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Outline for this Evening 
• Three (+ ½) more Basic Algorithms 

• Naïve Bayes 

• Logistic Regression (+ ½ SVM ) 

• Random Forests 

• Evaluation 
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• Accuracy + weighted loss 

• ROC and AUC 

• Lift 
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Bayes’ Theorem 

P(A|B) = probability of A given that B is true.  
 
P(A|B) =  

 
In practice we are most interested in dealing with events e and 
data D.  
 
e = “I have a cold” 
D = “runny nose,” “watery eyes,” “coughing” 
 
P(e|D)= 
 
So Bayes’ theorem is “diagnostic”.  

P(B|A)P(A) 

P(B) 

P(D|e)P(e) 

P(D) 



Bayes’ Theorem 



Bayes’ Theorem 

D = Data,  e = some event 
 
                              P(e|D)   = 
 
P(e) is called the prior probability of e. Its what we know (or think 
we know) about e with no other evidence.  

P(D|e) is the conditional probability of D given that e happened, 
or just the likelihood of D. This can often be measured or 
computed precisely – it follows from your model assumptions. 

P(e|D) is the posterior probability of e given D. It’s the answer we 
want, or the way we choose a best answer.  

You can see that the posterior is heavily colored by the prior, so 
Bayes’ has a GIGO liability. e.g. its not used to test hypotheses 

P(D|e)P(e) 

P(D) 



Naïve Bayes Classifier 

 

 

 

Let’s assume we have an instance (e.g. a document d) with a set 
of features 𝑋1, … , 𝑋𝑘  and a set of classes 𝑐𝑗  to which the 

document might belong.  
 
We want to find the most likely class that the document belongs 
to, given its features.  
 
The joint probability of the class and features is: 
 

Pr⁡ 𝑋1, … , 𝑋𝑘 , 𝑐𝑗  

 
 
 
 
 
 

 
 



Naïve Bayes Classifier 

 

 

 

Key Assumption: (Naïve) the features are generated 
independently given 𝑐𝑗. Then the joint probability factors: 

 

Pr 𝑋, 𝑐𝑗 = Pr 𝑋1, … , 𝑋𝑘 ⁡|⁡𝑐𝑗 Pr 𝑐𝑗 = Pr 𝑐𝑗  Pr 𝑋𝑖|𝑐𝑗

𝑘

𝑖=1

 

 
We would like to figure out the most likely class for (i.e. to 
classify)  the document, which is the 𝑐𝑗 which maximizes: 

 

Pr⁡ 𝑐𝑗 ⁡|⁡𝑋1, … , 𝑋𝑘  

 
 
 
 

 
 



Naïve Bayes Classifier 

 

 

 

Now from Bayes we know that: 
 

Pr 𝑐𝑗 ⁡|⁡𝑋1, … , 𝑋𝑘 = Pr 𝑋1, … , 𝑋𝑘 ⁡|⁡𝑐𝑗 Pr 𝑐𝑗 / Pr 𝑋1, … , 𝑋𝑘  

  
But to choose the best 𝑐𝑗, we can ignore Pr 𝑋1, … , 𝑋𝑘  since it’s 

the same for every class. So we just have to maximize: 
 

Pr 𝑋1, … , 𝑋𝑘⁡|⁡𝑐𝑗 Pr 𝑐𝑗  

 
So finally we pick the category 𝑐𝑗 that maximizes: 

Pr 𝑋1, … , 𝑋𝑘⁡|⁡𝑐𝑗 Pr 𝑐𝑗 = Pr 𝑐𝑗  Pr 𝑋𝑖|𝑐𝑗

𝑘

𝑖=1
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𝑘

𝑖=1
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Data for Naïve Bayes 

 

 

 

In order to find the best class, we need two pieces of data: 
 
• Pr 𝑐𝑗  the prior probability for the class 𝑐𝑗. 

 
• Pr 𝑋𝑖|𝑐𝑗  the conditional probability of the feature 𝑋𝑖  given 

the class 𝑐𝑗. 

 



Data for Naïve Bayes 

 

 

 

For these two data, we only need to record counts: 
•
Pr 𝑐𝑗 =

𝑁𝑑 𝑐𝑗

𝑁𝑑

 

 
•
Pr 𝑋𝑖|𝑐𝑗 =⁡

𝑁𝑤 𝑋𝑖,𝑐𝑗

𝑁𝑤 𝑐𝑗

 

 
Where 𝑁𝑑 𝑐𝑗  is the number of documents in class 𝑐𝑗, 𝑁𝑑  is the 

total number of documents. 
 

𝑁𝑤 𝑋𝑖 , 𝑐𝑗  is the number of times 𝑋𝑖  occurs in a document in 𝑐𝑗, 

and and 𝑁𝑤 𝑐𝑗  is the total number of features in all docs in 𝑐𝑗. 

 



“Training” Naïve Bayes 

 

 

 

So there is no need to train a Naïve Bayes classifier, only to 
accumulate the 𝑁𝑤  and 𝑁𝑑  counts. 

 

But count data is only an approximation to those probabilities 
however, and a count of zero is problematic (why)? 

 

Instead of direct count ratios, we can use Laplace Smoothing: 

𝑝 = ⁡
𝑁1 + ⁡𝛼

𝑁2 + ⁡𝛽
 

With constants 𝛼 and 𝛽. This reflects another layer of Bayesian 
inference, and pushes p toward a prior of 𝛼/𝛽. 

These constants can either be set based on prior knowledge, or 
learned during a training phase.  



Good, Bad and Ugly of NB Classifiers 

• Simple and fast. Depend only on term frequency data for the 
classes.  One shot, no iteration.  

• Very well-behaved numerically. Term weight depends only on 
frequency of that term. Decoupled from other terms.  

• Can work very well with sparse data, where combinations of 
dependent terms are rare.  

• Subject to error and bias when term probabilities are not 
independent (e.g. URL prefixes).  

• Can’t model patterns in the data.  

• Typically not as accurate as other methods. 

 



Logistic Regression 

• We made a distinction earlier between regression (predicting 
a real value) and classification (predicting a discrete value). 

 

• Logistic regression is designed as a binary classifier (output 
say {0,1}) but actually outputs the probability that the input 
instance is in the “1” class.  

 

• A logistic classifier has the form: 

𝑝 𝑋 ⁡= ⁡⁡
1

1 + exp⁡ −𝑋𝛽
 

where 𝑋 =⁡ 𝑋1, … , 𝑋𝑛  is a vector of features. 

 



Logistic Regression 

• Logistic regression is probably the most widely used general-
purpose classifier.  

 

• Its very scalable and can be very fast to train. It’s used for 

• Spam filtering 

• News message classification 

• Web site classification 

• Product classification 

• Most classification problems with large, sparse feature 
sets. 
 

• The only caveat is that it can overfit on very sparse data, so its 
often used with Regularization 

 

 



Logistic Regression 

• Logistic regression maps the “regression” value −𝑋𝛽 in  
(-,) to the range [0,1] using a “logistic” function: 

𝑝 𝑋 ⁡= ⁡⁡
1

1 + exp⁡ −𝑋𝛽
 

 

 

 

 

 

 

 

• i.e. the logistic function maps any value on the real line to a 
probability in the range [0,1] 

 

 

 

 

 

 



Logistic Regression 

• Where did the logistic function 
come from? 

 

 

 

 

 

 

 

 

 

 

 

 



Logistic Regression and Naïve Bayes 

• Logistic regression is actually a generalization of Naïve Bayes, 
with binary features. 

• Logistic Regression can model a Naïve Bayes classifier when 
the binary features are independent.  

• Bayes rule for two classes 𝑐 and ¬𝑐:  

Pr 𝑐|𝑋 = ⁡
Pr 𝑋|𝑐 Pr 𝑐

Pr 𝑋
= ⁡

Pr 𝑋|𝑐 Pr 𝑐

Pr 𝑋|𝑐 Pr 𝑐 + Pr 𝑋|¬𝑐 Pr ¬𝑐
 

• Dividing by the numerator: 

=
1

1 +⁡
Pr 𝑋|¬𝑐 Pr ¬𝑐
Pr 𝑋|𝑐 Pr 𝑐

 

 

 

 

 

 

 



Logistic Regression and Naïve Bayes 

We have 

Pr 𝑐|𝑋 =
1

1 +⁡
Pr 𝑋|¬𝑐 Pr ¬𝑐
Pr 𝑋|𝑐 Pr 𝑐

=
1

1 + exp⁡ −𝑋𝛽
 

which matches if 

Pr 𝑋|¬𝑐 Pr ¬𝑐

Pr 𝑋|𝑐 Pr 𝑐
= exp −𝑋𝛽 ⁡ 

and assuming feature independence, the LHS factors: 

 
Pr 𝑋𝑖|¬𝑐

Pr 𝑋𝑖|𝑐

𝑛

𝑖=1

Pr ¬𝑐

Pr 𝑐
= exp −𝑋𝑖 ⁡𝛽𝑖

𝑛

𝑖=1

⁡𝛽0 

And we can match corresponding (i) terms to define 𝛽. 

 

 

 

 

 

 



Logistic Regression and Naïve Bayes 

Summary: Logistic regression has this form: 

 
 

Pr 𝑐|𝑋 =
1

1 + exp⁡ −𝑋𝛽
 

 

 

 

 

 

 

Models Naïve Bayes formula with two classes  
after dividing through by one of them 

Models product of contributions 
from different (independent) features 



Logistic Regression and Naïve Bayes 

• Because it can always learn an NB model but is more general, 
Logistic regression should do at least as well as naïve Bayes* 

 

• Logistic regression typically does better though because it can 
deal with dependencies between features, whereas Naïve 
Bayes cannot. 

 

* - this may not be true if the Logistic model is overfit.  
L1 regularization is often used with LR to avoid overfitting.  



Logistic Training 

For training, we start with a collection of input values 𝑋𝑖 and 
corresponding output labels 𝑦𝑖 ⁡ ∈ ⁡ 0,1 . Let 𝑝𝑖 be the 
predicted output on input 𝑋𝑖, so 

𝑝𝑖 ⁡= ⁡⁡
1

1 + exp⁡ −𝑋𝑖𝛽
 

The accuracy on an input 𝑋𝑖 is 

𝐴𝑖 =⁡𝑦𝑖𝑝𝑖 + 1 − 𝑦𝑖 1 − 𝑝𝑖  

Logistic regression maximizes either the sum of the log accuracy, 
or the total accuracy, e.g.  

𝐴 = 𝐴𝑖
𝑁

𝑖=1

 

 

 



Logistic Training 

To find the best 𝛽, we can use gradient ascent on the derivative 
𝑑𝐴
𝑑𝛽  where 

𝐴 = 𝐴𝑖
𝑁

𝑖=1

 

The gradient is  

𝑑𝐴

𝑑𝛽
= ⁡ 2𝑦𝑖 − 1 𝑝𝑖 1 − 𝑝𝑖
𝑁

𝑖=1

𝑋𝑖 

 

 



Logistic Training 

The gradient is a weighted sum of input vectors 𝑋𝑖. 

𝑑𝐴

𝑑𝛽
= ⁡ 2𝑦𝑖 − 1 𝑝𝑖 1 − 𝑝𝑖
𝑁

𝑖=1

𝑋𝑖 

  

 

Positive instances (label 𝑦𝑖 = 1) get weight 𝑝𝑖 1 − 𝑝𝑖  while 

negative instance get weight −𝑝𝑖 1 − 𝑝𝑖  

 

The weight 𝑝𝑖 1 − 𝑝𝑖  is largest for  

inputs with 𝑝 ≈ 0.5, which are  
near the decision boundary.  

 

−𝟏,+𝟏      [0,0.25] 

y = p (1-p) 



Logistic Regression Training - SGD 

• A very efficient way to train logistic models is with Stochastic 
Gradient Descent (SGD) – we keep updating the model with 
gradients from small blocks (mini-batches) of input data.  

 

• One challenge with training on power law data (i.e. most data) 
is that the terms in the gradient can have very different 
strengths (because of the power law distribution) 



Logistic Regression Training - ADAGRAD 

• This means that some gradient terms are 1000’s of times 
larger than others, but the 𝛽 coefficients are about the same. 
This imbalance makes training very slow. 

 

• A recent method called ADAGRAD normalizes each coordinate 
of gradient by the historical (from previous iterations) 
magnitude of that coordinate.  

 

• ADAGRAD often leads to extremely efficient training. On large 
datasets its not unusual for a model to converge in less than 
one pass over the dataset. (“less” than Naïve Bayes!) 



Support Vector Machines 

• A Support Vector Machine (SVM) is a classifier that tries to 
maximize the margin between training data and the 
classification boundary (the plane defined by 𝑋𝛽 = 0) 



Support Vector Machines 

• The idea is that maximizing the margin maximizes the chance 
that classification will be correct on new data. We assume 
the new data of each class is near the training data of that 
type. 



SVM Training 

SVMs can be trained using SGD. Recall that the Logistic gradient 
was (this time assuming 𝒚𝒊 ∈ −𝟏,+𝟏 ): 

𝑑𝐴

𝑑𝛽
= ⁡ 𝑦𝑖𝑝𝑖 1 − 𝑝𝑖
𝑁

𝑖=1

𝑋𝑖 

The SVM gradient can be defined as (here 𝑝𝑖 = 𝑋𝑖𝛽) 

𝑑𝐴

𝑑𝛽
= ⁡ if⁡ 𝑝𝑖𝑦𝑖 < 1 ⁡then

𝑁

𝑖=1

𝑦𝑖𝑋𝑖⁡else⁡0 

The expression 𝑝𝑖𝑦𝑖 < 1  tests whether the point 𝑋𝑖 is in the 

margin, and if so adds it with sign 𝑦𝑖. It ignores other points. 

Both methods weight points “near the middle” with sign 𝒚𝒊. 

 

 



SVM Training 

This SGD training method (called Pegasos) is much faster than 
previous methods, and competitive with Logistic Regression. 

 

Its also capable of training in less than one pass over a dataset. 

 

We’ll try some of these in Lab 7.  

 



Decision trees 

• Walk from root to a class-labeled leaf. 

• At each node, branch based on the value of some feature. 

Note you can use the same  

attribute more than once. 



Decision tree learning 

• If there are k features, a decision tree might have up 
to 2k nodes. This is usually much too big in practice. 

 

• We want to find “efficient” (smaller) trees.  

 

• We can do this in a greedy manner by recursively 
choosing a best split feature at each node. 

 

 



Choosing an attribute 

• Idea: a good features splits the examples into subsets that are 
(ideally) "all positive" or "all negative" 

 

 

 

 

 

 

 

• Patrons or type?  To wait or not to wait is still at 50%. 



Using Information Theory 

Entropy is defined at each node based on the class 
breakdown: 

• Let 𝑝𝑖 be the fraction of examples in class i. 

• Let 𝑝𝑖
𝑓

be the fraction of elements with feature f that 
lie in class i. 

• Let 𝑝𝑖
¬𝑓

be the fraction of elements without feature f 
that lie in class i 

 

Finally let 𝑝𝑓 and 𝑝¬𝑓 be the fraction of nodes with 
(respectively without) feature f 

 



Information Gain 

Before the split by f, entropy is  

𝐸 = − 𝑝𝑖 log 𝑝𝑖

𝑚

𝑖=1

 

 

After split by f, the entropy is 

𝐸𝑓 =⁡−𝑝
𝑓 𝑝𝑖

𝑓
log 𝑝𝑖
𝑓

𝑚

𝑖=1

− 𝑝¬𝑓 𝑝𝑖
¬𝑓
log 𝑝𝑖
¬𝑓

𝑚

𝑖=1

 

 

The information gain = 𝐸⁡ −⁡𝐸𝑓 (information = -entropy) 



Example 
AAAA 

BB 

CC 

AA 

B 

C 

AA 

B 

C 

AAAA 

BB 

CC 

AA 

CC 

AA 

BB 

𝐸 = − 𝑝𝑖 log 𝑝𝑖 =   

0.5*1+0.25*2+0.25*2 = 1.5 bits 
After: 

𝐸𝑓 = (0.5+0.5)*1.5= 1.5 bits 

No gain! 

 

 

 

Before: E = 1.5 bits 

After: 

𝐸𝑓 = (0.5+0.5)*1 bits = 1 bits 

Gain = 𝐸⁡ −⁡𝐸𝑓 = 0.5 bits 

 

 

Split by  
Patrons feature 

Split by  
Type feature 

Classes A, B, C 

P = (0.5,0.25,0.25) P = (0.5,0.25,0.25) 

(0.5,0.25,0.25) (0.5,0.25,0.25) (0.5,0,0.5) (0.5,0.5,0) 



Choosing best features 

At each node, we choose the feature f which 
maximizes the information gain.  

 

This tends to be produce mixtures of classes at each 
node that are more and more “pure” as you go down 
the tree. 

 

If a node has examples all of one class c, we make it a 
leaf and output “c”. Otherwise, when we hit the depth 
limit, we output the most popular class at that node. 

 



Ensemble Methods 

Are like Crowdsourced machine learning algorithms: 

• Take a collection of simple or weak learners 

• Combine their results to make a single, better learner 

Types: 

• Bagging: train learners in parallel on different samples of the 
data, then combine by voting (discrete output) or by 
averaging (continuous output). 

• Stacking: combine model outputs using a second-stage 
learner like linear regression.  

• Boosting: train learners on the filtered output of other 
learners. 



Random Forests 

Grow K trees on datasets sampled from the original dataset with 
replacement (bootstrap samples), p = number of features. 

• Draw K bootstrap samples of size N 

• Grow each Decision Tree, by selecting a random set of m out of p 
features at each node, and choosing the best feature to split on.  

• Aggregate the predictions of the trees (most popular vote) to 
produce the final class.  

 

Typically m might be e.g. sqrt(p) but can be smaller. 



Random Forests 

Principles: we want to take a vote between different learners so 
we don’t want the models to be too similar. These two criteria 
ensure diversity in the individual trees: 

• Draw K bootstrap samples of size N:  

• Each tree is trained on different data. 

• Grow a Decision Tree, by selecting a random set of m out of p 
features at each node, and choosing the best feature to split on. 

• Corresponding nodes in different trees (usually) cant use the 
same feature to split. 



Random Forests 

• Very popular in practice, probably the most popular 
classifier for dense data (<= a few thousand features) 

• Easy to implement (train a lot of trees). Good match 
for MapReduce. 

• Parallelizes easily (but not necessarily efficiently). 

• Not quite state-of-the-art accuracy – boosted trees 
generally do better – or DNNs. 

• Needs many passes over the data – at least the max 
depth of the trees. (<< boosted trees though) 

• Easy to overfit – hard to balance accuracy/fit tradeoff. 



5 minute break 
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Precision and Recall 

When evaluating a search tool or a classifier, we are interested in 
at least two performance measures: 

 

Precision: Within a given set of positively-labeled results, the 
fraction that were true positives = tp/(tp + fp) 

 

Recall: Given a set of positively-labeled results, the fraction of all 
positives that were retrieved = tp/(tp + fn) 

 

Positively-labeled means judged “relevant” by the search engine 
or labeled as in the class by a classifier. tp = true positive, fp = 
false positive etc.  

 

 

 

 

 



Precision and Recall 

Search tools and classifiers normally assign scores to items. 
Sorting by score gives us a precision-recall plot which shows 
what performance would be for different score thresholds. 

 

Score increasing 



Be careful of “Accuracy” 

The simplest measure of performance would be the fraction of 
items that are correctly classified, or the “accuracy” which is: 

 

 

 

But this measure is dominated by the larger set (of positives or 
negatives) and favors trivial classifiers.  

 

e.g. if 5% of items are truly positive, then a classifier that always 
says “negative” is 95% accurate. 

 

 

 

 

 

 

 

tp + tn 

tp + tn + fp + fn 



Weighted loss 

We can instead try to minimize a weight sum: 
𝑤1⁡fn +⁡𝑤2⁡fp 

And typically 𝑤1 ≫⁡𝑤2, since positives are often much rarer 
(clicks or purchases or viewing a movie).  

 

 

 

 

 

 

 



The weighted “F” measure 

A measure that naturally combines precision and recall is the -
weighted F-measure: 

                               F =  

 

Which is the weighted harmonic mean of precision and recall. 
Setting  = 1 gives us the F1 – measure. It can also be computed 
as: 

 

 

 

 

 

 

 

 

 

 



Interpolated Recall 
The true precision plot (blue) necessarily dips at high precision 
each time a fp appears in the item ordering. These can be 
removed by using “interpolated precision” which is defined as 
the max precision at any recall value r’ > the current r. An 
interpolated precision-recall curve is non-increasing.  

 



TREC Precision-Recall plots 
We compute the interpolated precision values at ten values of 
recall, 0.1, 0.2,… 1.0.  

 



ROC plots 
ROC is Receiver-Operating Characteristic. ROC plots 

Y-axis: true positive rate = tp/(tp + fn), same as recall 

X-axis: false positive rate = fp/(fp + tn) = 1 - specificity  

 

Score increasing 



ROC AUC 
ROC AUC is the “Area Under the Curve” – a single number that 
captures the overall quality of the classifier. It should be between 
0.5 (random classifier) and 1.0 (perfect).  

 

Random ordering 
area = 0.5 



Lift Plot 
A derivative of the ROC plot is the lift plot, which compares the 
performance of the actual classifier/search engine against 
random ordering, or sometimes against another classifier.  

 

Lift is the ratio  
of these lengths 



Lift Plot 
Lift plots emphasize initial precision (typically what you care 

about), and performance in a problem-independent way. 

Note: The lift plot points should be computed at regular spacing, 
e.g. 1/00 or 1/1000. Otherwise the initial lift value can be 
excessively high, and unstable.  

1 - specificity 



Summary 
• Three (+ ½) more Basic Algorithms 

• Naïve Bayes 

• Logistic Regression (+ ½ SVM ) 

• Random Forests 

• Evaluation 

• Precision/Recall 
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