix in R. In both the operational semantics of
Dennis dataflow and the denotational interpretation of (4.6), the firings
simply stop, and the output is finite.

When m = 0, the least fixed point of φ is a source process, and if
∅ ∈ R, then it produces the sequence f(∅).f(∅). · · · . If f(∅) is non-
empty, then this is infinite and periodic. This might seem limiting for
dataflow processes that act as sources, but in fact it is not; a source
with a more complicated output sequence can be constructed using a
feedback composition, as in Figure 4.2.

When n = 0, the least fixed point of φ is a sink process, producing
the sequence ∅.∅. · · · = ∅.

In view of this perfect coincidence with the operational semantics, we
are tempted to define a Kahn process based on the actor 〈R, f〉 as this
least fixed point of φ. But in order to do this, we still need to prove that
in the general case, this least fixed point of φ is actually a continuous
function, and thus a Kahn process. It suffices to prove the following
theorem:

Theorem 4.3.3 For any F : Sm → Sn, if F is continuous, then φ(F )
is also continuous.

Proof Let F : Sm → Sn be a continuous function, and D ⊆ Sm directed
in 〈Sm,,〉.

Suppose, toward contradiction, that there are r1, r2 ∈ R and s1, s2 ∈
D such that r1 != r2, but r1 , s1 and r2 , s2. Then since D is directed
in 〈Sm,,〉, {s1, s2} has an upper bound in D, which is also an upper
bound of {r1, r2}, in contradiction to (iv).

Therefore, there is at most one r ∈ R that is a prefix of some tuple in
D.
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If there is such an r ∈ R, then
⊔
{φ(F )(s) | s ∈ D} =

⊔
{f(r).F (s′) | r.s′ ∈ D}

= f(r).
⊔
{F (s′) | r.s′ ∈ D}

= f(r).F (
⊔
{s′ | r.s′ ∈ D})

= φ(F )(
⊔

D).

Notice that since D is directed in 〈Sm,,〉, {s′ | r.s′ ∈ D} is also directed
in 〈Sm,,〉, and in particular, r.

⊔
{s′ | r.s′ ∈ D} =

⊔
D.

Otherwise, there is no firing rule in R that is a prefix of some tuple
in D, and hence

⊔
{φ(F )(s) | s ∈ D} = εn = φ(F )(

⊔
D).

In either case,
⊔
{φ(F )(s) | s ∈ D} = φ(F )(

⊔
D),

and hence φ(F ) is continuous.

Since s 3→ εn is trivially continuous, and continuous functions are
closed under pointwise suprema [9], an easy induction suffices to see
that the least fixed point of φ is a continuous function. Note here that
the firing function f need not be continuous. In fact, it does not even
need to be monotone. The continuity of the least fixed point of φ is
guaranteed if 〈R, f〉 is a valid actor description according to conditions
(i) through (iv).

4.3.3 Examples of Firing Rules

Consider a system where the set of token values is V = {0, 1}. Let
us examine some possible sets R ⊂ S of firing rules for unary firing
functions f : S → S.

The following sets of firing rules all satisfy condition (iv) above:

{〈 〉};
{〈0〉};

{〈0〉, 〈1〉};
{〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉}.

(4.7)

The first of these corresponds to a function that consumes no tokens
from its input sequence, and can fire infinitely regardless of the length
of the input sequence. The second consumes only the leading zeros
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from the input sequence, and then stops firing. The third consumes one
token from the input on every firing, regardless of its value. The fourth
consumes two tokens on the input on every firing, again regardless of
the values.

An example of a set of firing rules that does not satisfy condition (iv)
is:

{〈 〉, 〈0〉, 〈1〉}. (4.8)

Such firing rules would correspond to an actor that could nondetermin-
istically consume or not consume an input token upon firing.

The firing rules in (4.8) would also correspond to the firing rules of
the unit delay defined in (4.1), so such a process cannot be a dataflow
actor under this definition. In fact, delays in dataflow actor networks
are usually implemented directly as initial tokens on an arc. Thus, if
we admit such an implementation, then there is no loss of generality
here. The implementation cost is lower, and this strategy avoids having
to have special firing rules for delays that, if allowed in general, could
introduce non-determinism. Furthermore, once we admit this sort of
implementation for the unit delay, it is easy to model arbitrary actors
with state using a single self-loop initialized to their initial state.

Let us examine now some possible sets R ⊂ S2 of firing rules for
binary firing functions f : S2 → S.

The following sets of firing rules all satisfy condition (iv):

{〈〈0〉, 〈0〉〉, 〈〈0〉, 〈1〉〉, 〈〈1〉, 〈0〉〉, 〈〈1〉, 〈1〉〉};
{〈〈0〉, 〈 〉〉, 〈〈1〉, 〈0〉〉, 〈〈1〉, 〈1〉〉};

{〈〈0〉, 〈 〉〉, 〈〈1〉, 〈 〉〉}.
(4.9)

The first of these corresponds to an actor that consumes one input to-
ken from each of its inputs. For example, this could implement a logic
function such as AND or OR. The second corresponds to a conditional
actor, where the first input provides a control token on every firing.
If the control token has value ‘1’, then a token is consumed from the
second input. Otherwise, no token is consumed from the second input.
The third corresponds to an actor that has effectively one input, never
consuming a token from the second input.

The following set of firing rules does not satisfy condition (iv):

{〈〈0〉, 〈 〉〉, 〈〈1〉, 〈 〉〉, 〈〈 〉, 〈0〉〉, 〈〈 〉, 〈1〉〉}. (4.10)

These would be the firing rules of a non-determinate merge, a process
that can consume a token on either input and copy it to its output. The
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Fig. 4.4. If F is an identity process, the appropriate firing rules are (4.10).

non-determinate merge is not a monotone process, and so use of it in a
Kahn process network could result in non-determinism.

It is interesting to notice that the sets of firing rules of (4.7) and (4.9)
can all be implemented in a blocking-read fashion, according to the
Kahn-MacQueen implementation of Kahn process networks [16]. An
example of a process that cannot be implemented using blocking reads
has the firing rules:

{〈〈1〉, 〈0〉, 〈 〉〉, 〈〈0〉, 〈 〉, 〈1〉〉, 〈〈 〉, 〈0〉, 〈1〉〉}. (4.11)

These firing rules satisfy (iv) and correspond to the Gustave function
[3], a function defining a process which is stable, but not sequential as
the other examples.

While actors that satisfy conditions (i) through (iv) above yield con-
tinuous Kahn processes, these conditions are somewhat more restrictive
than what is really necessary. The firing rules in (4.10), for example,
are not only the firing rules for the dangerous non-determinate merge,
but also the firing rules for a perfectly harmless two-input two-output
identity process. At first glance, it might seem that this sort of iden-
tity process could be implemented using the first set of firing rules of
(4.9), though this will not work. The two examples in Figure 4.4 show
why not. In the first example, the first (top) input and output should
be the empty sequence under the least-fixed-point semantics, so there
will never be a token to trigger any firing rule of (4.9). In the second
of these examples, the second (bottom) input and output present the
same problem. The firing rules of (4.10), however, have no difficulty
with these cases. We next replace condition (iv) with a more general
rule that solves such problems.

4.3.4 Commutative Firings

Many dataflow models having a notion of firing are not compositional.
These compositionality issues are discussed in a very general framework
by Talcott [29]. In our context, the problem is simply that an aggregation
of actors that can be individually described using firing rules and firing
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Fig. 4.5. A two-input two-output identity process described as an aggregation
of two one-input one-output identity processes.

functions cannot be collectively described in this way. This problem
was alluded to in the final example of the last subsection, which is the
simplest example illustrating the problem. It is possible to think of a
two-input two-output identity process as an aggregation of two one-input
one-output identity processes, as in Figure 4.5. One-input one-output
identity processes are trivially described as actors that satisfy conditions
(i) through (iv), but a two-input two-output identity process cannot be
so described.

In order to solve this problem, we replace condition (iv) with the
following more elaborate condition:

(iv′) for all r, r′ ∈ R, if r != r′ and {r, r′} has an upper bound in
〈Sm,,〉, then f(r).f(r′) = f(r′).f(r) and r / r′ = εm.

This condition states that if any two firing rules are consistent, namely
they have a common upper bound, and therefore can possibly be enabled
at the same time, then it makes no difference in what order we use these
firing rules; the values of the firing function at these consistent rules
commute with respect to the concatenation operator. Furthermore, any
two consistent firing rules have no common prefix other than the m-tuple
of empty sequences.

It is easy to see that when condition (iv′) is satisfied,

r 0 r′ = r.r′ = r′.r; (4.12)

that is, the least common extension (least upper bound) of any two
consistent firing rules is their concatenation, in either order.

We also need to reconstruct the functional that we used to define the
Kahn process. For convenience, let PR(s) denote the set {r ∈ R | r , s}.
This is a possibly empty finite set. The functional φ′ is defined such that
for any function F : Sm → Sn and any m-tuple s,

φ′(F )(s) =

{
f(r1). · · · .f(rp).F (s′) if PR(s) != ∅ and {r1, . . . , rp} = PR(s);
εn otherwise.
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Fig. 4.6. A composition that is invalid under condition (iv), but not under
condition (iv′).

Here, we assume, as before, that s = r1. . . . .rp.s′. Notice that because
of (4.12), for any permutation π on {1, . . . , p},

r1. . . . .rp = rπ(1). . . . .rπ(p),

and similarly, because of condition (iv′),

f(r1). · · · .f(rp) = f(rπ(1)). · · · .f(rπ(p)).

Therefore, it makes no difference in what order we invoke the enabled
firing rules. As before, we define the Kahn process F corresponding to
the dataflow actor 〈R, f〉 to be the least fixed point of the functional φ′.

Although notationally tedious, it is straightforward to extend the re-
sults on φ to conclude that both the functional φ′ and its least fixed
point F are continuous; the proofs are practically identical.

Going back to the example of Figure 4.5, we see that we can use the
firing rules of (4.10), and a firing function f : S2 → S2 such that for
any firing rule r, f(r) = r, to obtain a dataflow actor for the two-input
two-output identity process that is valid under condition (iv′). More
interestingly, we can use the same firing rules to implement a process
with firing function f : S2 → S such that for each firing rule r,

f(r) =

{
〈1〉 if r = 〈〈1〉, 〈 〉〉 or r = 〈〈 〉, 〈1〉〉;
〈 〉 otherwise.

This process is interesting because it is neither sequential nor stable,
and thus cannot be implemented under condition (iv).

As a final example, consider the composition of Figure 4.6. The top
process is an identity process, and the bottom one a source of the infinite
sequence 〈0, 0, . . .〉. A reasonable firing function for the source process
would be the function ∅ 3→ 〈0〉. The question now is how to define the
firing rules R and firing function f of the composition.

A first, naive attempt would be to let R = {〈0〉, 〈1〉}. However, with
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the feedback arc in Figure 4.6, this results in no firing rule ever becoming
enabled. Instead, we need R = {〈0〉, 〈1〉, 〈 〉}, which violates condition
(iv). However, if we define the firing function such that

f(〈0〉) = 〈〈0〉, 〈 〉〉,
f(〈1〉) = 〈〈1〉, 〈 〉〉, and
f(〈 〉) = 〈〈 〉, 〈0〉〉,

then condition (iv′) is satisfied and the composition behaves as an ag-
gregate of its parts.

4.3.5 Compositionality

The examples of Figure 4.5 and 4.6 indicate certain compositionality
issues that can be successfully resolved using the notion of commutative
firings. We can generalize this to every composition of the same type.

Consider a slight generalization of Figure 4.1(a), where s1 is an m-
tuple, s2 is an n-tuple, s3 is a p-tuple, and s4 is a q-tuple. It is possible
to prove that the aggregation of F1 and F2 is compositional, in the
sense that it can always be described as a set of firing rules and a firing
function.

Assume for simplicity that m > 0 and p > 0 (generalizing to allow
zero values is easy), and suppose that F1 is defined by 〈R1, f1〉 and F2

by 〈R2, f2〉. Let

R′
1 = {r1 × εp | r1 ∈ R1}

and

R′
2 = {εm × r2 | r2 ∈ R2},

where we loosely write r1×εp to denote the unique (m+p)-tuple s that
has s(i) = r1(i) if i < m, and s(i) = εp(i−m) otherwise, etc. The set
R of firing rules for the composite process F : Sm+p → Sn+q is defined
by

R = R′
1 ∪R′

2.

The firing function f : Sm+p → Sn+q of the composite process is defined
such that for any finite (m + p)-tuple r,

f(r) =






f1(r1)× εq if r ∈ R′
1 and r = r1 × εp;

εn × f2(r2) if r ∈ R′
2 and r = εm × r2;

εn+q otherwise.
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Fig. 4.7. An example of a process network where it might be undesirable from
a practical perspective to insist that the operational semantics coincide with
the denotational semantics.

It is now straightforward to verify that if 〈R1, f2〉 and 〈R2, f2〉 both
satisfy condition (iv′), then so does 〈R, f〉.

4.3.6 Practical Issues

The constructive procedure given by (4.6) ensures that repeated firings
converge to the appropriate Kahn process defined by the actor. If any
such sequence of firings is finite, then it is only necessary to invoke
a finite number of firings. In practice, it is common for such firing
sequences to be infinite, in which case a practical issue of fairness arises.
In particular, since there are usually many actors in a system, in order to
have the operational semantics coincide with the denotational semantics,
it is necessary to fire each actor infinitely often, if possible.

It turns out that such a fairness condition is not always desirable.
It may result in unbounded memory requirements for execution of a
dataflow process network. In some such cases, there is an alternative
firing schedule that is also infinite, but requires only bounded mem-
ory. That schedule may not conform to the denotational semantics, and
nonetheless be preferable to one that does.

A simple example is shown in Figure 4.7. The actor labeled ‘SELECT’
has the following set of firing rules:

{〈〈1〉, 〈 〉, 〈1〉〉, 〈〈0〉, 〈 〉, 〈1〉〉, 〈〈 〉, 〈1〉, 〈0〉〉, 〈〈 〉, 〈0〉, 〈0〉〉},

where the order of inputs is top-to-bottom. If the bottom input (the
control input) has value ‘1’ (for TRUE), then a token of any value is
consumed from the top input, and no token is consumed from the middle
input. If the control input has value ‘0’ (for FALSE), then a token of
any value is consumed from the middle input, and no token is consumed
from the top input.
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Suppose that the actors A, B, and D, all of which are sources, are
defined to each produce an infinite sequence, and that C, which is a
sink, is defined to consume an infinite sequence. Suppose further that
the output from D is the constant sequence 〈0, 0, . . .〉. Then tokens
produced by actor A will never be consumed. In most practical scenarios,
it is preferable to avoid producing them if they will never be consumed,
despite the fact that this violates the denotational semantics, which state
that the output of actor A is an infinite sequence. This problem is solved
by Parks [23], who also shows that the obvious solution for the example
in Figure 4.7, the demand-driven execution, does not solve the problem
in general. Another, more specialized solution, achieved by restricting
the semantics, is presented by Caspi in [7].

4.4 Conclusion

We have shown how the formal semantic methods of Kahn dataflow
can be adapted to Dennis dataflow, which is based on the notion of an
actor firing. Kahn dataflow is defined in terms of continuous processes,
which map input sequences to output sequences, while Dennis dataflow
is defined in terms of firing functions, which map input tokens to output
tokens, and are evaluated only when input tokens satisfy certain firing
rules. We have formally defined firing rules and firing functions, and
have shown how a Kahn process can be defined as the least fixed point
of a continuous functional that is constructed using the firing rules and
firing function of an actor. Furthermore, we have specified conditions on
the firing rules and firing functions that solve certain compositionality
problems in dataflow, in the sense that certain compositions of actors
are actors themselves.
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