
Introduction to Data Science
Lecture 8

3 ½ more Basic Algorithms

CS 194 Fall 2014

John Canny

Outline for this Evening
• Three (+ ½) more Basic Algorithms

• Naïve Bayes

• Logistic Regression (+ ½ SVM)

• Random Forests

• Evaluation

• Precision/Recall

• Accuracy + weighted loss

• ROC and AUC

• Lift

Techniques
• Supervised Learning:

• kNN (k Nearest Neighbors)

• Linear Regression

• Naïve Bayes

• Logistic Regression

• Support Vector Machines

• Random Forests

• Unsupervised Learning:

• Clustering

• Factor analysis

• Topic Models

Techniques
• Supervised Learning:

• kNN (k Nearest Neighbors)

• Linear Regression

• Naïve Bayes

• Logistic Regression

• Support Vector Machines

• Random Forests

• Unsupervised Learning:

• Clustering

• Factor analysis

• Topic Models

Autonomy Corp

Bayes’ Theorem

P(A|B) = probability of A given that B is true.

P(A|B) =

In practice we are most interested in dealing with events e and
data D.

e = “I have a cold”
D = “runny nose,” “watery eyes,” “coughing”

P(e|D)=

So Bayes’ theorem is “diagnostic”.

P(B|A)P(A)

P(B)

P(D|e)P(e)

P(D)

Bayes’ Theorem

Bayes’ Theorem

D = Data, e = some event

 P(e|D) =

P(e) is called the prior probability of e. Its what we know (or think
we know) about e with no other evidence.

P(D|e) is the conditional probability of D given that e happened,
or just the likelihood of D. This can often be measured or
computed precisely – it follows from your model assumptions.

P(e|D) is the posterior probability of e given D. It’s the answer we
want, or the way we choose a best answer.

You can see that the posterior is heavily colored by the prior, so
Bayes’ has a GIGO liability. e.g. its not used to test hypotheses

P(D|e)P(e)

P(D)

Naïve Bayes Classifier

Let’s assume we have an instance (e.g. a document d) with a set
of features 𝑋1, … , 𝑋𝑘 and a set of classes 𝑐𝑗 to which the

document might belong.

We want to find the most likely class that the document belongs
to, given its features.

The joint probability of the class and features is:

Pr 𝑋1, … , 𝑋𝑘 , 𝑐𝑗

Naïve Bayes Classifier

Key Assumption: (Naïve) the features are generated
independently given 𝑐𝑗. Then the joint probability factors:

Pr 𝑋, 𝑐𝑗 = Pr 𝑋1, … , 𝑋𝑘 |𝑐𝑗 Pr 𝑐𝑗 = Pr 𝑐𝑗 Pr 𝑋𝑖|𝑐𝑗

𝑘

𝑖=1

We would like to figure out the most likely class for (i.e. to
classify) the document, which is the 𝑐𝑗 which maximizes:

Pr 𝑐𝑗 |𝑋1, … , 𝑋𝑘

Naïve Bayes Classifier

Now from Bayes we know that:

Pr 𝑐𝑗 |𝑋1, … , 𝑋𝑘 = Pr 𝑋1, … , 𝑋𝑘 |𝑐𝑗 Pr 𝑐𝑗 / Pr 𝑋1, … , 𝑋𝑘

But to choose the best 𝑐𝑗, we can ignore Pr 𝑋1, … , 𝑋𝑘 since it’s

the same for every class. So we just have to maximize:

Pr 𝑋1, … , 𝑋𝑘|𝑐𝑗 Pr 𝑐𝑗

So finally we pick the category 𝑐𝑗 that maximizes:

Pr 𝑋1, … , 𝑋𝑘|𝑐𝑗 Pr 𝑐𝑗 = Pr 𝑐𝑗 Pr 𝑋𝑖|𝑐𝑗

𝑘

𝑖=1

Naïve Bayes Classifier

Now from Bayes we know that:

Pr 𝑐𝑗 |𝑋1, … , 𝑋𝑘 = Pr 𝑋1, … , 𝑋𝑘 |𝑐𝑗 Pr 𝑐𝑗 / Pr 𝑋1, … , 𝑋𝑘

But to choose the best 𝑐𝑗, we can ignore Pr 𝑋1, … , 𝑋𝑘 since it’s

the same for every class. So we just have to maximize:

Pr 𝑋1, … , 𝑋𝑘|𝑐𝑗 Pr 𝑐𝑗

So finally we pick the category 𝑐𝑗 that maximizes:

Pr 𝑋1, … , 𝑋𝑘|𝑐𝑗 Pr 𝑐𝑗 = Pr 𝑐𝑗 Pr 𝑋𝑖|𝑐𝑗

𝑘

𝑖=1

A A A B B B

Data for Naïve Bayes

In order to find the best class, we need two pieces of data:

• Pr 𝑐𝑗 the prior probability for the class 𝑐𝑗.

• Pr 𝑋𝑖|𝑐𝑗 the conditional probability of the feature 𝑋𝑖 given

the class 𝑐𝑗.

Data for Naïve Bayes

For these two data, we only need to record counts:
•
Pr 𝑐𝑗 =

𝑁𝑑 𝑐𝑗

𝑁𝑑

•
Pr 𝑋𝑖|𝑐𝑗 =

𝑁𝑤 𝑋𝑖,𝑐𝑗

𝑁𝑤 𝑐𝑗

Where 𝑁𝑑 𝑐𝑗 is the number of documents in class 𝑐𝑗, 𝑁𝑑 is the

total number of documents.

𝑁𝑤 𝑋𝑖 , 𝑐𝑗 is the number of times 𝑋𝑖 occurs in a document in 𝑐𝑗,

and and 𝑁𝑤 𝑐𝑗 is the total number of features in all docs in 𝑐𝑗.

“Training” Naïve Bayes

So there is no need to train a Naïve Bayes classifier, only to
accumulate the 𝑁𝑤 and 𝑁𝑑 counts.

But count data is only an approximation to those probabilities
however, and a count of zero is problematic (why)?

Instead of direct count ratios, we can use Laplace Smoothing:

𝑝 =
𝑁1 + 𝛼

𝑁2 + 𝛽

With constants 𝛼 and 𝛽. This reflects another layer of Bayesian
inference, and pushes p toward a prior of 𝛼/𝛽.

These constants can either be set based on prior knowledge, or
learned during a training phase.

Good, Bad and Ugly of NB Classifiers

• Simple and fast. Depend only on term frequency data for the
classes. One shot, no iteration.

• Very well-behaved numerically. Term weight depends only on
frequency of that term. Decoupled from other terms.

• Can work very well with sparse data, where combinations of
dependent terms are rare.

• Subject to error and bias when term probabilities are not
independent (e.g. URL prefixes).

• Can’t model patterns in the data.

• Typically not as accurate as other methods.

Logistic Regression

• We made a distinction earlier between regression (predicting
a real value) and classification (predicting a discrete value).

• Logistic regression is designed as a binary classifier (output
say {0,1}) but actually outputs the probability that the input
instance is in the “1” class.

• A logistic classifier has the form:

𝑝 𝑋 =
1

1 + exp −𝑋𝛽

where 𝑋 = 𝑋1, … , 𝑋𝑛 is a vector of features.

Logistic Regression

• Logistic regression is probably the most widely used general-
purpose classifier.

• Its very scalable and can be very fast to train. It’s used for

• Spam filtering

• News message classification

• Web site classification

• Product classification

• Most classification problems with large, sparse feature
sets.

• The only caveat is that it can overfit on very sparse data, so its
often used with Regularization

Logistic Regression

• Logistic regression maps the “regression” value −𝑋𝛽 in
(-,) to the range [0,1] using a “logistic” function:

𝑝 𝑋 =
1

1 + exp −𝑋𝛽

• i.e. the logistic function maps any value on the real line to a
probability in the range [0,1]

Logistic Regression

• Where did the logistic function
come from?

Logistic Regression and Naïve Bayes

• Logistic regression is actually a generalization of Naïve Bayes,
with binary features.

• Logistic Regression can model a Naïve Bayes classifier when
the binary features are independent.

• Bayes rule for two classes 𝑐 and ¬𝑐:

Pr 𝑐|𝑋 =
Pr 𝑋|𝑐 Pr 𝑐

Pr 𝑋
=

Pr 𝑋|𝑐 Pr 𝑐

Pr 𝑋|𝑐 Pr 𝑐 + Pr 𝑋|¬𝑐 Pr ¬𝑐

• Dividing by the numerator:

=
1

1 +
Pr 𝑋|¬𝑐 Pr ¬𝑐
Pr 𝑋|𝑐 Pr 𝑐

Logistic Regression and Naïve Bayes

We have

Pr 𝑐|𝑋 =
1

1 +
Pr 𝑋|¬𝑐 Pr ¬𝑐
Pr 𝑋|𝑐 Pr 𝑐

=
1

1 + exp −𝑋𝛽

which matches if

Pr 𝑋|¬𝑐 Pr ¬𝑐

Pr 𝑋|𝑐 Pr 𝑐
= exp −𝑋𝛽

and assuming feature independence, the LHS factors:

Pr 𝑋𝑖|¬𝑐

Pr 𝑋𝑖|𝑐

𝑛

𝑖=1

Pr ¬𝑐

Pr 𝑐
= exp −𝑋𝑖 𝛽𝑖

𝑛

𝑖=1

𝛽0

And we can match corresponding (i) terms to define 𝛽.

Logistic Regression and Naïve Bayes

Summary: Logistic regression has this form:

Pr 𝑐|𝑋 =
1

1 + exp −𝑋𝛽

Models Naïve Bayes formula with two classes
after dividing through by one of them

Models product of contributions
from different (independent) features

Logistic Regression and Naïve Bayes

• Because it can always learn an NB model but is more general,
Logistic regression should do at least as well as naïve Bayes*

• Logistic regression typically does better though because it can
deal with dependencies between features, whereas Naïve
Bayes cannot.

* - this may not be true if the Logistic model is overfit.
L1 regularization is often used with LR to avoid overfitting.

Logistic Training

For training, we start with a collection of input values 𝑋𝑖 and
corresponding output labels 𝑦𝑖 ∈ 0,1 . Let 𝑝𝑖 be the
predicted output on input 𝑋𝑖, so

𝑝𝑖 =
1

1 + exp −𝑋𝑖𝛽

The accuracy on an input 𝑋𝑖 is

𝐴𝑖 =𝑦𝑖𝑝𝑖 + 1 − 𝑦𝑖 1 − 𝑝𝑖

Logistic regression maximizes either the sum of the log accuracy,
or the total accuracy, e.g.

𝐴 = 𝐴𝑖
𝑁

𝑖=1

Logistic Training

To find the best 𝛽, we can use gradient ascent on the derivative
𝑑𝐴
𝑑𝛽 where

𝐴 = 𝐴𝑖
𝑁

𝑖=1

The gradient is

𝑑𝐴

𝑑𝛽
= 2𝑦𝑖 − 1 𝑝𝑖 1 − 𝑝𝑖
𝑁

𝑖=1

𝑋𝑖

Logistic Training

The gradient is a weighted sum of input vectors 𝑋𝑖.

𝑑𝐴

𝑑𝛽
= 2𝑦𝑖 − 1 𝑝𝑖 1 − 𝑝𝑖
𝑁

𝑖=1

𝑋𝑖

Positive instances (label 𝑦𝑖 = 1) get weight 𝑝𝑖 1 − 𝑝𝑖 while

negative instance get weight −𝑝𝑖 1 − 𝑝𝑖

The weight 𝑝𝑖 1 − 𝑝𝑖 is largest for

inputs with 𝑝 ≈ 0.5, which are
near the decision boundary.

−𝟏,+𝟏 [0,0.25]

y = p (1-p)

Logistic Regression Training - SGD

• A very efficient way to train logistic models is with Stochastic
Gradient Descent (SGD) – we keep updating the model with
gradients from small blocks (mini-batches) of input data.

• One challenge with training on power law data (i.e. most data)
is that the terms in the gradient can have very different
strengths (because of the power law distribution)

Logistic Regression Training - ADAGRAD

• This means that some gradient terms are 1000’s of times
larger than others, but the 𝛽 coefficients are about the same.
This imbalance makes training very slow.

• A recent method called ADAGRAD normalizes each coordinate
of gradient by the historical (from previous iterations)
magnitude of that coordinate.

• ADAGRAD often leads to extremely efficient training. On large
datasets its not unusual for a model to converge in less than
one pass over the dataset. (“less” than Naïve Bayes!)

Support Vector Machines

• A Support Vector Machine (SVM) is a classifier that tries to
maximize the margin between training data and the
classification boundary (the plane defined by 𝑋𝛽 = 0)

Support Vector Machines

• The idea is that maximizing the margin maximizes the chance
that classification will be correct on new data. We assume
the new data of each class is near the training data of that
type.

SVM Training

SVMs can be trained using SGD. Recall that the Logistic gradient
was (this time assuming 𝒚𝒊 ∈ −𝟏,+𝟏):

𝑑𝐴

𝑑𝛽
= 𝑦𝑖𝑝𝑖 1 − 𝑝𝑖
𝑁

𝑖=1

𝑋𝑖

The SVM gradient can be defined as (here 𝑝𝑖 = 𝑋𝑖𝛽)

𝑑𝐴

𝑑𝛽
= if 𝑝𝑖𝑦𝑖 < 1 then

𝑁

𝑖=1

𝑦𝑖𝑋𝑖else0

The expression 𝑝𝑖𝑦𝑖 < 1 tests whether the point 𝑋𝑖 is in the

margin, and if so adds it with sign 𝑦𝑖. It ignores other points.

Both methods weight points “near the middle” with sign 𝒚𝒊.

SVM Training

This SGD training method (called Pegasos) is much faster than
previous methods, and competitive with Logistic Regression.

Its also capable of training in less than one pass over a dataset.

We’ll try some of these in Lab 7.

Decision trees

• Walk from root to a class-labeled leaf.

• At each node, branch based on the value of some feature.

Note you can use the same

attribute more than once.

Decision tree learning

• If there are k features, a decision tree might have up
to 2k nodes. This is usually much too big in practice.

• We want to find “efficient” (smaller) trees.

• We can do this in a greedy manner by recursively
choosing a best split feature at each node.

Choosing an attribute

• Idea: a good features splits the examples into subsets that are
(ideally) "all positive" or "all negative"

• Patrons or type? To wait or not to wait is still at 50%.

Using Information Theory

Entropy is defined at each node based on the class
breakdown:

• Let 𝑝𝑖 be the fraction of examples in class i.

• Let 𝑝𝑖
𝑓

be the fraction of elements with feature f that
lie in class i.

• Let 𝑝𝑖
¬𝑓

be the fraction of elements without feature f
that lie in class i

Finally let 𝑝𝑓 and 𝑝¬𝑓 be the fraction of nodes with
(respectively without) feature f

Information Gain

Before the split by f, entropy is

𝐸 = − 𝑝𝑖 log 𝑝𝑖

𝑚

𝑖=1

After split by f, the entropy is

𝐸𝑓 =−𝑝
𝑓 𝑝𝑖

𝑓
log 𝑝𝑖
𝑓

𝑚

𝑖=1

− 𝑝¬𝑓 𝑝𝑖
¬𝑓
log 𝑝𝑖
¬𝑓

𝑚

𝑖=1

The information gain = 𝐸 −𝐸𝑓 (information = -entropy)

Example
AAAA

BB

CC

AA

B

C

AA

B

C

AAAA

BB

CC

AA

CC

AA

BB

𝐸 = − 𝑝𝑖 log 𝑝𝑖 =

0.5*1+0.25*2+0.25*2 = 1.5 bits
After:

𝐸𝑓 = (0.5+0.5)*1.5= 1.5 bits

No gain!

Before: E = 1.5 bits

After:

𝐸𝑓 = (0.5+0.5)*1 bits = 1 bits

Gain = 𝐸 −𝐸𝑓 = 0.5 bits

Split by
Patrons feature

Split by
Type feature

Classes A, B, C

P = (0.5,0.25,0.25) P = (0.5,0.25,0.25)

(0.5,0.25,0.25) (0.5,0.25,0.25) (0.5,0,0.5) (0.5,0.5,0)

Choosing best features

At each node, we choose the feature f which
maximizes the information gain.

This tends to be produce mixtures of classes at each
node that are more and more “pure” as you go down
the tree.

If a node has examples all of one class c, we make it a
leaf and output “c”. Otherwise, when we hit the depth
limit, we output the most popular class at that node.

Ensemble Methods

Are like Crowdsourced machine learning algorithms:

• Take a collection of simple or weak learners

• Combine their results to make a single, better learner

Types:

• Bagging: train learners in parallel on different samples of the
data, then combine by voting (discrete output) or by
averaging (continuous output).

• Stacking: combine model outputs using a second-stage
learner like linear regression.

• Boosting: train learners on the filtered output of other
learners.

Random Forests

Grow K trees on datasets sampled from the original dataset with
replacement (bootstrap samples), p = number of features.

• Draw K bootstrap samples of size N

• Grow each Decision Tree, by selecting a random set of m out of p
features at each node, and choosing the best feature to split on.

• Aggregate the predictions of the trees (most popular vote) to
produce the final class.

Typically m might be e.g. sqrt(p) but can be smaller.

Random Forests

Principles: we want to take a vote between different learners so
we don’t want the models to be too similar. These two criteria
ensure diversity in the individual trees:

• Draw K bootstrap samples of size N:

• Each tree is trained on different data.

• Grow a Decision Tree, by selecting a random set of m out of p
features at each node, and choosing the best feature to split on.

• Corresponding nodes in different trees (usually) cant use the
same feature to split.

Random Forests

• Very popular in practice, probably the most popular
classifier for dense data (<= a few thousand features)

• Easy to implement (train a lot of trees). Good match
for MapReduce.

• Parallelizes easily (but not necessarily efficiently).

• Not quite state-of-the-art accuracy – boosted trees
generally do better – or DNNs.

• Needs many passes over the data – at least the max
depth of the trees. (<< boosted trees though)

• Easy to overfit – hard to balance accuracy/fit tradeoff.

5 minute break

Outline for this Evening
• Three (+ ½) more Basic Algorithms

• Naïve Bayes

• Logistic Regression (+ ½ SVM)

• Random Forests

• Evaluation

• Precision/Recall

• Accuracy + weighted loss

• ROC and AUC

• Lift

Precision and Recall

When evaluating a search tool or a classifier, we are interested in
at least two performance measures:

Precision: Within a given set of positively-labeled results, the
fraction that were true positives = tp/(tp + fp)

Recall: Given a set of positively-labeled results, the fraction of all
positives that were retrieved = tp/(tp + fn)

Positively-labeled means judged “relevant” by the search engine
or labeled as in the class by a classifier. tp = true positive, fp =
false positive etc.

Precision and Recall

Search tools and classifiers normally assign scores to items.
Sorting by score gives us a precision-recall plot which shows
what performance would be for different score thresholds.

Score increasing

Be careful of “Accuracy”

The simplest measure of performance would be the fraction of
items that are correctly classified, or the “accuracy” which is:

But this measure is dominated by the larger set (of positives or
negatives) and favors trivial classifiers.

e.g. if 5% of items are truly positive, then a classifier that always
says “negative” is 95% accurate.

tp + tn

tp + tn + fp + fn

Weighted loss

We can instead try to minimize a weight sum:
𝑤1fn +𝑤2fp

And typically 𝑤1 ≫𝑤2, since positives are often much rarer
(clicks or purchases or viewing a movie).

The weighted “F” measure

A measure that naturally combines precision and recall is the -
weighted F-measure:

 F =

Which is the weighted harmonic mean of precision and recall.
Setting = 1 gives us the F1 – measure. It can also be computed
as:

Interpolated Recall
The true precision plot (blue) necessarily dips at high precision
each time a fp appears in the item ordering. These can be
removed by using “interpolated precision” which is defined as
the max precision at any recall value r’ > the current r. An
interpolated precision-recall curve is non-increasing.

TREC Precision-Recall plots
We compute the interpolated precision values at ten values of
recall, 0.1, 0.2,… 1.0.

ROC plots
ROC is Receiver-Operating Characteristic. ROC plots

Y-axis: true positive rate = tp/(tp + fn), same as recall

X-axis: false positive rate = fp/(fp + tn) = 1 - specificity

Score increasing

ROC AUC
ROC AUC is the “Area Under the Curve” – a single number that
captures the overall quality of the classifier. It should be between
0.5 (random classifier) and 1.0 (perfect).

Random ordering
area = 0.5

Lift Plot
A derivative of the ROC plot is the lift plot, which compares the
performance of the actual classifier/search engine against
random ordering, or sometimes against another classifier.

Lift is the ratio
of these lengths

Lift Plot
Lift plots emphasize initial precision (typically what you care

about), and performance in a problem-independent way.

Note: The lift plot points should be computed at regular spacing,
e.g. 1/00 or 1/1000. Otherwise the initial lift value can be
excessively high, and unstable.

1 - specificity

Summary
• Three (+ ½) more Basic Algorithms

• Naïve Bayes

• Logistic Regression (+ ½ SVM)

• Random Forests

• Evaluation

• Precision/Recall

• Accuracy + weighted loss

• ROC and AUC

• Lift

