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Plan for Today's Class

Models for Information Retrieval
Text Processing Operations and Challenges

The Boolean Model
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Models of Information Retrieval [1]

The core problems of information retrieval are finding relevant
documents and ordering the found documents according to relevance
The IR model explains how these problems are solved:

. ...By specifying the representations of queries and documents in the
collection being searched

. ...And the information used, and the calculations performed, that order the
retrieved documents by relevance

« (And optionally, the model provides mechanisms for using relevance
feedback to improve precision and results ordering)
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Models of Information Retrieval [2]

BOOLEAN model -- representations are sets of index terms, set theory
operations with Boolean algebra calculate relevance as binary

VECTOR models -- representations are vectors with non-binary
weighted index terms, linear algebra operations yield continuous
measure of relevance
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Models of Information Retrieval [3]

STRUCTURE models -- combine representations of terms with
information about structures within documents (i.e., hierarchical
organization) and between documents (i.e. hypertext links and other
explicit relationships) to determine which parts of documents and
which documents are most important and relevant

PROBABILISTIC models -- documents are represented by index
terms, and the key assumption is that the terms are distributed
differently in relevant and non relevant documents.
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What is a "Document” in Information
Retrieval?

A document is any individually retrievable item in the "pile of text" that
makes up the COLLECTION

Sometimes the boundaries that define documents are obvious or

conventional (web search returns a web page), but sometimes they
aren't

"Carving up" or "chunking" large documents into smaller text passages
may be required for some collections or some user interfaces

A collection might contain any number of documents; web search
engines index billions of pages
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(FLASHBACK) Identifying Information
Components

Any piece of information that can be addressed and manipulated by a
person or process as a discrete entity

Any piece of information with a unique name or identifier

Any piece of information that is self-contained and comprehensible on
its own
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Text Processing: Motivation (1)

Not all words are equally useful indicators of what a document is about

Nouns and noun groups carry more "aboutness” than adjectives,
adverbs, and verbs

Very frequent words that occur in all or most documents add NOISE
because they cannot discriminate between documents

So it is worthwhile to pre-process the text of documents to select a
smaller set of terms that better represent them; these are called the
INDEX terms
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Text Processing: Motivation (2)

Extracting a set of terms for describing the documents in some
collection is the foundation for information retrieval

But IR locates documents for some person making a query, and getting
value from those documents and satisfying the information needs
involves work by that person

If the agent with the information need isn't a person, but some
computational process, the document alone isn't likely to satisfy the
information need

The agent will need a richer, more semantic representation of the
document contents
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Text Processing as a "Pipeline”

Text processing is often described as a pipeline - a sequence of
processing stages

The pipeline starts with "raw" text, and each processing step "refines”
the text in some way

The analogy to refining of some substance like petroleum is clear - you
start with "dirty" input and progressively remove impurities, stopping
when the quality is adequate for your purposes (cf. diesel fuel vs
high-octane jet fuel)
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Text Processing: Operational Overview (1)

DECODING -- extracting the text to be processed from its stored
representation

FILTERING -- creating a stream of characters by removing formatting
or non-semantic markup

TOKENIZATION -- segmenting the character stream into linguistic
units

NORMALIZATION -- creating equivalence classes from tokens with
superficially different character sequences
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Text Processing: Operational Overview (2)

STEMMING -- removing affixes and suffixes to allow the retrieval of
syntactic and morphological variations of query terms

STOPWORD ELIMINATION -- remove words that poorly discriminate
between documents

SELECTING INDEX TERMS -- choosing word/stems (or groups of
them) as indexing elements

CREATING AUXILIARY STRUCTURES -- like a THESAURUS

12 of 50



Decoding

"Raw" text is a series of digital bit patterns that encode a character set

Tokenizing raw text requires an understanding of the text encoding
scheme, and there are many single- or multi-byte encoding schemes

Determining the encoding can be easy (file extensions or metadata) --
but not always

Text encoding specs are well-documented (http://www.wotsit.org
/list.asp?fc=10) but "commercial products can easily live or die by the
range of encodings they support"
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ASCII

The ASCII scheme was standardized in the 1960s when computer
memory was expensive and most computing was in English-speaking
countries, so it is minimal and distinguishes only 128 characters

But ASCII is inadequate for most languages that have larger character
sets with characters like E, e, ¢ - nor can it handle mathematical
characters like A,0, etc.

Wikipedia has articles in many non-ASCII character sets
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Unicode

Two encodings can use the same number for two different characters,
or use different numbers for the same character

The Unicode standard was designed to overcome this problem

Unicode 6.0 has room to encode 109,449 characters for all the writing
systems in the world, so a single standard can represent the
characters of every existing language, even "dead" ones like Sumerian
and Hittite

Each character is assigned a number, called its CODE POINT

Unicode encodes the scripts used in languages, rather than languages
per se, so there only needs to one representation of the Latin, Cyrillic,
Arabic., etc scripts that are used for writing multiple languages

Unicode also distinguishes characters from glyphs, the different forms
for the same character - enabling different fonts to be identified as the
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Guess That Encoding [1]
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Guess That Encoding [2]

\par {\listtext\pard\plain\hich‘\afO\dbch\afO\och\fO 1.\tab} }\pard
\ql \fi-
360\1720\n0\widctlparyclisttab\tx720\aspalphataspnum'faauto'ls
Aadjustright\rin0\lin720\itap0 {Degree products. The university
currently offers a relatively fixed set of degree \'93 products.\'94
[f the umversity adopted Dell\rquote s \'93build to order\'94
strategy how might its product offerings change? How might
this new strategy affect the unmiversity'\rquote s Y93market
share\'94 or 93 profitability\'94 compared with 1ts current
strategy?

\par }\pard \ql
\10\riO\widctlpartaspalpha\aspnum\faautotadjustright\rinO\lin0\it
ap0 {

\par Numerous documents are currently involved in the end-to-
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Guess That Encoding [3]

<Party>
<Name>Arnold Schwarzenegger/>
<Address>
<StreetAddress>Governor"s Mansion, 1526 H Street</StreetAddress>
<City>Sacramento</City>
<State>California</State>
<PostalCode>95814</PostalCode>
</Address>
<Phone>
<AreaCode>916</AreaCode>
<LocalNumber>323-3047</LocalNumber>
</Phone>
</Party>
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Decoding Web Pages

HTML and XML are easy to decode once you have them, but
sometimes what you see in a web page is not what you can get

Web pages can include JavaScript or Flash or other programming
components that operate with the source text of the page and
substantially modify it before displaying text on the screen

Web pages will also contain text for navigational elements and
controls, footers / headers, and various other text you don't want to
extract

"Beautiful Soup" is a very useful Python library
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Filtering

Removing surrounding header or format information from the text to be
processed
What you filter depends on the encoding format or document type

« You'd probably discard HTML markup before indexing

« You'd almost certainly save XML tags for indexing

« You'd probably want to use the rich metadata in email mail headers
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Sentence Segmentation

Many IR and text processing applications require that the documents
be broken into their constituent sentences

Punctuation marks like -- . , ! ? " -- can make this easy; but not always:
sometimes you'll say "Dr. Glushko, this is too hard."

But abbreviations (Dr.) break the obvious rule, and even more complex
rules like "period-space-capital letter" signals a sentence break still
makes a lot of mistakes
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Tokenization into "Wordlike" Elements

Another problem that seems ftrivial -- just use white space, right?

But what about:
« abbreviations (Dr. is a word)
« hyphens (sometimes part of a word, but sometimes a result of formatting)

« case (do we distinguish Bank from bank)
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Preserving Phrases

A phrase is a group of words that needs to be treated as a unit
because the meaning of its constituent words can't be combined into
the meaning of the phrase

« "birth control" is not "birth" + "control"
« "venetian blinds" are not disabled Italians
« "united states" ...
Phrases can be identified "by hand," using grammatical analysis, and

by a "try everything" approach that indexes the candidate phrases that
occur with non-negligible frequency
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Tokenization Challenges [1]

Character sequences where the tokens include complex alphanumeric
structure or punctuation syntax:

« glushko@ischool.berkeley.edu

« 10/26/53

« October 26, 1953

«55B.C

« B-52

« 501(c)(3)

« 128.32.226.140

« My PGP key is 324a3df234ch23e

« My home page is http://people.ischool.berkeley.edu/~glushko/
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Tokenization Challenges [2]

We've seen that treating numbers and number-like-things as indexable
tokens is important

But is 1998 the same as 1,9987 Should we ignore the comma?
Is .103 the same as 1037 Should we ignore the period?

How many tokens in numeric expressions like 6.022213129 x 10723
and 6.62606957 x10-34

How many different numbers might appear in texts? More than the
number of word tokens?

Maybe we should only index numbers when they are combined with
letters or punctuation

How could you find a Form 10407
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Tokenization Challenges [3]

Mr. O’Neill thinks that the boys’ stories about Chile’s capital aren’t
amusing.

For ()’ Neill. which of the following And for aren't, 1s 1t:
is the desired tokenization?

neill

oneill |aren’t|

: arent
[o'neill —
. are ([ n
0 T

: aren
o lIneill |?
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Tokenization Challenges [4]

The language that the characters represent needs to be identified
during decoding because it influences the order and nature of
tokenization

In languages that are written right-to-left like Arabic and Hebrew,
left-to-right text can be interspersed, like numbers and dollar amounts

el J2EaY) (e Lle 132 23 1962 Aias A i sl il
A < START

*Algeria achieved its independence in 1962 afier 132 years of French occupation.’

In German compound nouns don't have spaces between the tokens

« Lebensversicherungsgesellschaftsangestellter = "life insurance company
employee"
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Tokenization in "Non-Segmented”
Languages

And these problems in "segmented languages" that use white space
and punctuation to delimit words seem trivial compared to problems
tokenizing the CJK languages that are "non-segmented"

These languages (Chinese, Japanese, and Korean) have ideographic
characters that can appear as one-character words but they also can
combine to create new words.

The analogous problem in English would be the word "TOGETHER" --
do we treat it as one word or is three separate words "TO GET HER"

?fiﬁﬁ%fﬂ%‘i%&ﬁi% E 7R RO % ik, S 4 A
, VPRLIEEE SR [E T — I A4 Ao 7 18 B 4
- ﬂ; AJRA b, PnLdaiEss 1RSSR,
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Normalization

There will be many cases where two character sequences are not
exactly the same but you want to treat them as equivalent

This can be done with "expansion lists" that add query terms at "run
time" or by merging the equivalent tokens at "index time"

Capital and lower-case characters are typically "case-folded" to
lower-case

Apostrophes, hyphens, accents, and diacritics are often removed (anti-
discriminatory and antidiscrimatory, cliché and cliche)

But in most languages diacritics distinguish words (pena and pena
mean different things in Spanish)

# and @ are taking on additional semantics in hashtags and addresses
and in some contexts we'd want to preserve them

29 of 50



One Minute Morphology

MORPHOLOGY is the part of linguistics concerned with the
mechanisms by which natural languages create words and word forms
from smaller units

These basic building blocks are called MORPHEMES and can express
semantic concepts (when they are called ROOTS or abstract features
like "pastness” or "plural")

Every natural language contains about 10,000 morphemes and
because of how they combine to create words, the number of words is
an order of magnitude greater

English has a relatively simple morphological system
(http://cla.calpoly.edu/~jrubba/morph/morph.over.html)
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Inflection and Derivation

INFLECTION is the morphological mechanism that changes the form
of a word to handle tense, aspect, agreement, etc. It never changes
the part-of-speech (grammatical category)

« dog, dogs

« tengo, tienes, tenemos, tienen

DERIVATION is the mechanism for creating new words, usually of a
different part-of-speech category, by adding a BOUND MORPH to a
BASE MORPH

« build + ing -> building; health + y -> healthy
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Morphological Processing

Morphological analysis of a language is often used in information
retrieval and other low-level text processing applications (hyphenation,
spelling correction) because solving problems using root forms and
rules is more scalable and robust than solving them using word lists

Natural languages are generative, with new words continually being
invented

Many misspellings of common words are obscure low frequency
words, so adding them to a misspelling list would make it impossible to
check spellings for the latter

Is "Flickr" a misspelled word?

32 of 50



Stemming (1)

STEMMING is morphological processing to remove prefixes and
suffixes to leave the root form of words

Stemming reduces many related words and word forms to a common
canonical form

This "canonical form" is usually not a word because in the search
context this makes it possible to retrieve documents when they contain
the meaning we're looking for even if the form of the search word
doesn't exactly match what's in the documents

The WordNet stemmer is more conservative, and won't stem a word if
doing so creates a text string that isn't in the WordNet dictionary
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Stemming (2)

In English, inflectional morphology is relatively easy to handle and
"dumb" stemmers (e.q., iteratively remove suffixes, matching longest
sequence in rewrite rule) perform acceptably

Stemmers differ in how many affixes they handle; one called Lovins
has 260, a more popular stemming algorithm is Porter's Algorithm that
IS much easier to implement because is has only 60 so it makes a lot
more mistakes

Derivational morphology is more difficult
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Stemming Mistakes

Stemming affects the recall/precision tradeoff
OVERSTEMMING results when stemming is so aggressive that it
reduces words that are not morphologically related to the same root
« Organization, organ
« Policy, police
« Arm, army
UNDERSTEMMING results when stemming is too timid and some
morphologically related words are not reduced to the same root
« acquire, acquiring, acquired -> acquir

« acquisition -> acquis
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Stop or Noise Words

Any word that doesn't convey meaning by itself can't help us "find out
about" anything so it can be discarded during text processing
In English these STOP or NOISE words include:

« determiners, such as "the" and "a(n)"

« auxiliaries, such as "might," "have," and "be"

« conjunctions, such as "and," "that," and "whether"

« degree adverbs, such as "very" and "too"

These words are always among the most frequent in a collection, but
high frequency alone isn't what makes them bad index terms

So stop or noise words are usually not determined by frequency
analysis -- text processors usually employ a list of them as a kind of
negative dictionary
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But Stop Words Should be Kept for Phrase
Indexing

"President of the United States" is a more precise query than
"President" AND "United States"

"To be or not to be"
"Let it Be"
"Flights to London" and "Flights from London" aren't the same query

"Laser printer toner cartridge” vs "Laser printer, with toner cartridge"
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Selecting Index Terms

At this stage in text processing the text collection is represented as a
set of stems

But not all of them will help a searcher find what they're looking for
because they will retrieve too many or too few documents

We can select better index terms if we analyze the distribution of words
/ stems in the collection
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The Index -- Logical View

Anthony  Julius The Hamlet Othello Macbeth

and Caesar Tempest
Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

An index is a data structure that records information about the
occurrences of terms in documents

This is a term-document matrix -- rows for terms, columns for
documents -- one such data structure
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The "Inverted” Index

Using a term-document matrix index representation is both infeasible
and nonsensical for any substantial collection of documents
So instead we divide the index into two parts

« A DICTIONARY is a list of the terms

« A POSTINGS LIST is the list of documents in which each term occurs
(usually with frequency and position information within each document)

Brutus — |1 2| 4| 11 |31 |45 |173 | 174

1

=]

6 [16 | 57

LD

Caesar — 17T 2T 4

Calpurnia | — | 2 | 31 | 54 | 101
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Indexing Step 1 - Term List

Doc 1

Now 1s the time
for all good men
to come to the aid
of their country

Doc 2

It was a dark and
stormy night in
the country
manor. The time
was past midnight
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Step 2 -- Alphabetize and Merge

Term Doc # Term Doc # Freq
8 2 a 2
aid 1

all i ::j :‘I
and 2 2
Come 1 ﬂm

countif 1 Come 1
country 2 country 1
dark 2 country 2
for 1 dark 2
goos . for 1
in 2

is 1 good 1
i 2 in 2
manor 2 E ;
men 1 -

midnight 2 = manor 2
night 2 men 1
now 1 midnight 2
o L night 2
o 2 now 1
stonmiy 2

the 1 of 1
he 1 past 2
he 2 stomy 2
1The 2 the 1
1hgir | the 2
fime 1 :

fime 2 these !
1o 1 time 1
10 1 tirme 2
was 2 to 1
Was 2 was 2
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Step 3 -- Separate Dictionary and Postings

Term Doc # Freq

- z | Dictionary Postings
— 2 i :EHTII M docs rITr::tFrErqrI . ’ P 1
GOMme 1 1 ad 1 1= - 1 1
courtry 1 1 al 1 1 " 1 1
country . 1 and 1 1T _"'_' 2 1
dark 2 1 cofmea 1 1 d 1 1
AR - A -
good L L for 1 —_—— 2 1
n 2 1 good 1 -1‘-_-_-_-_-_""‘“—-# 1 1
s 1 1 n : 1E 1 :
it 2 1 # s 1 1-—-—-_._______________* 2 1
manor 2 1 i 1 |- 1 1
men i 1 Manar 1 1 :: 2 1
midnight 2 1 han 1 1 2 1
night 2 1 il gt 1 1-.____________1* 1 1
night 1 1 z 1
naw L 1 now 1 1 Z 1
of i L of 1 1 1 1
past 2 1 oast i 1‘_-_-_-_'_""“'-'—-—* 1 .
stormy 2 1 Stomy 1 q = 2 1
the 1 2 the 2 4._‘_‘_-_-'_'"":_:_.—-—-.. 2 1
the 2 2 their 1 1 1 2
their 1 1 time 2 2\‘——\_‘1 f f
time 1 1 to " \\ : :
time 2 1 = 1 2 1
to 1 2 1 2
WES 2 F: 2 2
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Boolean Queries

The simplest query language to implement is a Boolean one because it
has a very direct correspondence to the text processing story and
indexing story we just told

Boolean queries dominate commercial IR systems (and are
implemented but rarely used for web searches)

Boolean queries are expressed as Terms + Operators
« Terms are words or stemmed words

« Operators are AND, OR, NOT
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Boolean Expressions

Usually expressed with INFIX operators:
. (@ AND b) OR (c AND b))

NOT is UNARY PREFIX operator:
. ((@ AND b) OR (c AND (NOT b)))

AND and OR can be n-ary operators:
. (a AND b AND c AND d)

DeMorgan's Law:
. NOT(a) AND NOT(b) = NOT(a OR b)
- NOT(a) OR NOT(b)= NOT(a AND b)
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Sample Boolean Queries

Cat

Cat OR Dog

Cat AND Dog

(Cat AND Dog) OR Collar

(Cat AND Dog) OR (Collar AND Leash)
(Cat OR Dog) AND (Collar OR Leash)
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Interpreting Boolean Queries

(Cat OR Dog) AND (Collar OR Leash)

Doc # \ 1

4

5 .

CAT

X

.
X
X

[X

DOG

COLLAR

X

x| X

6
X
X
X

LEASH

><><><><m

X| X| XX

Doc #
CAT

1

DOG

ICOLLAR

ILEASH
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Boolean Search with Inverted Indexes [1]

Permit fast search for individual terms

For each term, you get a list consisting of:
« Document ID
« Frequency of term in doc (optional)

« Position of term in doc (optional)
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Boolean Search with Inverted Indexes [2]

Dictionary

Term
H

Al
all
and
CoiTE
SOLRLrY
dark
fior
Good
1]

H]

it
Fhafar

P
il | gint
night

I
of
past

stommy
1

| ki
time
to
WEE

AR

Freq
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Postings

Pad P —= — — Fg P — —% —= —& —& & & k& & & & & i & k& ok & k& A

QUERY:
“time AND dark”

2 documents with
“time” in dictionary
have DOC#1, DOC#2
in posting file

1 document with
“dark” in dictionary
has DOC#2 in posting
file

SOLUTION:
DOC#2 satisfies query



