1 # INTRODUCTION Each of the past three centuries has been dominated by a single technology. The 18th century was the era of the great mechanical systems accompanying the Industrial Revolution. The 19th century was the age of the steam engine. During the 20th century, the key technology was information gathering, processing, and distribution. Among other developments, we saw the installation of worldwide telephone networks, the invention of radio and television, the birth and unprecedented growth of the computer industry, and the launching of communication satellites. As a result of rapid technological progress, these areas are rapidly converging and the differences between collecting, transporting, storing, and processing information are quickly disappearing. Organizations with hundreds of offices spread over a wide geographical area routinely expect to be able to examine the current status of even their most remote outpost at the push of a button. As our ability to gather, process, and distribute information grows, the demand for ever more sophisticated information processing grows even faster. Although the computer industry is still young compared to other industries (e.g., automobiles and air transportation), computers have made spectacular progress in a short time. During the first two decades of their existence, computer systems were highly centralized, usually within a single large room. Not infrequently, this room had glass walls, through which visitors could gawk at the great electronic wonder inside. A medium-sized company or university might have had one or two computers, while large institutions had at most a few dozen. The idea that within twenty years equally powerful computers smaller than postage stamps would be mass produced by the millions was pure science fiction. The merging of computers and communications has had a profound influence on the way computer systems are organized. The concept of the "computer center" as a room with a large computer to which users bring their work for processing is now totally obsolete. The old model of a single computer serving all of the organization's computational needs has been replaced by one in which a large number of separate but interconnected computers do the job. These systems are called **computer networks**. The design and organization of these networks are the subjects of this book. Throughout the book we will use the term "computer network" to mean a collection of autonomous computers interconnected by a single technology. Two computers are said to be interconnected if they are able to exchange information. The connection need not be via a copper wire; fiber optics, microwaves, infrared, and communication satellites can also be used. Networks come in many sizes, shapes and forms, as we will see later. Although it may sound strange to some people, neither the Internet nor the World Wide Web is a computer network. By the end of this book, it should be clear why. The quick answer is: the Internet is not a single network but a network of networks and the Web is a distributed system that runs on top of the Internet. There is considerable confusion in the literature between a computer network and a **distributed system**. The key distinction is that in a distributed system, a collection of independent computers appears to its users as a single coherent system. Usually, it has a single model or paradigm that it presents to the users. Often a layer of software on top of the operating system, called **middleware**, is responsible for implementing this model. A well-known example of a distributed system is the **World Wide Web**, in which everything looks like a document (Web page). In a computer network, this coherence, model, and software are absent. Users are exposed to the actual machines, without any attempt by the system to make the machines look and act in a coherent way. If the machines have different hardware and different operating systems, that is fully visible to the users. If a user wants to run a program on a remote machine, he[†] has to log onto that machine and run it there. In effect, a distributed system is a software system built on top of a network. The software gives it a high degree of cohesiveness and transparency. Thus, the distinction between a network and a distributed system lies with the software (especially the operating system), rather than with the hardware. Nevertheless, there is considerable overlap between the two subjects. For example, both distributed systems and computer networks need to move files around. The difference lies in who invokes the movement, the system or the user. ^{† &}quot;He" should be read as "he or she" throughout this book. Although this book primarily focuses on networks, many of the topics are also important in distributed systems. For more information about distributed systems, see (Tanenbaum and Van Steen, 2002). #### 1.1 USES OF COMPUTER NETWORKS Before we start to examine the technical issues in detail, it is worth devoting some time to pointing out why people are interested in computer networks and what they can be used for. After all, if nobody were interested in computer networks, few of them would be built. We will start with traditional uses at companies and for individuals and then move on to recent developments regarding mobile users and home networking. ### 1.1.1 Business Applications Many companies have a substantial number of computers. For example, a company may have separate computers to monitor production, keep track of inventories, and do the payroll. Initially, each of these computers may have worked in isolation from the others, but at some point, management may have decided to connect them to be able to extract and correlate information about the entire company. Put in slightly more general form, the issue here is **resource sharing**, and the goal is to make all programs, equipment, and especially data available to anyone on the network without regard to the physical location of the resource and the user. An obvious and widespread example is having a group of office workers share a common printer. None of the individuals really needs a private printer, and a high-volume networked printer is often cheaper, faster, and easier to maintain than a large collection of individual printers. However, probably even more important than sharing physical resources such as printers, scanners, and CD burners, is sharing information. Every large and medium-sized company and many small companies are vitally dependent on computerized information. Most companies have customer records, inventories, accounts receivable, financial statements, tax information, and much more online. If all of its computers went down, a bank could not last more than five minutes. A modern manufacturing plant, with a computer-controlled assembly line, would not last even that long. Even a small travel agency or three-person law firm is now highly dependent on computer networks for allowing employees to access relevant information and documents instantly. For smaller companies, all the computers are likely to be in a single office or perhaps a single building, but for larger ones, the computers and employees may be scattered over dozens of offices and plants in many countries. Nevertheless, a sales person in New York might sometimes need access to a product inventory database in Singapore. In other words, the mere fact that a user happens to be 15,000 km away from his data should not prevent him from using the data as though they were local. This goal may be summarized by saying that it is an attempt to end the "tyranny of geography." In the simplest of terms, one can imagine a company's information system as consisting of one or more databases and some number of employees who need to access them remotely. In this model, the data are stored on powerful computers called **servers**. Often these are centrally housed and maintained by a system administrator. In contrast, the employees have simpler machines, called **clients**, on their desks, with which they access remote data, for example, to include in spreadsheets they are constructing. (Sometimes we will refer to the human user of the client machine as the "client," but it should be clear from the context whether we mean the computer or its user.) The client and server machines are connected by a network, as illustrated in Fig. 1-1. Note that we have shown the network as a simple oval, without any detail. We will use this form when we mean a network in the abstract sense. When more detail is required, it will be provided. Figure 1-1. A network with two clients and one server. This whole arrangement is called the **client-server model**. It is widely used and forms the basis of much network usage. It is applicable when the client and server are both in the same building (e.g., belong to the same company), but also when they are far apart. For example, when a person at home accesses a page on the World Wide Web, the same model is employed, with the remote Web server being the server and the user's personal computer being the client. Under most conditions, one server can handle a large number of clients. If we look at the client-server model in detail, we see that two processes are involved, one on the client machine and one on the server machine. Communication takes the form of the client process sending a message over the network to the server process. The client process then waits for a reply message. When the serv- er process gets the request, it performs the requested work or looks up the requested data and sends back a reply. These messages are shown in Fig. 1-2. Figure 1-2. The client-server model involves requests and replies. A second goal of setting up a computer network has to do with people rather than information or even computers. A computer network can provide a powerful **communication medium** among employees. Virtually every company that has two or
more computers now has **e-mail** (**electronic mail**), which employees generally use for a great deal of daily communication. In fact, a common gripe around the water cooler is how much e-mail everyone has to deal with, much of it meaningless because bosses have discovered that they can send the same (often content-free) message to all their subordinates at the push of a button. But e-mail is not the only form of improved communication made possible by computer networks. With a network, it is easy for two or more people who work far apart to write a report together. When one worker makes a change to an online document, the others can see the change immediately, instead of waiting several days for a letter. Such a speedup makes cooperation among far-flung groups of people easy where it previously had been impossible. Yet another form of computer-assisted communication is videoconferencing. Using this technology, employees at distant locations can hold a meeting, seeing and hearing each other and even writing on a shared virtual blackboard. Videoconferencing is a powerful tool for eliminating the cost and time previously devoted to travel. It is sometimes said that communication and transportation are having a race, and whichever wins will make the other obsolete. A third goal for increasingly many companies is doing business electronically with other companies, especially suppliers and customers. For example, manufacturers of automobiles, aircraft, and computers, among others, buy subsystems from a variety of suppliers and then assemble the parts. Using computer networks, manufacturers can place orders electronically as needed. Being able to place orders in real time (i.e., as needed) reduces the need for large inventories and enhances efficiency. A fourth goal that is starting to become more important is doing business with consumers over the Internet. Airlines, bookstores, and music vendors have discovered that many customers like the convenience of shopping from home. Consequently, many companies provide catalogs of their goods and services online and take orders on-line. This sector is expected to grow quickly in the future. It is called **e-commerce** (**electronic commerce**). # 1.1.2 Home Applications In 1977, Ken Olsen was president of the Digital Equipment Corporation, then the number two computer vendor in the world (after IBM). When asked why Digital was not going after the personal computer market in a big way, he said: "There is no reason for any individual to have a computer in his home." History showed otherwise and Digital no longer exists. Why do people buy computers for home use? Initially, for word processing and games, but in recent years that picture has changed radically. Probably the biggest reason now is for Internet access. Some of the more popular uses of the Internet for home users are as follows: - 1. Access to remote information. - 2. Person-to-person communication. - 3. Interactive entertainment. - 4. Electronic commerce. Access to remote information comes in many forms. It can be surfing the World Wide Web for information or just for fun. Information available includes the arts, business, cooking, government, health, history, hobbies, recreation, science, sports, travel, and many others. Fun comes in too many ways to mention, plus some ways that are better left unmentioned. Many newspapers have gone on-line and can be personalized. For example, it is sometimes possible to tell a newspaper that you want everything about corrupt politicians, big fires, scandals involving celebrities, and epidemics, but no football, thank you. Sometimes it is even possible to have the selected articles downloaded to your hard disk while you sleep or printed on your printer just before breakfast. As this trend continues, it will cause massive unemployment among 12-year-old paperboys, but newspapers like it because distribution has always been the weakest link in the whole production chain. The next step beyond newspapers (plus magazines and scientific journals) is the on-line digital library. Many professional organizations, such as the ACM (www.acm.org) and the IEEE Computer Society (www.computer.org), already have many journals and conference proceedings on-line. Other groups are following rapidly. Depending on the cost, size, and weight of book-sized notebook computers, printed books may become obsolete. Skeptics should take note of the effect the printing press had on the medieval illuminated manuscript. All of the above applications involve interactions between a person and a remote database full of information. The second broad category of network use is person-to-person communication, basically the 21st century's answer to the 19th century's telephone. E-mail is already used on a daily basis by millions of people all over the world and its use is growing rapidly. It already routinely contains audio and video as well as text and pictures. Smell may take a while. Any teenager worth his or her salt is addicted to **instant messaging**. This facility, derived from the UNIX *talk* program in use since around 1970, allows two people to type messages at each other in real time. A multiperson version of this idea is the **chat room**, in which a group of people can type messages for all to see. Worldwide newsgroups, with discussions on every conceivable topic, are already commonplace among a select group of people, and this phenomenon will grow to include the population at large. These discussions, in which one person posts a message and all the other subscribers to the newsgroup can read it, run the gamut from humorous to impassioned. Unlike chat rooms, newsgroups are not real time and messages are saved so that when someone comes back from vacation, all messages that have been posted in the meanwhile are patiently waiting for reading. Another type of person-to-person communication often goes by the name of **peer-to-peer** communication, to distinguish it from the client-server model (Parameswaran et al., 2001). In this form, individuals who form a loose group can communicate with others in the group, as shown in Fig. 1-3. Every person can, in principle, communicate with one or more other people; there is no fixed division into clients and servers. Figure 1-3. In a peer-to-peer system there are no fixed clients and servers. Peer-to-peer communication really hit the big time around 2000 with a service called Napster, which at its peak had over 50 million music fans swapping music, in what was probably the biggest copyright infringement in all of recorded history (Lam and Tan, 2001; and Macedonia, 2000). The idea was fairly simple. Members registered the music they had on their hard disks in a central database maintained on the Napster server. If a member wanted a song, he checked the database to see who had it and went directly there to get it. By not actually keeping any music on its machines, Napster argued that it was not infringing anyone's copyright. The courts did not agree and shut it down. However, the next generation of peer-to-peer systems eliminates the central database by having each user maintain his own database locally, as well as providing a list of other nearby people who are members of the system. A new user can then go to any existing member to see what he has and get a list of other members to inspect for more music and more names. This lookup process can be repeated indefinitely to build up a large local database of what is out there. It is an activity that would get tedious for people but is one at which computers excel. Legal applications for peer-to-peer communication also exist. For example, fans sharing public domain music or sample tracks that new bands have released for publicity purposes, families sharing photos, movies, and genealogical information, and teenagers playing multiperson on-line games. In fact, one of the most popular Internet applications of all, e-mail, is inherently peer-to-peer. This form of communication is expected to grow considerably in the future. Electronic crime is not restricted to copyright law. Another hot area is electronic gambling. Computers have been simulating things for decades. Why not simulate slot machines, roulette wheels, blackjack dealers, and more gambling equipment? Well, because it is illegal in a lot of places. The trouble is, gambling is legal in a lot of other places (England, for example) and casino owners there have grasped the potential for Internet gambling. What happens if the gambler and the casino are in different countries, with conflicting laws? Good question. Other communication-oriented applications include using the Internet to carry telephone calls, video phone, and Internet radio, three rapidly growing areas. Another application is telelearning, meaning attending 8 A.M. classes without the inconvenience of having to get out of bed first. In the long run, the use of networks to enhance human-to-human communication may prove more important than any of the others. Our third category is entertainment, which is a huge and growing industry. The killer application here (the one that may drive all the rest) is video on demand. A decade or so hence, it may be possible to select any movie or television program ever made, in any country, and have it displayed on your screen instantly. New films may become interactive, where the user is occasionally prompted for the story direction (should Macbeth murder Duncan or just bide his time?) with alternative scenarios provided for all cases. Live television may also become interactive, with the audience participating in quiz shows, choosing among contestants, and so on. On the other hand, maybe the killer application will not be video on demand. Maybe it will be game playing. Already we have multiperson real-time simulation games, like hide-and-seek in a virtual dungeon, and flight simulators with the players on one team trying to shoot down the players on the opposing team. If
games are played with goggles and three-dimensional real-time, photographic-quality moving images, we have a kind of worldwide shared virtual reality. Our fourth category is electronic commerce in the broadest sense of the term. Home shopping is already popular and enables users to inspect the on-line catalogs of thousands of companies. Some of these catalogs will soon provide the ability to get an instant video on any product by just clicking on the product's name. After the customer buys a product electronically but cannot figure out how to use it, on-line technical support may be consulted. Another area in which e-commerce is already happening is access to financial institutions. Many people already pay their bills, manage their bank accounts, and handle their investments electronically. This will surely grow as networks become more secure. One area that virtually nobody foresaw is electronic flea markets (e-flea?). On-line auctions of second-hand goods have become a massive industry. Unlike traditional e-commerce, which follows the client-server model, on-line auctions are more of a peer-to-peer system, sort of consumer-to-consumer. Some of these forms of e-commerce have acquired cute little tags based on the fact that "to" and "2" are pronounced the same. The most popular ones are listed in Fig. 1-4. | Tag | Full name | Example | |-----|------------------------|--| | B2C | Business-to-consumer | Ordering books on-line | | B2B | Business-to-business | Car manufacturer ordering tires from supplier | | G2C | Government-to-consumer | Government distributing tax forms electronically | | C2C | Consumer-to-consumer | Auctioning second-hand products on line | | P2P | Peer-to-peer | File sharing | Figure 1-4. Some forms of e-commerce. No doubt the range of uses of computer networks will grow rapidly in the future, and probably in ways no one can now foresee. After all, how many people in 1990 predicted that teenagers tediously typing short text messages on mobile phones while riding buses would be an immense money maker for telephone companies in 10 years? But short message service is very profitable. Computer networks may become hugely important to people who are geographically challenged, giving them the same access to services as people living in the middle of a big city. Telelearning may radically affect education; universities may go national or international. Telemedicine is only now starting to catch on (e.g., remote patient monitoring) but may become much more important. But the killer application may be something mundane, like using the webcam in your refrigerator to see if you have to buy milk on the way home from work. # 1.1.3 Mobile Users Mobile computers, such as notebook computers and personal digital assistants (PDAs), are one of the fastest-growing segments of the computer industry. Many owners of these computers have desktop machines back at the office and want to be connected to their home base even when away from home or en route. Since having a wired connection is impossible in cars and airplanes, there is a lot of interest in wireless networks. In this section we will briefly look at some of the uses of wireless networks. Why would anyone want one? A common reason is the portable office. People on the road often want to use their portable electronic equipment to send and receive telephone calls, faxes, and electronic mail, surf the Web, access remote files, and log on to remote machines. And they want to do this from anywhere on land, sea, or air. For example, at computer conferences these days, the organizers often set up a wireless network in the conference area. Anyone with a notebook computer and a wireless modem can just turn the computer on and be connected to the Internet, as though the computer were plugged into a wired network. Similarly, some universities have installed wireless networks on campus so students can sit under the trees and consult the library's card catalog or read their e-mail. Wireless networks are of great value to fleets of trucks, taxis, delivery vehicles, and repairpersons for keeping in contact with home. For example, in many cities, taxi drivers are independent businessmen, rather than being employees of a taxi company. In some of these cities, the taxis have a display the driver can see. When a customer calls up, a central dispatcher types in the pickup and destination points. This information is displayed on the drivers' displays and a beep sounds. The first driver to hit a button on the display gets the call. Wireless networks are also important to the military. If you have to be able to fight a war anywhere on earth on short notice, counting on using the local networking infrastructure is probably not a good idea. It is better to bring your own. Although wireless networking and mobile computing are often related, they are not identical, as Fig. 1-5 shows. Here we see a distinction between **fixed wireless** and **mobile wireless**. Even notebook computers are sometimes wired. For example, if a traveler plugs a notebook computer into the telephone jack in a hotel room, he has mobility without a wireless network. | Wireless | Mobile | Applications | |----------|--------|--| | No | No | Desktop computers in offices | | No | Yes | A notebook computer used in a hotel room | | Yes | No | Networks in older, unwired buildings | | Yes | Yes | Portable office; PDA for store inventory | Figure 1-5. Combinations of wireless networks and mobile computing. On the other hand, some wireless computers are not mobile. An important example is a company that owns an older building lacking network cabling, and which wants to connect its computers. Installing a wireless network may require little more than buying a small box with some electronics, unpacking it, and plugging it in. This solution may be far cheaper than having workmen put in cable ducts to wire the building. But of course, there are also the true mobile, wireless applications, ranging from the portable office to people walking around a store with a PDA doing inventory. At many busy airports, car rental return clerks work in the parking lot with wireless portable computers. They type in the license plate number of returning cars, and their portable, which has a built-in printer, calls the main computer, gets the rental information, and prints out the bill on the spot. As wireless technology becomes more widespread, numerous other applications are likely to emerge. Let us take a quick look at some of the possibilities. Wireless parking meters have advantages for both users and city governments. The meters could accept credit or debit cards with instant verification over the wireless link. When a meter expires, it could check for the presence of a car (by bouncing a signal off it) and report the expiration to the police. It has been estimated that city governments in the U.S. alone could collect an additional \$10 billion this way (Harte et al., 2000). Furthermore, better parking enforcement would help the environment, as drivers who knew their illegal parking was sure to be caught might use public transport instead. Food, drink, and other vending machines are found everywhere. However, the food does not get into the machines by magic. Periodically, someone comes by with a truck to fill them. If the vending machines issued a wireless report once a day announcing their current inventories, the truck driver would know which machines needed servicing and how much of which product to bring. This information could lead to more efficient route planning. Of course, this information could be sent over a standard telephone line as well, but giving every vending machine a fixed telephone connection for one call a day is expensive on account of the fixed monthly charge. Another area in which wireless could save money is utility meter reading. If electricity, gas, water, and other meters in people's homes were to report usage over a wireless network, there would be no need to send out meter readers. Similarly, wireless smoke detectors could call the fire department instead of making a big noise (which has little value if no one is home). As the cost of both the radio devices and the air time drops, more and more measurement and reporting will be done with wireless networks. A whole different application area for wireless networks is the expected merger of cell phones and PDAs into tiny wireless computers. A first attempt was tiny wireless PDAs that could display stripped-down Web pages on their even tinier screens. This system, called **WAP 1.0** (**Wireless Application Protocol**) failed, mostly due to the microscopic screens, low bandwidth, and poor service. But newer devices and services will be better with WAP 2.0. One area in which these devices may excel is called **m-commerce** (**mobile-commerce**) (Senn, 2000). The driving force behind this phenomenon consists of an amalgam of wireless PDA manufacturers and network operators who are trying hard to figure out how to get a piece of the e-commerce pie. One of their hopes is to use wireless PDAs for banking and shopping. One idea is to use the wireless PDAs as a kind of electronic wallet, authorizing payments in stores, as a replacement for cash and credit cards. The charge then appears on the mobile phone bill. From the store's point of view, this scheme may save them most of the credit card company's fee, which can be several percent. Of course, this plan may backfire, since customers in a store might use their PDAs to check out competitors' prices before buying. Worse yet, telephone companies might offer PDAs with bar code readers that allow a customer to scan a product in a store and then instantaneously get a detailed report on where else it can be purchased and at what price. Since the network operator knows where the user is, some services are intentionally location dependent.
For example, it may be possible to ask for a nearby bookstore or Chinese restaurant. Mobile maps are another candidate. So are very local weather forecasts ("When is it going to stop raining in my backyard?"). No doubt many other applications appear as these devices become more widespread. One huge thing that m-commerce has going for it is that mobile phone users are accustomed to paying for everything (in contrast to Internet users, who expect everything to be free). If an Internet Web site charged a fee to allow its customers to pay by credit card, there would be an immense howling noise from the users. If a mobile phone operator allowed people to pay for items in a store by using the phone and then tacked on a fee for this convenience, it would probably be accepted as normal. Time will tell. A little further out in time are personal area networks and wearable computers. IBM has developed a watch that runs Linux (including the X11 windowing system) and has wireless connectivity to the Internet for sending and receiving email (Narayanaswami et al., 2002). In the future, people may exchange business cards just by exposing their watches to each other. Wearable wireless computers may give people access to secure rooms the same way magnetic stripe cards do now (possibly in combination with a PIN code or biometric measurement). These watches may also be able to retrieve information relevant to the user's current location (e.g., local restaurants). The possibilities are endless. Smart watches with radios have been part of our mental space since their appearance in the Dick Tracy comic strip in 1946. But smart dust? Researchers at Berkeley have packed a wireless computer into a cube 1 mm on edge (Warneke et al., 2001). Potential applications include tracking inventory, packages, and even small birds, rodents, and insects. #### 1.1.4 Social Issues The widespread introduction of networking has introduced new social, ethical, and political problems. Let us just briefly mention a few of them; a thorough study would require a full book, at least. A popular feature of many networks are newsgroups or bulletin boards whereby people can exchange messages with likeminded individuals. As long as the subjects are restricted to technical topics or hobbies like gardening, not too many problems will arise. The trouble comes when newsgroups are set up on topics that people actually care about, like politics, religion, or sex. Views posted to such groups may be deeply offensive to some people. Worse yet, they may not be politically correct. Furthermore, messages need not be limited to text. High-resolution color photographs and even short video clips can now easily be transmitted over computer networks. Some people take a live-and-let-live view, but others feel that posting certain material (e.g., attacks on particular countries or religions, pornography, etc.) is simply unacceptable and must be censored. Different countries have different and conflicting laws in this area. Thus, the debate rages. People have sued network operators, claiming that they are responsible for the contents of what they carry, just as newspapers and magazines are. The inevitable response is that a network is like a telephone company or the post office and cannot be expected to police what its users say. Stronger yet, were network operators to censor messages, they would likely delete everything containing even the slightest possibility of them being sued, and thus violate their users' rights to free speech. It is probably safe to say that this debate will go on for a while. Another fun area is employee rights versus employer rights. Many people read and write e-mail at work. Many employers have claimed the right to read and possibly censor employee messages, including messages sent from a home computer after work. Not all employees agree with this. Even if employers have power over employees, does this relationship also govern universities and students? How about high schools and students? In 1994, Carnegie-Mellon University decided to turn off the incoming message stream for several newsgroups dealing with sex because the university felt the material was inappropriate for minors (i.e., those few students under 18). The fallout from this event took years to settle. Another key topic is government versus citizen. The FBI has installed a system at many Internet service providers to snoop on all incoming and outgoing email for nuggets of interest to it (Blaze and Bellovin, 2000; Sobel, 2001; and Zacks, 2001). The system was originally called **Carnivore** but bad publicity caused it to be renamed to the more innocent-sounding DCS1000. But its goal is still to spy on millions of people in the hope of finding information about illegal activities. Unfortunately, the Fourth Amendment to the U.S. Constitution prohibits government searches without a search warrant. Whether these 54 words, written in the 18th century, still carry any weight in the 21st century is a matter that may keep the courts busy until the 22nd century. The government does not have a monopoly on threatening people's privacy. The private sector does its bit too. For example, small files called cookies that Web browsers store on users' computers allow companies to track users' activities in cyberspace and also may allow credit card numbers, social security numbers, and other confidential information to leak all over the Internet (Berghel, 2001). Computer networks offer the potential for sending anonymous messages. In some situations, this capability may be desirable. For example, it provides a way for students, soldiers, employees, and citizens to blow the whistle on illegal behavior on the part of professors, officers, superiors, and politicians without fear of reprisals. On the other hand, in the United States and most other democracies, the law specifically permits an accused person the right to confront and challenge his accuser in court. Anonymous accusations cannot be used as evidence. In short, computer networks, like the printing press 500 years ago, allow ordinary citizens to distribute their views in different ways and to different audiences than were previously possible. This new-found freedom brings with it many unsolved social, political, and moral issues. Along with the good comes the bad. Life seems to be like that. The Internet makes it possible to find information quickly, but a lot of it is ill-informed, misleading, or downright wrong. The medical advice you plucked from the Internet may have come from a Nobel Prize winner or from a high school dropout. Computer networks have also introduced new kinds of antisocial and criminal behavior. Electronic junk mail (spam) has become a part of life because people have collected millions of e-mail addresses and sell them on CD-ROMs to would-be marketeers. E-mail messages containing active content (basically programs or macros that execute on the receiver's machine) can contain viruses that wreak havoc. Identity theft is becoming a serious problem as thieves collect enough information about a victim to obtain get credit cards and other documents in the victim's name. Finally, being able to transmit music and video digitally has opened the door to massive copyright violations that are hard to catch and enforce. A lot of these problems could be solved if the computer industry took computer security seriously. If all messages were encrypted and authenticated, it would be harder to commit mischief. This technology is well established and we will study it in detail in Chap. 8. The problem is that hardware and software vendors know that putting in security features costs money and their customers are not demanding such features. In addition, a substantial number of the problems are caused by buggy software, which occurs because vendors keep adding more and more features to their programs, which inevitably means more code and thus more bugs. A tax on new features might help, but that is probably a tough sell in some quarters. A refund for defective software might be nice, except it would bankrupt the entire software industry in the first year. #### 1.2 NETWORK HARDWARE It is now time to turn our attention from the applications and social aspects of networking (the fun stuff) to the technical issues involved in network design (the work stuff). There is no generally accepted taxonomy into which all computer networks fit, but two dimensions stand out as important: transmission technology and scale. We will now examine each of these in turn. Broadly speaking, there are two types of transmission technology that are in widespread use. They are as follows: - 1. Broadcast links. - 2. Point-to-point links. **Broadcast networks** have a single communication channel that is shared by all the machines on the network. Short messages, called **packets** in certain contexts, sent by any machine are received by all the others. An address field within the packet specifies the intended recipient. Upon receiving a packet, a machine checks the address field. If the packet is intended for the receiving machine, that machine processes the packet; if the packet is intended for some other machine, it is just ignored. As an analogy, consider someone standing at the end of a corridor with many rooms off it and shouting "Watson, come here. I want you." Although the packet may actually be received (heard) by many people, only Watson responds. The others just ignore it. Another analogy is an airport announcement asking all flight 644 passengers to report to gate 12 for immediate boarding. Broadcast systems generally also allow the possibility of addressing a packet to *all* destinations by using a special code in the address field. When a packet with this code is transmitted, it is received and processed by every machine on the network. This mode of operation is called **broadcasting**. Some broadcast systems also support transmission to a subset of the machines,
something known as **multicasting**. One possible scheme is to reserve one bit to indicate multicasting. The remaining n-1 address bits can hold a group number. Each machine can "subscribe" to any or all of the groups. When a packet is sent to a certain group, it is delivered to all machines subscribing to that group. In contrast, **point-to-point** networks consist of many connections between individual pairs of machines. To go from the source to the destination, a packet on this type of network may have to first visit one or more intermediate machines. Often multiple routes, of different lengths, are possible, so finding good ones is important in point-to-point networks. As a general rule (although there are many exceptions), smaller, geographically localized networks tend to use broadcasting, whereas larger networks usually are point-to-point. Point-to-point transmission with one sender and one receiver is sometimes called **unicasting**. An alternative criterion for classifying networks is their scale. In Fig. 1-6 we classify multiple processor systems by their physical size. At the top are the **personal area networks**, networks that are meant for one person. For example, a wireless network connecting a computer with its mouse, keyboard, and printer is a personal area network. Also, a PDA that controls the user's hearing aid or pacemaker fits in this category. Beyond the personal area networks come longerrange networks. These can be divided into local, metropolitan, and wide area networks. Finally, the connection of two or more networks is called an internetwork. Figure 1-6. Classification of interconnected processors by scale. The worldwide Internet is a well-known example of an internetwork. Distance is important as a classification metric because different techniques are used at different scales. In this book we will be concerned with networks at all these scales. Below we give a brief introduction to network hardware. #### 1.2.1 Local Area Networks **Local area networks**, generally called **LANs**, are privately-owned networks within a single building or campus of up to a few kilometers in size. They are widely used to connect personal computers and workstations in company offices and factories to share resources (e.g., printers) and exchange information. LANs are distinguished from other kinds of networks by three characteristics: (1) their size, (2) their transmission technology, and (3) their topology. LANs are restricted in size, which means that the worst-case transmission time is bounded and known in advance. Knowing this bound makes it possible to use certain kinds of designs that would not otherwise be possible. It also simplifies network management. LANs may use a transmission technology consisting of a cable to which all the machines are attached, like the telephone company party lines once used in rural areas. Traditional LANs run at speeds of 10 Mbps to 100 Mbps, have low delay (microseconds or nanoseconds), and make very few errors. Newer LANs operate at up to 10 Gbps. In this book, we will adhere to tradition and measure line speeds in megabits/sec (1 Mbps is 1,000,000 bits/sec) and gigabits/sec (1 Gbps is 1,000,000,000 bits/sec). Various topologies are possible for broadcast LANs. Figure 1-7 shows two of them. In a bus (i.e., a linear cable) network, at any instant at most one machine is the master and is allowed to transmit. All other machines are required to refrain from sending. An arbitration mechanism is needed to resolve conflicts when two or more machines want to transmit simultaneously. The arbitration mechanism may be centralized or distributed. IEEE 802.3, popularly called **Ethernet**, for example, is a bus-based broadcast network with decentralized control, usually operating at 10 Mbps to 10 Gbps. Computers on an Ethernet can transmit whenever they want to; if two or more packets collide, each computer just waits a random time and tries again later. Figure 1-7. Two broadcast networks. (a) Bus. (b) Ring. A second type of broadcast system is the ring. In a ring, each bit propagates around on its own, not waiting for the rest of the packet to which it belongs. Typically, each bit circumnavigates the entire ring in the time it takes to transmit a few bits, often before the complete packet has even been transmitted. As with all other broadcast systems, some rule is needed for arbitrating simultaneous accesses to the ring. Various methods, such as having the machines take turns, are in use. IEEE 802.5 (the IBM token ring), is a ring-based LAN operating at 4 and 16 Mbps. FDDI is another example of a ring network. Broadcast networks can be further divided into static and dynamic, depending on how the channel is allocated. A typical static allocation would be to divide time into discrete intervals and use a round-robin algorithm, allowing each machine to broadcast only when its time slot comes up. Static allocation wastes channel capacity when a machine has nothing to say during its allocated slot, so most systems attempt to allocate the channel dynamically (i.e., on demand). Dynamic allocation methods for a common channel are either centralized or decentralized. In the centralized channel allocation method, there is a single entity, for example, a bus arbitration unit, which determines who goes next. It might do this by accepting requests and making a decision according to some internal algorithm. In the decentralized channel allocation method, there is no central entity; each machine must decide for itself whether to transmit. You might think that this always leads to chaos, but it does not. Later we will study many algorithms designed to bring order out of the potential chaos. # 1.2.2 Metropolitan Area Networks A metropolitan area network, or MAN, covers a city. The best-known example of a MAN is the cable television network available in many cities. This system grew from earlier community antenna systems used in areas with poor over-the-air television reception. In these early systems, a large antenna was placed on top of a nearby hill and signal was then piped to the subscribers' houses. At first, these were locally-designed, ad hoc systems. Then companies began jumping into the business, getting contracts from city governments to wire up an entire city. The next step was television programming and even entire channels designed for cable only. Often these channels were highly specialized, such as all news, all sports, all cooking, all gardening, and so on. But from their inception until the late 1990s, they were intended for television reception only. Starting when the Internet attracted a mass audience, the cable TV network operators began to realize that with some changes to the system, they could provide two-way Internet service in unused parts of the spectrum. At that point, the cable TV system began to morph from a way to distribute television to a metropolitan area network. To a first approximation, a MAN might look something like the system shown in Fig. 1-8. In this figure we see both television signals and Internet being fed into the centralized **head end** for subsequent distribution to people's homes. We will come back to this subject in detail in Chap. 2. Figure 1-8. A metropolitan area network based on cable TV. Cable television is not the only MAN. Recent developments in high-speed wireless Internet access resulted in another MAN, which has been standardized as IEEE 802.16. We will look at this area in Chap. 2. #### 1.2.3 Wide Area Networks A wide area network, or WAN, spans a large geographical area, often a country or continent. It contains a collection of machines intended for running user (i.e., application) programs. We will follow traditional usage and call these machines hosts. The hosts are connected by a communication subnet, or just subnet for short. The hosts are owned by the customers (e.g., people's personal computers), whereas the communication subnet is typically owned and operated by a telephone company or Internet service provider. The job of the subnet is to carry messages from host to host, just as the telephone system carries words from speaker to listener. Separation of the pure communication aspects of the network (the subnet) from the application aspects (the hosts), greatly simplifies the complete network design. In most wide area networks, the subnet consists of two distinct components: transmission lines and switching elements. **Transmission lines** move bits between machines. They can be made of copper wire, optical fiber, or even radio links. **Switching elements** are specialized computers that connect three or more transmission lines. When data arrive on an incoming line, the switching element must choose an outgoing line on which to forward them. These switching computers have been called by various names in the past; the name **router** is now most commonly used. Unfortunately, some people pronounce it "rooter" and others have it rhyme with "doubter." Determining the correct pronunciation will be left as an exercise for the reader. (Note: the perceived correct answer may depend on where you live.) In this model, shown in Fig. 1-9, each host is frequently connected to a LAN on which a router is present, although in some cases a host can be connected directly to a router. The collection of communication lines and routers (but not the hosts) form the subnet. Figure 1-9. Relation between hosts on LANs and the subnet. A short comment about the term "subnet" is in order here. Originally, its **only** meaning was the collection of routers and communication lines that moved packets from the source host to the destination host. However, some years later, it also acquired a second meaning in conjunction with network addressing (which we will discuss in Chap. 5). Unfortunately, no widely-used alternative exists for its initial meaning, so with some hesitation we will use it in both senses. From the context, it will always be clear which
is meant. In most WANs, the network contains numerous transmission lines, each one connecting a pair of routers. If two routers that do not share a transmission line wish to communicate, they must do this indirectly, via other routers. When a packet is sent from one router to another via one or more intermediate routers, the packet is received at each intermediate router in its entirety, stored there until the required output line is free, and then forwarded. A subnet organized according to this principle is called a **store-and-forward** or **packet-switched** subnet. Nearly all wide area networks (except those using satellites) have store-and-forward subnets. When the packets are small and all the same size, they are often called **cells**. The principle of a packet-switched WAN is so important that it is worth devoting a few more words to it. Generally, when a process on some host has a message to be sent to a process on some other host, the sending host first cuts the message into packets, each one bearing its number in the sequence. These packets are then injected into the network one at a time in quick succession. The packets are transported individually over the network and deposited at the receiving host, where they are reassembled into the original message and delivered to the receiving process. A stream of packets resulting from some initial message is illustrated in Fig. 1-10. Figure 1-10. A stream of packets from sender to receiver. In this figure, all the packets follow the route *ACE*, rather than *ABDE* or *ACDE*. In some networks all packets from a given message *must* follow the same route; in others each packet is routed separately. Of course, if *ACE* is the best route, all packets may be sent along it, even if each packet is individually routed. Routing decisions are made locally. When a packet arrives at router A, it is up to A to decide if this packet should be sent on the line to B or the line to C. How A makes that decision is called the **routing algorithm**. Many of them exist. We will study some of them in detail in Chap. 5. Not all WANs are packet switched. A second possibility for a WAN is a satellite system. Each router has an antenna through which it can send and receive. All routers can hear the output *from* the satellite, and in some cases they can also hear the upward transmissions of their fellow routers *to* the satellite as well. Sometimes the routers are connected to a substantial point-to-point subnet, with only some of them having a satellite antenna. Satellite networks are inherently broadcast and are most useful when the broadcast property is important. #### 1.2.4 Wireless Networks Digital wireless communication is not a new idea. As early as 1901, the Italian physicist Guglielmo Marconi demonstrated a ship-to-shore wireless telegraph, using Morse Code (dots and dashes are binary, after all). Modern digital wireless systems have better performance, but the basic idea is the same. To a first approximation, wireless networks can be divided into three main categories: - 1. System interconnection. - 2. Wireless LANs. - 3. Wireless WANs. System interconnection is all about interconnecting the components of a computer using short-range radio. Almost every computer has a monitor, keyboard, mouse, and printer connected to the main unit by cables. So many new users have a hard time plugging all the cables into the right little holes (even though they are usually color coded) that most computer vendors offer the option of sending a technician to the user's home to do it. Consequently, some companies got together to design a short-range wireless network called **Bluetooth** to connect these components without wires. Bluetooth also allows digital cameras, headsets, scanners, and other devices to connect to a computer by merely being brought within range. No cables, no driver installation, just put them down, turn them on, and they work. For many people, this ease of operation is a big plus. In the simplest form, system interconnection networks use the master-slave paradigm of Fig. 1-11(a). The system unit is normally the master, talking to the mouse, keyboard, etc., as slaves. The master tells the slaves what addresses to use, when they can broadcast, how long they can transmit, what frequencies they can use, and so on. We will discuss Bluetooth in more detail in Chap. 4. The next step up in wireless networking are the wireless LANs. These are systems in which every computer has a radio modem and antenna with which it can communicate with other systems. Often there is an antenna on the ceiling that the machines talk to, as shown in Fig. 1-11(b). However, if the systems are close enough, they can communicate directly with one another in a peer-to-peer configuration. Wireless LANs are becoming increasingly common in small offices and Figure 1-11. (a) Bluetooth configuration. (b) Wireless LAN. homes, where installing Ethernet is considered too much trouble, as well as in older office buildings, company cafeterias, conference rooms, and other places. There is a standard for wireless LANs, called **IEEE 802.11**, which most systems implement and which is becoming very widespread. We will discuss it in Chap.4. The third kind of wireless network is used in wide area systems. The radio network used for cellular telephones is an example of a low-bandwidth wireless system. This system has already gone through three generations. The first generation was analog and for voice only. The second generation was digital and for voice only. The third generation is digital and is for both voice and data. In a certain sense, cellular wireless networks are like wireless LANs, except that the distances involved are much greater and the bit rates much lower. Wireless LANs can operate at rates up to about 50 Mbps over distances of tens of meters. Cellular systems operate below 1 Mbps, but the distance between the base station and the computer or telephone is measured in kilometers rather than in meters. We will have a lot to say about these networks in Chap. 2. In addition to these low-speed networks, high-bandwidth wide area wireless networks are also being developed. The initial focus is high-speed wireless Internet access from homes and businesses, bypassing the telephone system. This service is often called local multipoint distribution service. We will study it later in the book. A standard for it, called IEEE 802.16, has also been developed. We will examine the standard in Chap. 4. Almost all wireless networks hook up to the wired network at some point to provide access to files, databases, and the Internet. There are many ways these connections can be realized, depending on the circumstances. For example, in Fig. 1-12(a), we depict an airplane with a number of people using modems and seat-back telephones to call the office. Each call is independent of the other ones. A much more efficient option, however, is the flying LAN of Fig. 1-12(b). Here each seat comes equipped with an Ethernet connector into which passengers can plug their computers. A single router on the aircraft maintains a radio link with some router on the ground, changing routers as it flies along. This configuration is just a traditional LAN, except that its connection to the outside world happens to be a radio link instead of a hardwired line. Figure 1-12. (a) Individual mobile computers. (b) A flying LAN. Many people believe wireless is the wave of the future (e.g., Bi et al., 2001; Leeper, 2001; Varshey and Vetter, 2000) but at least one dissenting voice has been heard. Bob Metcalfe, the inventor of Ethernet, has written: "Mobile wireless computers are like mobile pipeless bathrooms—portapotties. They will be common on vehicles, and at construction sites, and rock concerts. My advice is to wire up your home and stay there" (Metcalfe, 1995). History may record this remark in the same category as IBM's chairman T.J. Watson's 1945 explanation of why IBM was not getting into the computer business: "Four or five computers should be enough for the entire world until the year 2000." #### 1.2.5 Home Networks Home networking is on the horizon. The fundamental idea is that in the future most homes will be set up for networking. Every device in the home will be capable of communicating with every other device, and all of them will be accessible over the Internet. This is one of those visionary concepts that nobody asked for (like TV remote controls or mobile phones), but once they arrived nobody can imagine how they lived without them. Many devices are capable of being networked. Some of the more obvious categories (with examples) are as follows: - 1. Computers (desktop PC, notebook PC, PDA, shared peripherals). - 2. Entertainment (TV, DVD, VCR, camcorder, camera, stereo, MP3). - 3. Telecommunications (telephone, mobile telephone, intercom, fax). - 4. Appliances (microwave, refrigerator, clock, furnace, airco, lights). - 5. Telemetry (utility meter, smoke/burglar alarm, thermostat, babycam). Home computer networking is already here in a limited way. Many homes already have a device to connect multiple computers to a fast Internet connection. Networked entertainment is not quite here, but as more and more music and movies can be downloaded from the Internet, there will be a demand to connect stereos and televisions to it. Also, people will want to share their own videos with friends and family, so the connection will need to go both ways. Telecommunications gear is already connected to the outside world, but soon it will be digital and go over the Internet. The average home probably has a dozen clocks (e.g., in appliances), all of which have to be reset twice a year when daylight saving time (summer time) comes and goes. If all the clocks were on the Internet, that resetting could be done automatically. Finally, remote monitoring of the home and its contents is a likely winner. Probably many parents would be willing to spend some money to
monitor their sleeping babies on their PDAs when they are eating out, even with a rented teenager in the house. While one can imagine a separate network for each application area, integrating all of them into a single network is probably a better idea. Home networking has some fundamentally different properties than other network types. First, the network and devices have to be easy to install. The author has installed numerous pieces of hardware and software on various computers over the years, with mixed results. A series of phone calls to the vendor's help-desk typically resulted in answers like (1) Read the manual, (2) Reboot the computer, (3) Remove all hardware and software except ours and try again, (4) Download the newest driver from our Web site, and if all else fails, (5) Reformat the hard disk and then reinstall Windows from the CD-ROM. Telling the purchaser of an Internet refrigerator to download and install a new version of the refrigerator's operating system is not going to lead to happy customers. Computer users are accustomed to putting up with products that do not work; the car-, television-, and refrigerator-buying public is far less tolerant. They expect products to work for 100% from the word go. Second, the network and devices have to be foolproof in operation. Air conditioners used to have one knob with four settings: OFF, LOW, MEDIUM, and HIGH. Now they have 30-page manuals. Once they are networked, expect the chapter on security alone to be 30 pages. This will be beyond the comprehension of virtually all the users. Third, low price is essential for success. People will not pay a \$50 premium for an Internet thermostat because few people regard monitoring their home temperature from work that important. For \$5 extra, it might sell, though. Fourth, the main application is likely to involve multimedia, so the network needs sufficient capacity. There is no market for Internet-connected televisions that show shaky movies at 320×240 pixel resolution and 10 frames/sec. Fast Ethernet, the workhorse in most offices, is not good enough for multimedia. Consequently, home networks will need better performance than that of existing office networks and at lower prices before they become mass market items. Fifth, it must be possible to start out with one or two devices and expand the reach of the network gradually. This means no format wars. Telling consumers to buy peripherals with IEEE 1394 (FireWire) interfaces and a few years later retracting that and saying USB 2.0 is the interface-of-the-month is going to make consumers skittish. The network interface will have to remain stable for many years; the wiring (if any) will have to remain stable for decades. Sixth, security and reliability will be very important. Losing a few files to an e-mail virus is one thing; having a burglar disarm your security system from his PDA and then plunder your house is something quite different. An interesting question is whether home networks will be wired or wireless. Most homes already have six networks installed: electricity, telephone, cable television, water, gas, and sewer. Adding a seventh one during construction is not difficult, but retrofitting existing houses is expensive. Cost favors wireless networking, but security favors wired networking. The problem with wireless is that the radio waves they use are quite good at going through fences. Not everyone is overjoyed at the thought of having the neighbors piggybacking on their Internet connection and reading their e-mail on its way to the printer. In Chap. 8 we will study how encryption can be used to provide security, but in the context of a home network, security has to be foolproof, even with inexperienced users. This is easier said than done, even with highly sophisticated users. In short, home networking offers many opportunities and challenges. Most of them relate to the need to be easy to manage, dependable, and secure, especially in the hands of nontechnical users, while at the same time delivering high performance at low cost. #### 1.2.6 Internetworks Many networks exist in the world, often with different hardware and software. People connected to one network often want to communicate with people attached to a different one. The fulfillment of this desire requires that different, and frequently incompatible networks, be connected, sometimes by means of machines called **gateways** to make the connection and provide the necessary translation, both in terms of hardware and software. A collection of interconnected networks is called an **internetwork** or **internet**. These terms will be used in a generic sense, in contrast to the worldwide Internet (which is one specific internet), which we will always capitalize. A common form of internet is a collection of LANs connected by a WAN. In fact, if we were to replace the label "subnet" in Fig. 1-9 by "WAN," nothing else in the figure would have to change. The only real technical distinction between a subnet and a WAN in this case is whether hosts are present. If the system within the gray area contains only routers, it is a subnet; if it contains both routers and hosts, it is a WAN. The real differences relate to ownership and use. Subnets, networks, and internetworks are often confused. Subnet makes the most sense in the context of a wide area network, where it refers to the collection of routers and communication lines owned by the network operator. As an analogy, the telephone system consists of telephone switching offices connected to one another by high-speed lines, and to houses and businesses by low-speed lines. These lines and equipment, owned and managed by the telephone company, form the subnet of the telephone system. The telephones themselves (the hosts in this analogy) are not part of the subnet. The combination of a subnet and its hosts forms a network. In the case of a LAN, the cable and the hosts form the network. There really is no subnet. An internetwork is formed when distinct networks are interconnected. In our view, connecting a LAN and a WAN or connecting two LANs forms an internetwork, but there is little agreement in the industry over terminology in this area. One rule of thumb is that if different organizations paid to construct different parts of the network and each maintains its part, we have an internetwork rather than a single network. Also, if the underlying technology is different in different parts (e.g., broadcast versus point-to-point), we probably have two networks. #### 1.3 NETWORK SOFTWARE The first computer networks were designed with the hardware as the main concern and the software as an afterthought. This strategy no longer works. Network software is now highly structured. In the following sections we examine the software structuring technique in some detail. The method described here forms the keystone of the entire book and will occur repeatedly later on. # 1.3.1 Protocol Hierarchies To reduce their design complexity, most networks are organized as a stack of **layers** or **levels**, each one built upon the one below it. The number of layers, the name of each layer, the contents of each layer, and the function of each layer differ from network to network. The purpose of each layer is to offer certain services to the higher layers, shielding those layers from the details of how the offered services are actually implemented. In a sense, each layer is a kind of virtual machine, offering certain services to the layer above it. This concept is actually a familiar one and used throughout computer science, where it is variously known as information hiding, abstract data types, data encapsulation, and object-oriented programming. The fundamental idea is that a particular piece of software (or hardware) provides a service to its users but keeps the details of its internal state and algorithms hidden from them. Layer n on one machine carries on a conversation with layer n on another machine. The rules and conventions used in this conversation are collectively known as the layer n protocol. Basically, a **protocol** is an agreement between the communicating parties on how communication is to proceed. As an analogy, when a woman is introduced to a man, she may choose to stick out her hand. He, in turn, may decide either to shake it or kiss it, depending, for example, on whether she is an American lawyer at a business meeting or a European princess at a formal ball. Violating the protocol will make communication more difficult, if not completely impossible. A five-layer network is illustrated in Fig. 1-13. The entities comprising the corresponding layers on different machines are called **peers**. The peers may be processes, hardware devices, or even human beings. In other words, it is the peers that communicate by using the protocol. Figure 1-13. Layers, protocols, and interfaces. In reality, no data are directly transferred from layer n on one machine to layer n on another machine. Instead, each layer passes data and control information to the layer immediately below it, until the lowest layer is reached. Below layer 1 is the **physical medium** through which actual communication occurs. In Fig. 1-13, virtual communication is shown by dotted lines and physical communication by solid lines. Between each pair of adjacent layers is an **interface**. The interface defines which primitive operations and services the lower layer makes available to the upper one. When network designers decide how many layers to include in a network and what each one should do, one of the most important considerations is defining clean interfaces between the layers. Doing so, in turn, requires that each layer perform a specific collection of well-understood functions. In addition to minimizing the amount of information that must be passed between layers, clear-cut interfaces also make it simpler to replace the implementation of one layer with a completely different implementation
(e.g., all the telephone lines are replaced by satellite channels) because all that is required of the new implementation is that it offer exactly the same set of services to its upstairs neighbor as the old implementation did. In fact, it is common that different hosts use different implementations. A set of layers and protocols is called a **network architecture**. The specification of an architecture must contain enough information to allow an implementer to write the program or build the hardware for each layer so that it will correctly obey the appropriate protocol. Neither the details of the implementation nor the specification of the interfaces is part of the architecture because these are hidden away inside the machines and not visible from the outside. It is not even necessary that the interfaces on all machines in a network be the same, provided that each machine can correctly use all the protocols. A list of protocols used by a certain system, one protocol per layer, is called a **protocol stack**. The subjects of network architectures, protocol stacks, and the protocols themselves are the principal topics of this book. An analogy may help explain the idea of multilayer communication. Imagine two philosophers (peer processes in layer 3), one of whom speaks Urdu and English and one of whom speaks Chinese and French. Since they have no common language, they each engage a translator (peer processes at layer 2), each of whom in turn contacts a secretary (peer processes in layer 1). Philosopher 1 wishes to convey his affection for *oryctolagus cuniculus* to his peer. To do so, he passes a message (in English) across the 2/3 interface to his translator, saying "I like rabbits," as illustrated in Fig. 1-14. The translators have agreed on a neutral language known to both of them, Dutch, so the message is converted to "Ik vind konijnen leuk." The choice of language is the layer 2 protocol and is up to the layer 2 peer processes. The translator then gives the message to a secretary for transmission, by, for example, fax (the layer 1 protocol). When the message arrives, it is translated into French and passed across the 2/3 interface to philosopher 2. Note that each protocol is completely independent of the other ones as long as the interfaces are not changed. The translators can switch from Dutch to say, Finnish, at will, provided that they both agree, and neither changes his interface with either layer 1 or layer 3. Similarly, the secretaries can switch from fax to e-mail or telephone without disturbing (or even informing) the other layers. Each process may add some information intended only for its peer. This information is not passed upward to the layer above. Now consider a more technical example: how to provide communication to the top layer of the five-layer network in Fig. 1-15. A message, M, is produced by an application process running in layer 5 and given to layer 4 for transmission. Figure 1-14. The philosopher-translator-secretary architecture. Layer 4 puts a **header** in front of the message to identify the message and passes the result to layer 3. The header includes control information, such as sequence numbers, to allow layer 4 on the destination machine to deliver messages in the right order if the lower layers do not maintain sequence. In some layers, headers can also contain sizes, times, and other control fields. In many networks, there is no limit to the size of messages transmitted in the layer 4 protocol, but there is nearly always a limit imposed by the layer 3 protocol. Consequently, layer 3 must break up the incoming messages into smaller units, packets, prepending a layer 3 header to each packet. In this example, M is split into two parts, M_1 and M_2 . Layer 3 decides which of the outgoing lines to use and passes the packets to layer 2. Layer 2 adds not only a header to each piece, but also a trailer, and gives the resulting unit to layer 1 for physical transmission. At the receiving machine the message moves upward, from layer to layer, with headers being stripped off as it progresses. None of the headers for layers below n are passed up to layer n. Figure 1-15. Example information flow supporting virtual communication in layer 5. The important thing to understand about Fig. 1-15 is the relation between the virtual and actual communication and the difference between protocols and interfaces. The peer processes in layer 4, for example, conceptually think of their communication as being "horizontal," using the layer 4 protocol. Each one is likely to have a procedure called something like *SendToOtherSide* and *GetFromOtherSide*, even though these procedures actually communicate with lower layers across the 3/4 interface, not with the other side. The peer process abstraction is crucial to all network design. Using it, the unmanageable task of designing the complete network can be broken into several smaller, manageable design problems, namely, the design of the individual layers. Although Sec. 1.3 is called "Network Software," it is worth pointing out that the lower layers of a protocol hierarchy are frequently implemented in hardware or firmware. Nevertheless, complex protocol algorithms are involved, even if they are embedded (in whole or in part) in hardware. #### 1.3.2 Design Issues for the Layers Some of the key design issues that occur in computer networks are present in several layers. Below, we will briefly mention some of the more important ones. Every layer needs a mechanism for identifying senders and receivers. Since a network normally has many computers, some of which have multiple processes, a means is needed for a process on one machine to specify with whom it wants to talk. As a consequence of having multiple destinations, some form of **addressing** is needed in order to specify a specific destination. Another set of design decisions concerns the rules for data transfer. In some systems, data only travel in one direction; in others, data can go both ways. The protocol must also determine how many logical channels the connection corresponds to and what their priorities are. Many networks provide at least two logical channels per connection, one for normal data and one for urgent data. **Error control** is an important issue because physical communication circuits are not perfect. Many error-detecting and error-correcting codes are known, but both ends of the connection must agree on which one is being used. In addition, the receiver must have some way of telling the sender which messages have been correctly received and which have not. Not all communication channels preserve the order of messages sent on them. To deal with a possible loss of sequencing, the protocol must make explicit provision for the receiver to allow the pieces to be reassembled properly. An obvious solution is to number the pieces, but this solution still leaves open the question of what should be done with pieces that arrive out of order. An issue that occurs at every level is how to keep a fast sender from swamping a slow receiver with data. Various solutions have been proposed and will be discussed later. Some of them involve some kind of feedback from the receiver to the sender, either directly or indirectly, about the receiver's current situation. Others limit the sender to an agreed-on transmission rate. This subject is called **flow control**. Another problem that must be solved at several levels is the inability of all processes to accept arbitrarily long messages. This property leads to mechanisms for disassembling, transmitting, and then reassembling messages. A related issue is the problem of what to do when processes insist on transmitting data in units that are so small that sending each one separately is inefficient. Here the solution is to gather several small messages heading toward a common destination into a single large message and dismember the large message at the other side. When it is inconvenient or expensive to set up a separate connection for each pair of communicating processes, the underlying layer may decide to use the same connection for multiple, unrelated conversations. As long as this **multiplexing** and **demultiplexing** is done transparently, it can be used by any layer. Multiplexing is needed in the physical layer, for example, where all the traffic for all connections has to be sent over at most a few physical circuits. When there are multiple paths between source and destination, a route must be chosen. Sometimes this decision must be split over two or more layers. For example, to send data from London to Rome, a high-level decision might have to be made to transit France or Germany based on their respective privacy laws. Then a low-level decision might have to made to select one of the available circuits based on the current traffic load. This topic is called **routing**. #### 1.3.3 Connection-Oriented and Connectionless Services Layers can offer two different types of service to the layers above them: connection-oriented and connectionless. In this section we will look at these two types and examine the differences between them. Connection-oriented service is modeled after the telephone system. To talk to someone, you pick up the phone, dial the number, talk, and then hang up. Similarly, to use a connection-oriented network service, the service user first establishes a connection, uses the connection, and then releases the connection. The essential aspect of a connection is that it acts like a tube: the sender pushes objects (bits) in at one end, and the receiver takes them out at the other end. In most cases the order is preserved so that the bits arrive in the order they were sent. In some cases when a connection is established, the sender, receiver, and subnet conduct a **negotiation** about parameters to be used, such as maximum message size, quality of service required, and other issues. Typically, one side makes a proposal and the other side
can accept it, reject it, or make a counterproposal. In contrast, **connectionless service** is modeled after the postal system. Each message (letter) carries the full destination address, and each one is routed through the system independent of all the others. Normally, when two messages are sent to the same destination, the first one sent will be the first one to arrive. However, it is possible that the first one sent can be delayed so that the second one arrives first. Each service can be characterized by a **quality of service**. Some services are reliable in the sense that they never lose data. Usually, a reliable service is implemented by having the receiver acknowledge the receipt of each message so the sender is sure that it arrived. The acknowledgement process introduces overhead and delays, which are often worth it but are sometimes undesirable. A typical situation in which a reliable connection-oriented service is appropriate is file transfer. The owner of the file wants to be sure that all the bits arrive correctly and in the same order they were sent. Very few file transfer customers would prefer a service that occasionally scrambles or loses a few bits, even if it is much faster. Reliable connection-oriented service has two minor variations: message sequences and byte streams. In the former variant, the message boundaries are preserved. When two 1024-byte messages are sent, they arrive as two distinct 1024-byte messages, never as one 2048-byte message. In the latter, the connection is simply a stream of bytes, with no message boundaries. When 2048 bytes arrive at the receiver, there is no way to tell if they were sent as one 2048-byte message, two 1024-byte messages, or 2048 1-byte messages. If the pages of a book are sent over a network to a phototypesetter as separate messages, it might be important to preserve the message boundaries. On the other hand, when a user logs into a remote server, a byte stream from the user's computer to the server is all that is needed. Message boundaries are not relevant. As mentioned above, for some applications, the transit delays introduced by acknowledgements are unacceptable. One such application is digitized voice traffic. It is preferable for telephone users to hear a bit of noise on the line from time to time than to experience a delay waiting for acknowledgements. Similarly, when transmitting a video conference, having a few pixels wrong is no problem, but having the image jerk along as the flow stops to correct errors is irritating. Not all applications require connections. For example, as electronic mail becomes more common, electronic junk is becoming more common too. The electronic junk-mail sender probably does not want to go to the trouble of setting up and later tearing down a connection just to send one item. Nor is 100 percent reliable delivery essential, especially if it costs more. All that is needed is a way to send a single message that has a high probability of arrival, but no guarantee. Unreliable (meaning not acknowledged) connectionless service is often called **datagram service**, in analogy with telegram service, which also does not return an acknowledgement to the sender. In other situations, the convenience of not having to establish a connection to send one short message is desired, but reliability is essential. The **acknowledged datagram service** can be provided for these applications. It is like sending a registered letter and requesting a return receipt. When the receipt comes back, the sender is absolutely sure that the letter was delivered to the intended party and not lost along the way. Still another service is the **request-reply service**. In this service the sender transmits a single datagram containing a request; the reply contains the answer. For example, a query to the local library asking where Uighur is spoken falls into this category. Request-reply is commonly used to implement communication in the client-server model: the client issues a request and the server responds to it. Figure 1-16 summarizes the types of services discussed above. | | Service | Example | |---------------------|-------------------------|----------------------| | Connection- | Reliable message stream | Sequence of pages | | oriented | Reliable byte stream | Remote login | | | Unreliable connection | Digitized voice | | | Unreliable datagram | Electronic junk mail | | Connection-
less | Acknowledged datagram | Registered mail | | | Request-reply | Database query | Figure 1-16. Six different types of service. The concept of using unreliable communication may be confusing at first. After all, why would anyone actually prefer unreliable communication to reliable communication? First of all, reliable communication (in our sense, that is, acknowledged) may not be available. For example, Ethernet does not provide reliable communication. Packets can occasionally be damaged in transit. It is up to higher protocol levels to deal with this problem. Second, the delays inherent in providing a reliable service may be unacceptable, especially in real-time applications such as multimedia. For these reasons, both reliable and unreliable communication coexist. #### 1.3.4 Service Primitives A service is formally specified by a set of **primitives** (operations) available to a user process to access the service. These primitives tell the service to perform some action or report on an action taken by a peer entity. If the protocol stack is located in the operating system, as it often is, the primitives are normally system calls. These calls cause a trap to kernel mode, which then turns control of the machine over to the operating system to send the necessary packets. The set of primitives available depends on the nature of the service being provided. The primitives for connection-oriented service are different from those of connectionless service. As a minimal example of the service primitives that might be provided to implement a reliable byte stream in a client-server environment, consider the primitives listed in Fig. 1-17. | Primitive | Meaning | | |------------|--|--| | LISTEN | Block waiting for an incoming connection | | | CONNECT | Establish a connection with a waiting peer | | | RECEIVE | Block waiting for an incoming message | | | SEND | Send a message to the peer | | | DISCONNECT | Terminate a connection | | Figure 1-17. Five service primitives for implementing a simple connectionoriented service. These primitives might be used as follows. First, the server executes LISTEN to indicate that it is prepared to accept incoming connections. A common way to implement LISTEN is to make it a blocking system call. After executing the primitive, the server process is blocked until a request for connection appears. Next, the client process executes CONNECT to establish a connection with the server. The CONNECT call needs to specify who to connect to, so it might have a parameter giving the server's address. The operating system then typically sends a packet to the peer asking it to connect, as shown by (1) in Fig. 1-18. The client process is suspended until there is a response. When the packet arrives at the server, it is processed by the operating system there. When the system sees that the packet is requesting a connection, it checks to see if there is a listener. If so, it does two things: unblocks the listener and sends back an acknowledgement (2). The arrival of this acknowledgement then releases the client. At this point the client and server are both running and they have a connection established. It is important to note that the acknowledgement (2) is generated by the protocol code itself, not in response to a user-level primitive. If a connection request arrives and there is no listener, the result is undefined. In some systems the packet may be queued for a short time in anticipation of a LISTEN. The obvious analogy between this protocol and real life is a customer (client) calling a company's customer service manager. The service manager starts out by being near the telephone in case it rings. Then the client places the call. When the manager picks up the phone, the connection is established. Figure 1-18. Packets sent in a simple client-server interaction on a connectionoriented network. The next step is for the server to execute RECEIVE to prepare to accept the first request. Normally, the server does this immediately upon being released from the LISTEN, before the acknowledgement can get back to the client. The RECEIVE call blocks the server. Then the client executes SEND to transmit its request (3) followed by the execution of RECEIVE to get the reply. The arrival of the request packet at the server machine unblocks the server process so it can process the request. After it has done the work, it uses SEND to return the answer to the client (4). The arrival of this packet unblocks the client, which can now inspect the answer. If the client has additional requests, it can make them now. If it is done, it can use DISCONNECT to terminate the connection. Usually, an initial DISCONNECT is a blocking call, suspending the client and sending a packet to the server saying that the connection is no longer needed (5). When the server gets the packet, it also issues a DISCONNECT of its own, acknowledging the client and releasing the connection. When the server's packet (6) gets back to the client machine, the client process is released and the connection is broken. In a nutshell, this is how connection-oriented communication works. Of course, life is not so simple. Many things can go wrong here. The timing can be wrong (e.g., the CONNECT is done before the LISTEN), packets can get lost, and much more. We will look at these issues in great detail later, but for the moment, Fig. 1-18 briefly summarizes how client-server communication might work over a connection-oriented network. Given that six packets are required to
complete this protocol, one might wonder why a connectionless protocol is not used instead. The answer is that in a perfect world it could be, in which case only two packets would be needed: one for the request and one for the reply. However, in the face of large messages in either direction (e.g., a megabyte file), transmission errors, and lost packets, the situation changes. If the reply consisted of hundreds of packets, some of which could be lost during transmission, how would the client know if some pieces were missing? How would the client know whether the last packet actually received was really the last packet sent? Suppose that the client wanted a second file. How could it tell packet 1 from the second file from a lost packet 1 from the first file that suddenly found its way to the client? In short, in the real world, a simple request-reply protocol over an unreliable network is often inadequate. In Chap. 3 we will study a variety of protocols in detail that overcome these and other problems. For the moment, suffice it to say that having a reliable, ordered byte stream between processes is sometimes very convenient. # 1.3.5 The Relationship of Services to Protocols Services and protocols are distinct concepts, although they are frequently confused. This distinction is so important, however, that we emphasize it again here. A *service* is a set of primitives (operations) that a layer provides to the layer above it. The service defines what operations the layer is prepared to perform on behalf of its users, but it says nothing at all about how these operations are implemented. A service relates to an interface between two layers, with the lower layer being the service provider and the upper layer being the service user. A *protocol*, in contrast, is a set of rules governing the format and meaning of the packets, or messages that are exchanged by the peer entities within a layer. Entities use protocols to implement their service definitions. They are free to change their protocols at will, provided they do not change the service visible to their users. In this way, the service and the protocol are completely decoupled. In other words, services relate to the interfaces between layers, as illustrated in Fig. 1-19. In contrast, protocols relate to the packets sent between peer entities on different machines. It is important not to confuse the two concepts. An analogy with programming languages is worth making. A service is like an abstract data type or an object in an object-oriented language. It defines operations that can be performed on an object but does not specify how these operations are implemented. A protocol relates to the *implementation* of the service and as such is not visible to the user of the service. Many older protocols did not distinguish the service from the protocol. In effect, a typical layer might have had a service primitive SEND PACKET with the Figure 1-19. The relationship between a service and a protocol. user providing a pointer to a fully assembled packet. This arrangement meant that all changes to the protocol were immediately visible to the users. Most network designers now regard such a design as a serious blunder. # 1.4 REFERENCE MODELS Now that we have discussed layered networks in the abstract, it is time to look at some examples. In the next two sections we will discuss two important network architectures, the OSI reference model and the TCP/IP reference model. Although the *protocols* associated with the OSI model are rarely used any more, the *model* itself is actually quite general and still valid, and the features discussed at each layer are still very important. The TCP/IP model has the opposite properties: the model itself is not of much use but the protocols are widely used. For this reason we will look at both of them in detail. Also, sometimes you can learn more from failures than from successes. # 1.4.1 The OSI Reference Model The OSI model (minus the physical medium) is shown in Fig. 1-20. This model is based on a proposal developed by the International Standards Organization (ISO) as a first step toward international standardization of the protocols used in the various layers (Day and Zimmermann, 1983). It was revised in 1995 (Day, 1995). The model is called the **ISO OSI (Open Systems Interconnection) Reference Model** because it deals with connecting open systems—that is, systems that are open for communication with other systems. We will just call it the OSI model for short. The OSI model has seven layers. The principles that were applied to arrive at the seven layers can be briefly summarized as follows: - 1. A layer should be created where a different abstraction is needed. - 2. Each layer should perform a well-defined function. - 3. The function of each layer should be chosen with an eye toward defining internationally standardized protocols. - 4. The layer boundaries should be chosen to minimize the information flow across the interfaces. - 5. The number of layers should be large enough that distinct functions need not be thrown together in the same layer out of necessity and small enough that the architecture does not become unwieldy. Below we will discuss each layer of the model in turn, starting at the bottom layer. Note that the OSI model itself is not a network architecture because it does not specify the exact services and protocols to be used in each layer. It just tells what each layer should do. However, ISO has also produced standards for all the layers, although these are not part of the reference model itself. Each one has been published as a separate international standard. ## The Physical Layer The **physical layer** is concerned with transmitting raw bits over a communication channel. The design issues have to do with making sure that when one side sends a 1 bit, it is received by the other side as a 1 bit, not as a 0 bit. Typical questions here are how many volts should be used to represent a 1 and how many for a 0, how many nanoseconds a bit lasts, whether transmission may proceed simultaneously in both directions, how the initial connection is established and how it is torn down when both sides are finished, and how many pins the network connector has and what each pin is used for. The design issues here largely deal with mechanical, electrical, and timing interfaces, and the physical transmission medium, which lies below the physical layer. ## The Data Link Layer The main task of the **data link layer** is to transform a raw transmission facility into a line that appears free of undetected transmission errors to the network layer. It accomplishes this task by having the sender break up the input data into **data frames** (typically a few hundred or a few thousand bytes) and transmit the frames sequentially. If the service is reliable, the receiver confirms correct receipt of each frame by sending back an **acknowledgement frame**. Another issue that arises in the data link layer (and most of the higher layers as well) is how to keep a fast transmitter from drowning a slow receiver in data. Some traffic regulation mechanism is often needed to let the transmitter know Figure 1-20. The OSI reference model. how much buffer space the receiver has at the moment. Frequently, this flow regulation and the error handling are integrated. Broadcast networks have an additional issue in the data link layer: how to control access to the shared channel. A special sublayer of the data link layer, the medium access control sublayer, deals with this problem. # The Network Layer The **network layer** controls the operation of the subnet. A key design issue is determining how packets are routed from source to destination. Routes can be based on static tables that are "wired into" the network and rarely changed. They can also be determined at the start of each conversation, for example, a terminal session (e.g., a login to a remote machine). Finally, they can be highly dynamic, being determined anew for each packet, to reflect the current network load. If too many packets are present in the subnet at the same time, they will get in one another's way, forming bottlenecks. The control of such congestion also belongs to the network layer. More generally, the quality of service provided (delay, transit time, jitter, etc.) is also a network layer issue. When a packet has to travel from one network to another to get to its destination, many problems can arise. The addressing used by the second network may be different from the first one. The second one may not accept the packet at all because it is too large. The protocols may differ, and so on. It is up to the network layer to overcome all these problems to allow heterogeneous networks to be interconnected. In broadcast networks, the routing problem is simple, so the network layer is often thin or even nonexistent. ## The Transport Layer The basic function of the **transport layer** is to accept data from above, split it up into smaller units if need be, pass these to the network layer, and ensure that the pieces all arrive correctly at the other end. Furthermore, all this must be done efficiently and in a way that isolates the upper layers from the inevitable changes in the hardware technology. The transport layer also determines what type of service to provide to the session layer, and, ultimately, to the users of the network. The most popular type of transport connection is an error-free point-to-point channel that delivers messages or bytes in the order in which they were sent. However, other possible kinds of transport service are the transporting of isolated messages, with no guarantee about the order of delivery, and the broadcasting of messages to multiple destinations. The type of service is determined when the connection is established. (As an aside, an error-free channel is impossible to achieve; what people really mean by this term is that the error rate is low enough to ignore in practice.) The
transport layer is a true end-to-end layer, all the way from the source to the destination. In other words, a program on the source machine carries on a conversation with a similar program on the destination machine, using the message headers and control messages. In the lower layers, the protocols are between each machine and its immediate neighbors, and not between the ultimate source and destination machines, which may be separated by many routers. The difference between layers 1 through 3, which are chained, and layers 4 through 7, which are end-to-end, is illustrated in Fig. 1-20. # The Session Layer The session layer allows users on different machines to establish **sessions** between them. Sessions offer various services, including **dialog control** (keeping track of whose turn it is to transmit), **token management** (preventing two parties from attempting the same critical operation at the same time), and **synchronization** (checkpointing long transmissions to allow them to continue from where they were after a crash). ## The Presentation Layer Unlike lower layers, which are mostly concerned with moving bits around, the **presentation layer** is concerned with the syntax and semantics of the information transmitted. In order to make it possible for computers with different data representations to communicate, the data structures to be exchanged can be defined in an abstract way, along with a standard encoding to be used "on the wire." The presentation layer manages these abstract data structures and allows higher-level data structures (e.g., banking records), to be defined and exchanged. #### The Application Layer The **application layer** contains a variety of protocols that are commonly needed by users. One widely-used application protocol is **HTTP** (**HyperText Transfer Protocol**), which is the basis for the World Wide Web. When a browser wants a Web page, it sends the name of the page it wants to the server using HTTP. The server then sends the page back. Other application protocols are used for file transfer, electronic mail, and network news. # 1.4.2 The TCP/IP Reference Model Let us now turn from the OSI reference model to the reference model used in the grandparent of all wide area computer networks, the ARPANET, and its successor, the worldwide Internet. Although we will give a brief history of the ARPANET later, it is useful to mention a few key aspects of it now. The ARPANET was a research network sponsored by the DoD (U.S. Department of Defense). It eventually connected hundreds of universities and government installations, using leased telephone lines. When satellite and radio networks were added later, the existing protocols had trouble interworking with them, so a new reference architecture was needed. Thus, the ability to connect multiple networks in a seamless way was one of the major design goals from the very beginning. This architecture later became known as the **TCP/IP Reference Model**, after its two primary protocols. It was first defined in (Cerf and Kahn, 1974). A later perspective is given in (Leiner et al., 1985). The design philosophy behind the model is discussed in (Clark, 1988). Given the DoD's worry that some of its precious hosts, routers, and internetwork gateways might get blown to pieces at a moment's notice, another major goal was that the network be able to survive loss of subnet hardware, with existing conversations not being broken off. In other words, DoD wanted connections to remain intact as long as the source and destination machines were functioning, even if some of the machines or transmission lines in between were suddenly put out of operation. Furthermore, a flexible architecture was needed since applications with divergent requirements were envisioned, ranging from transferring files to real-time speech transmission. ### The Internet Layer All these requirements led to the choice of a packet-switching network based on a connectionless internetwork layer. This layer, called the **internet layer**, is the linchpin that holds the whole architecture together. Its job is to permit hosts to inject packets into any network and have them travel independently to the destination (potentially on a different network). They may even arrive in a different order than they were sent, in which case it is the job of higher layers to rearrange them, if in-order delivery is desired. Note that "internet" is used here in a generic sense, even though this layer is present in the Internet. The analogy here is with the (snail) mail system. A person can drop a sequence of international letters into a mail box in one country, and with a little luck, most of them will be delivered to the correct address in the destination country. Probably the letters will travel through one or more international mail gateways along the way, but this is transparent to the users. Furthermore, that each country (i.e., each network) has its own stamps, preferred envelope sizes, and delivery rules is hidden from the users. The internet layer defines an official packet format and protocol called **IP** (**Internet Protocol**). The job of the internet layer is to deliver IP packets where they are supposed to go. Packet routing is clearly the major issue here, as is avoiding congestion. For these reasons, it is reasonable to say that the TCP/IP internet layer is similar in functionality to the OSI network layer. Figure 1-21 shows this correspondence. #### The Transport Layer The layer above the internet layer in the TCP/IP model is now usually called the **transport layer**. It is designed to allow peer entities on the source and destination hosts to carry on a conversation, just as in the OSI transport layer. Two end-to-end transport protocols have been defined here. The first one, **TCP** (**Transmission Control Protocol**), is a reliable connection-oriented protocol that allows a byte stream originating on one machine to be delivered without error on any other machine in the internet. It fragments the incoming byte stream into discrete messages and passes each one on to the internet layer. At the destination, the receiving TCP process reassembles the received messages into the output stream. TCP also handles flow control to make sure a fast sender cannot swamp a slow receiver with more messages than it can handle. Figure 1-21. The TCP/IP reference model. The second protocol in this layer, **UDP** (**User Datagram Protocol**), is an unreliable, connectionless protocol for applications that do not want TCP's sequencing or flow control and wish to provide their own. It is also widely used for one-shot, client-server-type request-reply queries and applications in which prompt delivery is more important than accurate delivery, such as transmitting speech or video. The relation of IP, TCP, and UDP is shown in Fig. 1-22. Since the model was developed, IP has been implemented on many other networks. Figure 1-22. Protocols and networks in the TCP/IP model initially. # The Application Layer The TCP/IP model does not have session or presentation layers. No need for them was perceived, so they were not included. Experience with the OSI model has proven this view correct: they are of little use to most applications. On top of the transport layer is the **application layer**. It contains all the higher-level protocols. The early ones included virtual terminal (TELNET), file transfer (FTP), and electronic mail (SMTP), as shown in Fig. 1-22. The virtual terminal protocol allows a user on one machine to log onto a distant machine and work there. The file transfer protocol provides a way to move data efficiently from one machine to another. Electronic mail was originally just a kind of file transfer, but later a specialized protocol (SMTP) was developed for it. Many other protocols have been added to these over the years: the Domain Name System (DNS) for mapping host names onto their network addresses, NNTP, the protocol for moving USENET news articles around, and HTTP, the protocol for fetching pages on the World Wide Web, and many others. # The Host-to-Network Layer Below the internet layer is a great void. The TCP/IP reference model does not really say much about what happens here, except to point out that the host has to connect to the network using some protocol so it can send IP packets to it. This protocol is not defined and varies from host to host and network to network. Books and papers about the TCP/IP model rarely discuss it. # 1.4.3 A Comparison of the OSI and TCP/IP Reference Models The OSI and TCP/IP reference models have much in common. Both are based on the concept of a stack of independent protocols. Also, the functionality of the layers is roughly similar. For example, in both models the layers up through and including the transport layer are there to provide an end-to-end, network-independent transport service to processes wishing to communicate. These layers form the transport provider. Again in both models, the layers above transport are application-oriented users of the transport service. Despite these fundamental similarities, the two models also have many differences. In this section we will focus on the key differences between the two reference models. It is important to note that we are comparing the *reference models* here, not the corresponding *protocol stacks*. The protocols themselves will be discussed later. For an entire book comparing and contrasting TCP/IP and OSI, see (Piscitello and Chapin, 1993). Three concepts are central to the OSI model: - 1. Services. - 2. Interfaces. - 3. Protocols. Probably the biggest contribution of the OSI model is to make the distinction between these three concepts explicit. Each layer performs some services for the layer above it. The *service* definition tells what the layer does, not how entities above it access it or how the layer works. It defines the layer's semantics. A layer's *interface* tells the processes above it how to access it. It
specifies what the parameters are and what results to expect. It, too, says nothing about how the layer works inside. Finally, the peer *protocols* used in a layer are the layer's own business. It can use any protocols it wants to, as long as it gets the job done (i.e., provides the offered services). It can also change them at will without affecting software in higher layers. These ideas fit very nicely with modern ideas about object-oriented programming. An object, like a layer, has a set of methods (operations) that processes outside the object can invoke. The semantics of these methods define the set of services that the object offers. The methods' parameters and results form the object's interface. The code internal to the object is its protocol and is not visible or of any concern outside the object. The TCP/IP model did not originally clearly distinguish between service, interface, and protocol, although people have tried to retrofit it after the fact to make it more OSI-like. For example, the only real services offered by the internet layer are SEND IP PACKET and RECEIVE IP PACKET. As a consequence, the protocols in the OSI model are better hidden than in the TCP/IP model and can be replaced relatively easily as the technology changes. Being able to make such changes is one of the main purposes of having layered protocols in the first place. The OSI reference model was devised *before* the corresponding protocols were invented. This ordering means that the model was not biased toward one particular set of protocols, a fact that made it quite general. The downside of this ordering is that the designers did not have much experience with the subject and did not have a good idea of which functionality to put in which layer. For example, the data link layer originally dealt only with point-to-point networks. When broadcast networks came around, a new sublayer had to be hacked into the model. When people started to build real networks using the OSI model and existing protocols, it was discovered that these networks did not match the required service specifications (wonder of wonders), so convergence sublayers had to be grafted onto the model to provide a place for papering over the differences. Finally, the committee originally expected that each country would have one network, run by the government and using the OSI protocols, so no thought was given to internetworking. To make a long story short, things did not turn out that way. With TCP/IP the reverse was true: the protocols came first, and the model was really just a description of the existing protocols. There was no problem with the protocols fitting the model. They fit perfectly. The only trouble was that the *model* did not fit any other protocol stacks. Consequently, it was not especially useful for describing other, non-TCP/IP networks. Turning from philosophical matters to more specific ones, an obvious difference between the two models is the number of layers: the OSI model has seven layers and the TCP/IP has four layers. Both have (inter)network, transport, and application layers, but the other layers are different. Another difference is in the area of connectionless versus connection-oriented communication. The OSI model supports both connectionless and connection-oriented communication in the network layer, but only connection-oriented communication in the transport layer, where it counts (because the transport service is visible to the users). The TCP/IP model has only one mode in the network layer (connectionless) but supports both modes in the transport layer, giving the users a choice. This choice is especially important for simple request-response protocols. # 1.4.4 A Critique of the OSI Model and Protocols Neither the OSI model and its protocols nor the TCP/IP model and its protocols are perfect. Quite a bit of criticism can be, and has been, directed at both of them. In this section and the next one, we will look at some of these criticisms. We will begin with OSI and examine TCP/IP afterward. At the time the second edition of this book was published (1989), it appeared to many experts in the field that the OSI model and its protocols were going to take over the world and push everything else out of their way. This did not happen. Why? A look back at some of the lessons may be useful. These lessons can be summarized as: - 1. Bad timing. - 2. Bad technology. - 3. Bad implementations. - 4. Bad politics. # **Bad Timing** First let us look at reason one: bad timing. The time at which a standard is established is absolutely critical to its success. David Clark of M.I.T. has a theory of standards that he calls the *apocalypse of the two elephants*, which is illustrated in Fig. 1-23. This figure shows the amount of activity surrounding a new subject. When the subject is first discovered, there is a burst of research activity in the form of discussions, papers, and meetings. After a while this activity subsides, corporations discover the subject, and the billion-dollar wave of investment hits. It is essential that the standards be written in the trough in between the two "elephants." If the standards are written too early, before the research is finished, the subject may still be poorly understood; the result is bad standards. If they are written too late, so many companies may have already made major investments in Figure 1-23. The apocalypse of the two elephants. different ways of doing things that the standards are effectively ignored. If the interval between the two elephants is very short (because everyone is in a hurry to get started), the people developing the standards may get crushed. It now appears that the standard OSI protocols got crushed. The competing TCP/IP protocols were already in widespread use by research universities by the time the OSI protocols appeared. While the billion-dollar wave of investment had not yet hit, the academic market was large enough that many vendors had begun cautiously offering TCP/IP products. When OSI came around, they did not want to support a second protocol stack until they were forced to, so there were no initial offerings. With every company waiting for every other company to go first, no company went first and OSI never happened. ## **Bad Technology** The second reason that OSI never caught on is that both the model and the protocols are flawed. The choice of seven layers was more political than technical, and two of the layers (session and presentation) are nearly empty, whereas two other ones (data link and network) are overfull. The OSI model, along with the associated service definitions and protocols, is extraordinarily complex. When piled up, the printed standards occupy a significant fraction of a meter of paper. They are also difficult to implement and inefficient in operation. In this context, a riddle posed by Paul Mockapetris and cited in (Rose, 1993) comes to mind: Q: What do you get when you cross a mobster with an international standard? A: Someone who makes you an offer you can't understand. In addition to being incomprehensible, another problem with OSI is that some functions, such as addressing, flow control, and error control, reappear again and again in each layer. Saltzer et al. (1984), for example, have pointed out that to be effective, error control must be done in the highest layer, so that repeating it over and over in each of the lower layers is often unnecessary and inefficient. # **Bad Implementations** Given the enormous complexity of the model and the protocols, it will come as no surprise that the initial implementations were huge, unwieldy, and slow. Everyone who tried them got burned. It did not take long for people to associate "OSI" with "poor quality." Although the products improved in the course of time, the image stuck. In contrast, one of the first implementations of TCP/IP was part of Berkeley UNIX and was quite good (not to mention, free). People began using it quickly, which led to a large user community, which led to improvements, which led to an even larger community. Here the spiral was upward instead of downward. #### **Bad Politics** On account of the initial implementation, many people, especially in academia, thought of TCP/IP as part of UNIX, and UNIX in the 1980s in academia was not unlike parenthood (then incorrectly called motherhood) and apple pie. OSI, on the other hand, was widely thought to be the creature of the European telecommunication ministries, the European Community, and later the U.S. Government. This belief was only partly true, but the very idea of a bunch of government bureaucrats trying to shove a technically inferior standard down the throats of the poor researchers and programmers down in the trenches actually developing computer networks did not help much. Some people viewed this development in the same light as IBM announcing in the 1960s that PL/I was the language of the future, or DoD correcting this later by announcing that it was actually Ada. ## 1.4.5 A Critique of the TCP/IP Reference Model The TCP/IP model and protocols have their problems too. First, the model does not clearly distinguish the concepts of service, interface, and protocol. Good software engineering practice requires differentiating between the specification and the implementation, something that OSI does very carefully, and TCP/IP does not. Consequently, the TCP/IP model is not much of a guide for designing new networks using new technologies. Second, the TCP/IP model is not at all general and is poorly suited to describing any protocol stack other than TCP/IP. Trying to use the TCP/IP model to describe Bluetooth, for example, is completely impossible. Third, the host-to-network layer is not really a layer at all in the normal sense of the term as used in the context of layered protocols. It is an interface (between the network and data link layers). The distinction between an interface and a layer is crucial, and one should not be sloppy about
it. Fourth, the TCP/IP model does not distinguish (or even mention) the physical and data link layers. These are completely different. The physical layer has to do with the transmission characteristics of copper wire, fiber optics, and wireless communication. The data link layer's job is to delimit the start and end of frames and get them from one side to the other with the desired degree of reliability. A proper model should include both as separate layers. The TCP/IP model does not do this. Finally, although the IP and TCP protocols were carefully thought out and well implemented, many of the other protocols were ad hoc, generally produced by a couple of graduate students hacking away until they got tired. The protocol implementations were then distributed free, which resulted in their becoming widely used, deeply entrenched, and thus hard to replace. Some of them are a bit of an embarrassment now. The virtual terminal protocol, TELNET, for example, was designed for a ten-character per second mechanical Teletype terminal. It knows nothing of graphical user interfaces and mice. Nevertheless, 25 years later, it is still in widespread use. In summary, despite its problems, the OSI *model* (minus the session and presentation layers) has proven to be exceptionally useful for discussing computer networks. In contrast, the OSI *protocols* have not become popular. The reverse is true of TCP/IP: the *model* is practically nonexistent, but the *protocols* are widely used. Since computer scientists like to have their cake and eat it, too, in this book we will use a modified OSI model but concentrate primarily on the TCP/IP and related protocols, as well as newer ones such as 802, SONET, and Bluetooth. In effect, we will use the hybrid model of Fig. 1-24 as the framework for this book. | 5 | Application layer | | | |---|-------------------|--|--| | 4 | Transport layer | | | | 3 | Network layer | | | | 2 | Data link layer | | | | 1 | Physical layer | | | Figure 1-24. The hybrid reference model to be used in this book. # 1.5 EXAMPLE NETWORKS The subject of computer networking covers many different kinds of networks, large and small, well known and less well known. They have different goals, scales, and technologies. In the following sections, we will look at some examples, to get an idea of the variety one finds in the area of computer networking. We will start with the Internet, probably the best known network, and look at its history, evolution, and technology. Then we will consider ATM, which is often used within the core of large (telephone) networks. Technically, it is quite different from the Internet, contrasting nicely with it. Next we will introduce Ethernet, the dominant local area network. Finally, we will look at IEEE 802.11, the standard for wireless LANs. #### 1.5.1 The Internet The Internet is not a network at all, but a vast collection of different networks that use certain common protocols and provide certain common services. It is an unusual system in that it was not planned by anyone and is not controlled by anyone. To better understand it, let us start from the beginning and see how it has developed and why. For a wonderful history of the Internet, John Naughton's (2000) book is highly recommended. It is one of those rare books that is not only fun to read, but also has 20 pages of *ibid*.'s and *op. cit*.'s for the serious historian. Some of the material below is based on this book. Of course, countless technical books have been written about the Internet and its protocols as well. For more information, see, for example, (Maufer, 1999). #### The ARPANET The story begins in the late 1950s. At the height of the Cold War, the DoD wanted a command-and-control network that could survive a nuclear war. At that time, all military communications used the public telephone network, which was considered vulnerable. The reason for this belief can be gleaned from Fig. 1-25(a). Here the black dots represent telephone switching offices, each of which was connected to thousands of telephones. These switching offices were, in turn, connected to higher-level switching offices (toll offices), to form a national hierarchy with only a small amount of redundancy. The vulnerability of the system was that the destruction of a few key toll offices could fragment the system into many isolated islands. Around 1960, the DoD awarded a contract to the RAND Corporation to find a solution. One of its employees, Paul Baran, came up with the highly distributed and fault-tolerant design of Fig. 1-25(b). Since the paths between any two switching offices were now much longer than analog signals could travel without distortion, Baran proposed using digital packet-switching technology throughout the system. Baran wrote several reports for the DoD describing his ideas in detail. Officials at the Pentagon liked the concept and asked AT&T, then the U.S. national telephone monopoly, to build a prototype. AT&T dismissed Baran's ideas out of hand. The biggest and richest corporation in the world was not about to allow some young whippersnapper tell it how to build a telephone system. They said Baran's network could not be built and the idea was killed. **Figure 1-25.** (a) Structure of the telephone system. (b) Baran's proposed distributed switching system. Several years went by and still the DoD did not have a better command-and-control system. To understand what happened next, we have to go back to October 1957, when the Soviet Union beat the U.S. into space with the launch of the first artificial satellite, Sputnik. When President Eisenhower tried to find out who was asleep at the switch, he was appalled to find the Army, Navy, and Air Force squabbling over the Pentagon's research budget. His immediate response was to create a single defense research organization, **ARPA**, the **Advanced Research Projects Agency**. ARPA had no scientists or laboratories; in fact, it had nothing more than an office and a small (by Pentagon standards) budget. It did its work by issuing grants and contracts to universities and companies whose ideas looked promising to it. For the first few years, ARPA tried to figure out what its mission should be, but in 1967, the attention of ARPA's then director, Larry Roberts, turned to networking. He contacted various experts to decide what to do. One of them, Wesley Clark, suggested building a packet-switched subnet, giving each host its own router, as illustrated in Fig. 1-10. After some initial skepticism, Roberts bought the idea and presented a somewhat vague paper about it at the ACM SIGOPS Symposium on Operating System Principles held in Gatlinburg, Tennessee in late 1967 (Roberts, 1967). Much to Roberts' surprise, another paper at the conference described a similar system that had not only been designed but actually implemented under the direction of Donald Davies at the National Physical Laboratory in England. The NPL system was not a national system (it just connected several computers on the NPL campus), but it demonstrated that packet switching could be made to work. Furthermore, it cited Baran's now discarded earlier work. Roberts came away from Gatlinburg determined to build what later became known as the **ARPANET**. The subnet would consist of minicomputers called **IMPs** (**Interface Message Processors**) connected by 56-kbps transmission lines. For high reliability, each IMP would be connected to at least two other IMPs. The subnet was to be a datagram subnet, so if some lines and IMPs were destroyed, messages could be automatically rerouted along alternative paths. Each node of the network was to consist of an IMP and a host, in the same room, connected by a short wire. A host could send messages of up to 8063 bits to its IMP, which would then break these up into packets of at most 1008 bits and forward them independently toward the destination. Each packet was received in its entirety before being forwarded, so the subnet was the first electronic store-and-forward packet-switching network. ARPA then put out a tender for building the subnet. Twelve companies bid for it. After evaluating all the proposals, ARPA selected BBN, a consulting firm in Cambridge, Massachusetts, and in December 1968, awarded it a contract to build the subnet and write the subnet software. BBN chose to use specially modified Honeywell DDP-316 minicomputers with 12K 16-bit words of core memory as the IMPs. The IMPs did not have disks, since moving parts were considered unreliable. The IMPs were interconnected by 56-kbps lines leased from telephone companies. Although 56 kbps is now the choice of teenagers who cannot afford ADSL or cable, it was then the best money could buy. The software was split into two parts: subnet and host. The subnet software consisted of the IMP end of the host-IMP connection, the IMP-IMP protocol, and a source IMP to destination IMP protocol designed to improve reliability. The original ARPANET design is shown in Fig. 1-26. Figure 1-26. The original ARPANET design. Outside the subnet, software was also needed, namely, the host end of the host-IMP connection, the host-host protocol, and the application software. It soon became clear that BBN felt that when it had accepted a message on a host-IMP wire and placed it on the host-IMP wire at the destination, its job was done. Roberts had a problem: the hosts needed software too. To deal with it, he convened a meeting of network researchers, mostly graduate students, at Snowbird, Utah, in the summer of 1969. The graduate students expected some network expert to explain the grand design of the network and its software to them and then to assign each of them the job of writing part of it. They were astounded when there was no network expert and no grand design. They had to figure out what to do on their own. Nevertheless, somehow an experimental network went on the air in December 1969 with four nodes: at UCLA, UCSB, SRI, and the University of Utah. These four
were chosen because all had a large number of ARPA contracts, and all had different and completely incompatible host computers (just to make it more fun). The network grew quickly as more IMPs were delivered and installed; it soon spanned the United States. Figure 1-27 shows how rapidly the ARPANET grew in the first 3 years. **Figure 1-27.** Growth of the ARPANET. (a) December 1969. (b) July 1970. (c) March 1971. (d) April 1972. (e) September 1972. In addition to helping the fledgling ARPANET grow, ARPA also funded research on the use of satellite networks and mobile packet radio networks. In one now famous demonstration, a truck driving around in California used the packet radio network to send messages to SRI, which were then forwarded over the ARPANET to the East Coast, where they were shipped to University College in London over the satellite network. This allowed a researcher in the truck to use a computer in London while driving around in California. This experiment also demonstrated that the existing ARPANET protocols were not suitable for running over multiple networks. This observation led to more research on protocols, culminating with the invention of the TCP/IP model and protocols (Cerf and Kahn, 1974). TCP/IP was specifically designed to handle communication over internetworks, something becoming increasingly important as more and more networks were being hooked up to the ARPANET. To encourage adoption of these new protocols, ARPA awarded several contracts to BBN and the University of California at Berkeley to integrate them into Berkeley UNIX. Researchers at Berkeley developed a convenient program interface to the network (sockets) and wrote many application, utility, and management programs to make networking easier. The timing was perfect. Many universities had just acquired a second or third VAX computer and a LAN to connect them, but they had no networking software. When 4.2BSD came along, with TCP/IP, sockets, and many network utilities, the complete package was adopted immediately. Furthermore, with TCP/IP, it was easy for the LANs to connect to the ARPANET, and many did. During the 1980s, additional networks, especially LANs, were connected to the ARPANET. As the scale increased, finding hosts became increasingly expensive, so **DNS** (**Domain Name System**) was created to organize machines into domains and map host names onto IP addresses. Since then, DNS has become a generalized, distributed database system for storing a variety of information related to naming. We will study it in detail in Chap. 7. #### **NSFNET** By the late 1970s, NSF (the U.S. National Science Foundation) saw the enormous impact the ARPANET was having on university research, allowing scientists across the country to share data and collaborate on research projects. However, to get on the ARPANET, a university had to have a research contract with the DoD, which many did not have. NSF's response was to design a successor to the ARPANET that would be open to all university research groups. To have something concrete to start with, NSF decided to build a backbone network to connect its six supercomputer centers, in San Diego, Boulder, Champaign, Pittsburgh, Ithaca, and Princeton. Each supercomputer was given a little brother, consisting of an LSI-11 microcomputer called a **fuzzball**. The fuzzballs were connected with 56-kbps leased lines and formed the subnet, the same hardware technology as the ARPANET used. The software technology was different however: the fuzzballs spoke TCP/IP right from the start, making it the first TCP/IP WAN. NSF also funded some (eventually about 20) regional networks that connected to the backbone to allow users at thousands of universities, research labs, libraries, and museums to access any of the supercomputers and to communicate with one another. The complete network, including the backbone and the regional networks, was called **NSFNET**. It connected to the ARPANET through a link between an IMP and a fuzzball in the Carnegie-Mellon machine room. The first NSFNET backbone is illustrated in Fig. 1-28. Figure 1-28. The NSFNET backbone in 1988. NSFNET was an instantaneous success and was overloaded from the word go. NSF immediately began planning its successor and awarded a contract to the Michigan-based MERIT consortium to run it. Fiber optic channels at 448 kbps were leased from MCI (since merged with WorldCom) to provide the version 2 backbone. IBM PC-RTs were used as routers. This, too, was soon overwhelmed, and by 1990, the second backbone was upgraded to 1.5 Mbps. As growth continued, NSF realized that the government could not continue financing networking forever. Furthermore, commercial organizations wanted to join but were forbidden by NSF's charter from using networks NSF paid for. Consequently, NSF encouraged MERIT, MCI, and IBM to form a nonprofit corporation, ANS (Advanced Networks and Services), as the first step along the road to commercialization. In 1990, ANS took over NSFNET and upgraded the 1.5-Mbps links to 45 Mbps to form ANSNET. This network operated for 5 years and was then sold to America Online. But by then, various companies were offering commercial IP service and it was clear the government should now get out of the networking business. To ease the transition and make sure every regional network could communicate with every other regional network, NSF awarded contracts to four different network operators to establish a **NAP** (**Network Access Point**). These operators were PacBell (San Francisco), Ameritech (Chicago), MFS (Washington, D.C.), and Sprint (New York City, where for NAP purposes, Pennsauken, New Jersey counts as New York City). Every network operator that wanted to provide backbone service to the NSF regional networks had to connect to all the NAPs. This arrangement meant that a packet originating on any regional network had a choice of backbone carriers to get from its NAP to the destination's NAP. Consequently, the backbone carriers were forced to compete for the regional networks' business on the basis of service and price, which was the idea, of course. As a result, the concept of a single default backbone was replaced by a commercially-driven competitive infrastructure. Many people like to criticize the Federal Government for not being innovative, but in the area of networking, it was DoD and NSF that created the infrastructure that formed the basis for the Internet and then handed it over to industry to operate. During the 1990s, many other countries and regions also built national research networks, often patterned on the ARPANET and NSFNET. These included EuropaNET and EBONE in Europe, which started out with 2-Mbps lines and then upgraded to 34-Mbps lines. Eventually, the network infrastructure in Europe was handed over to industry as well. ## **Internet Usage** The number of networks, machines, and users connected to the ARPANET grew rapidly after TCP/IP became the only official protocol on January 1, 1983. When NSFNET and the ARPANET were interconnected, the growth became exponential. Many regional networks joined up, and connections were made to networks in Canada, Europe, and the Pacific. Sometime in the mid-1980s, people began viewing the collection of networks as an internet, and later as the Internet, although there was no official dedication with some politician breaking a bottle of champagne over a fuzzball. The glue that holds the Internet together is the TCP/IP reference model and TCP/IP protocol stack. TCP/IP makes universal service possible and can be compared to the adoption of standard gauge by the railroads in the 19th century or the adoption of common signaling protocols by all the telephone companies. What does it actually mean to be on the Internet? Our definition is that a machine is on the Internet if it runs the TCP/IP protocol stack, has an IP address, and can send IP packets to all the other machines on the Internet. The mere ability to send and receive electronic mail is not enough, since e-mail is gatewayed to many networks outside the Internet. However, the issue is clouded somewhat by the fact that millions of personal computers can call up an Internet service provider using a modem, be assigned a temporary IP address, and send IP packets to other Internet hosts. It makes sense to regard such machines as being on the Internet for as long as they are connected to the service provider's router. Traditionally (meaning 1970 to about 1990), the Internet and its predecessors had four main applications: - 1. **E-mail**. The ability to compose, send, and receive electronic mail has been around since the early days of the ARPANET and is enormously popular. Many people get dozens of messages a day and consider it their primary way of interacting with the outside world, far outdistancing the telephone and snail mail. E-mail programs are available on virtually every kind of computer these days. - 2. **News**. Newsgroups are specialized forums in which users with a common interest can exchange messages. Thousands of newsgroups exist, devoted to technical and nontechnical topics, including computers, science, recreation, and politics. Each newsgroup has its own etiquette, style, and customs, and woe betide anyone violating them. - 3. **Remote login**. Using the telnet, rlogin, or ssh programs, users anywhere on the Internet can log on to any other machine on which they have an account. - 4. **File transfer**. Using the FTP program, users can copy files from one machine on the Internet to another. Vast numbers of articles, databases, and other information are available this way. Up until the early 1990s, the Internet was largely populated by academic, government, and industrial researchers. One new application, the WWW (World Wide Web) changed all that and brought millions of new, nonacademic users to the net. This application, invented by CERN physicist Tim Berners-Lee, did not change any of the underlying facilities but
made them easier to use. Together with the Mosaic browser, written by Marc Andreessen at the National Center for Supercomputer Applications in Urbana, Illinois, the WWW made it possible for a site to set up a number of pages of information containing text, pictures, sound, and even video, with embedded links to other pages. By clicking on a link, the user is suddenly transported to the page pointed to by that link. For example, many companies have a home page with entries pointing to other pages for product information, price lists, sales, technical support, communication with employees, stockholder information, and more. Numerous other kinds of pages have come into existence in a very short time, including maps, stock market tables, library card catalogs, recorded radio programs, and even a page pointing to the complete text of many books whose copyrights have expired (Mark Twain, Charles Dickens, etc.). Many people also have personal pages (home pages). Much of this growth during the 1990s was fueled by companies called **ISPs** (**Internet Service Providers**). These are companies that offer individual users at home the ability to call up one of their machines and connect to the Internet, thus gaining access to e-mail, the WWW, and other Internet services. These companies signed up tens of millions of new users a year during the late 1990s, completely changing the character of the network from an academic and military playground to a public utility, much like the telephone system. The number of Internet users now is unknown, but is certainly hundreds of millions worldwide and will probably hit 1 billion fairly soon. #### **Architecture of the Internet** In this section we will attempt to give a brief overview of the Internet today. Due to the many mergers between telephone companies (telcos) and ISPs, the waters have become muddied and it is often hard to tell who is doing what. Consequently, this description will be of necessity somewhat simpler than reality. The big picture is shown in Fig. 1-29. Let us examine this figure piece by piece now. Figure 1-29. Overview of the Internet. A good place to start is with a client at home. Let us assume our client calls his or her ISP over a dial-up telephone line, as shown in Fig. 1-29. The modem is a card within the PC that converts the digital signals the computer produces to analog signals that can pass unhindered over the telephone system. These signals are transferred to the ISP's **POP** (**Point of Presence**), where they are removed from the telephone system and injected into the ISP's regional network. From this point on, the system is fully digital and packet switched. If the ISP is the local telco, the POP will probably be located in the telephone switching office where the telephone wire from the client terminates. If the ISP is not the local telco, the POP may be a few switching offices down the road. The ISP's regional network consists of interconnected routers in the various cities the ISP serves. If the packet is destined for a host served directly by the ISP, the packet is delivered to the host. Otherwise, it is handed over to the ISP's backbone operator. At the top of the food chain are the major backbone operators, companies like AT&T and Sprint. They operate large international backbone networks, with thousands of routers connected by high-bandwidth fiber optics. Large corporations and hosting services that run server farms (machines that can serve thousands of Web pages per second) often connect directly to the backbone. Backbone operators encourage this direct connection by renting space in what are called **carrier hotels**, basically equipment racks in the same room as the router to allow short, fast connections between server farms and the backbone. If a packet given to the backbone is destined for an ISP or company served by the backbone, it is sent to the closest router and handed off there. However, many backbones, of varying sizes, exist in the world, so a packet may have to go to a competing backbone. To allow packets to hop between backbones, all the major backbones connect at the NAPs discussed earlier. Basically, a NAP is a room full of routers, at least one per backbone. A LAN in the room connects all the routers, so packets can be forwarded from any backbone to any other backbone. In addition to being interconnected at NAPs, the larger backbones have numerous direct connections between their routers, a technique known as **private peering**. One of the many paradoxes of the Internet is that ISPs who publicly compete with one another for customers often privately cooperate to do private peering (Metz, 2001). This ends our quick tour of the Internet. We will have a great deal to say about the individual components and their design, algorithms, and protocols in subsequent chapters. Also worth mentioning in passing is that some companies have interconnected all their existing internal networks, often using the same technology as the Internet. These **intranets** are typically accessible only within the company but otherwise work the same way as the Internet. ### 1.5.2 Connection-Oriented Networks: X.25, Frame Relay, and ATM Since the beginning of networking, a war has been going on between the people who support connectionless (i.e., datagram) subnets and the people who support connection-oriented subnets. The main proponents of the connectionless subnets come from the ARPANET/Internet community. Remember that DoD's original desire in funding and building the ARPANET was to have a network that would continue functioning even after multiple direct hits by nuclear weapons wiped out numerous routers and transmission lines. Thus, fault tolerance was high on their priority list; billing customers was not. This approach led to a connectionless design in which every packet is routed independently of every other packet. As a consequence, if some routers go down during a session, no harm is done as long as the system can reconfigure itself dynamically so that subsequent packets can find some route to the destination, even if it is different from that which previous packets used. The connection-oriented camp comes from the world of telephone companies. In the telephone system, a caller must dial the called party's number and wait for a connection before talking or sending data. This connection setup establishes a route through the telephone system that is maintained until the call is terminated. All words or packets follow the same route. If a line or switch on the path goes down, the call is aborted. This property is precisely what the DoD did not like about it. Why do the telephone companies like it then? There are two reasons: - 1. Quality of service. - 2. Billing. By setting up a connection in advance, the subnet can reserve resources such as buffer space and router CPU capacity. If an attempt is made to set up a call and insufficient resources are available, the call is rejected and the caller gets a kind of busy signal. In this way, once a connection has been set up, the connection will get good service. With a connectionless network, if too many packets arrive at the same router at the same moment, the router will choke and probably lose packets. The sender will eventually notice this and resend them, but the quality of service will be jerky and unsuitable for audio or video unless the network is very lightly loaded. Needless to say, providing adequate audio quality is something telephone companies care about very much, hence their preference for connections. The second reason the telephone companies like connection-oriented service is that they are accustomed to charging for connect time. When you make a long distance call (or even a local call outside North America) you are charged by the minute. When networks came around, they just automatically gravitated toward a model in which charging by the minute was easy to do. If you have to set up a connection before sending data, that is when the billing clock starts running. If there is no connection, they cannot charge for it. Ironically, maintaining billing records is very expensive. If a telephone company were to adopt a flat monthly rate with unlimited calling and no billing or record keeping, it would probably save a huge amount of money, despite the increased calling this policy would generate. Political, regulatory, and other factors weigh against doing this, however. Interestingly enough, flat rate service exists in other sectors. For example, cable TV is billed at a flat rate per month, no matter how many programs you watch. It could have been designed with pay-per-view as the basic concept, but it was not, due in part to the expense of billing (and given the quality of most television, the embarrassment factor cannot be totally discounted either). Also, many theme parks charge a daily admission fee for unlimited rides, in contrast to traveling carnivals, which charge by the ride. That said, it should come as no surprise that all networks designed by the telephone industry have had connection-oriented subnets. What is perhaps surprising, is that the Internet is also drifting in that direction, in order to provide a better quality of service for audio and video, a subject we will return to in Chap. 5. But now let us examine some connection-oriented networks. ### X.25 and Frame Relay Our first example of a connection-oriented network is **X.25**, which was the first public data network. It was deployed in the 1970s at a time when telephone service was a monopoly everywhere and the telephone company in each country expected there to be one data network per country—theirs. To use X.25, a computer first established a connection to the remote computer, that is, placed a telephone call. This connection was given a connection number to be used in data transfer packets (because multiple connections could be open at the same time). Data packets were very simple, consisting of a 3-byte
header and up to 128 bytes of data. The header consisted of a 12-bit connection number, a packet sequence number, an acknowledgement number, and a few miscellaneous bits. X.25 networks operated for about a decade with mixed success. In the 1980s, the X.25 networks were largely replaced by a new kind of network called **frame relay**. The essence of frame relay is that it is a connection-oriented network with no error control and no flow control. Because it was connection-oriented, packets were delivered in order (if they were delivered at all). The properties of in-order delivery, no error control, and no flow control make frame relay akin to a wide area LAN. Its most important application is interconnecting LANs at multiple company offices. Frame relay enjoyed a modest success and is still in use in places today. ## **Asynchronous Transfer Mode** Yet another, and far more important, connection-oriented network is **ATM** (**Asynchronous Transfer Mode**). The reason for the somewhat strange name is that in the telephone system, most transmission is synchronous (closely tied to a clock), and ATM is not. ATM was designed in the early 1990s and launched amid truly incredible hype (Ginsburg, 1996; Goralski, 1995; Ibe, 1997; Kim et al., 1994; and Stallings, 2000). ATM was going to solve all the world's networking and telecommunications problems by merging voice, data, cable television, telex, telegraph, carrier pigeon, tin cans connected by strings, tom-toms, smoke signals, and everything else into a single integrated system that could do everything for everyone. It did not happen. In large part, the problems were similar to those we described earlier concerning OSI, that is, bad timing, technology, implementation, and politics. Having just beaten back the telephone companies in round 1, many in the Internet community saw ATM as Internet versus the Telcos: the Sequel. But it really was not, and this time around even diehard datagram fanatics were aware that the Internet's quality of service left a lot to be desired. To make a long story short, ATM was much more successful than OSI, and it is now widely used deep within the telephone system, often for moving IP packets. Because it is now mostly used by carriers for internal transport, users are often unaware of its existence, but it is definitely alive and well. #### **ATM Virtual Circuits** Since ATM networks are connection-oriented, sending data requires first sending a packet to set up the connection. As the setup packet wends its way through the subnet, all the routers on the path make an entry in their internal tables noting the existence of the connection and reserving whatever resources are needed for it. Connections are often called **virtual circuits**, in analogy with the physical circuits used within the telephone system. Most ATM networks also support **permanent virtual circuits**, which are permanent connections between two (distant) hosts. They are similar to leased lines in the telephone world. Each connection, temporary or permanent, has a unique connection identifier. A virtual circuit is illustrated in Fig. 1-30. Figure 1-30. A virtual circuit. Once a connection has been established, either side can begin transmitting data. The basic idea behind ATM is to transmit all information in small, fixed-size packets called **cells**. The cells are 53 bytes long, of which 5 bytes are header and 48 bytes are payload, as shown in Fig. 1-31. Part of the header is the connection identifier, so the sending and receiving hosts and all the intermediate routers can tell which cells belong to which connections. This information allows each router to know how to route each incoming cell. Cell routing is done in hardware, at high speed. In fact, the main argument for having fixed-size cells is that it is easy to build hardware routers to handle short, fixed-length cells. Variable-length IP packets have to be routed by software, which is a slower process. Another plus of ATM is that the hardware can be set up to copy one incoming cell to multiple output lines, a property that is required for handling a television program that is being broadcast to many receivers. Finally, small cells do not block any line for very long, which makes guaranteeing quality of service easier. All cells follow the same route to the destination. Cell delivery is not guaranteed, but their order is. If cells 1 and 2 are sent in that order, then if both arrive, they will arrive in that order, never first 2 then 1. But either or both of them can be lost along the way. It is up to higher protocol levels to recover from lost cells. Note that although this guarantee is not perfect, it is better than what the Internet provides. There packets can not only be lost, but delivered out of order as well. ATM, in contrast, guarantees never to deliver cells out of order. Figure 1-31. An ATM cell. ATM networks are organized like traditional WANs, with lines and switches (routers). The most common speeds for ATM networks are 155 Mbps and 622 Mbps, although higher speeds are also supported. The 155-Mbps speed was chosen because this is about what is needed to transmit high definition television. The exact choice of 155.52 Mbps was made for compatibility with AT&T's SONET transmission system, something we will study in Chap. 2. The 622 Mbps speed was chosen so that four 155-Mbps channels could be sent over it. # The ATM Reference Model ATM has its own reference model, different from the OSI model and also different from the TCP/IP model. This model is shown in Fig. 1-32. It consists of three layers, the physical, ATM, and ATM adaptation layers, plus whatever users want to put on top of that. The physical layer deals with the physical medium: voltages, bit timing, and various other issues. ATM does not prescribe a particular set of rules but instead says that ATM cells can be sent on a wire or fiber by themselves, but they can also be packaged inside the payload of other carrier systems. In other words, ATM has been designed to be independent of the transmission medium. The **ATM layer** deals with cells and cell transport. It defines the layout of a cell and tells what the header fields mean. It also deals with establishment and release of virtual circuits. Congestion control is also located here. Because most applications do not want to work directly with cells (although some may), a layer above the ATM layer has been defined to allow users to send Figure 1-32. The ATM reference model. packets larger than a cell. The ATM interface segments these packets, transmits the cells individually, and reassembles them at the other end. This layer is the AAL (ATM Adaptation Layer). Unlike the earlier two-dimensional reference models, the ATM model is defined as being three-dimensional, as shown in Fig. 1-32. The **user plane** deals with data transport, flow control, error correction, and other user functions. In contrast, the **control plane** is concerned with connection management. The layer and plane management functions relate to resource management and interlayer coordination. The physical and AAL layers are each divided into two sublayers, one at the bottom that does the work and a convergence sublayer on top that provides the proper interface to the layer above it. The functions of the layers and sublayers are given in Fig. 1-33. The **PMD** (**Physical Medium Dependent**) sublayer interfaces to the actual cable. It moves the bits on and off and handles the bit timing. For different carriers and cables, this layer will be different. The other sublayer of the physical layer is the TC (Transmission Convergence) sublayer. When cells are transmitted, the TC layer sends them as a string of bits to the PMD layer. Doing this is easy. At the other end, the TC sublayer gets a pure incoming bit stream from the PMD sublayer. Its job is to convert this bit stream into a cell stream for the ATM layer. It handles all the issues related to telling where cells begin and end in the bit stream. In the ATM model, this functionality is in the physical layer. In the OSI model and in pretty much all other networks, the job of framing, that is, turning a raw bit stream into a sequence of frames or cells, is the data link layer's task. As we mentioned earlier, the ATM layer manages cells, including their generation and transport. Most of the interesting aspects of ATM are located here. It is a mixture of the OSI data link and network layers; it is not split into sublayers. | OSI
layer | ATM
layer | ATM
sublayer | Functionality | |--------------|--------------|-----------------|---| | 3/4 | AAL | CS | Providing the standard interface (convergence) | | | | SAR | Segmentation and reassembly | | 2/3 | ATM | | Flow control Cell header generation/extraction Virtual circuit/path management Cell multiplexing/demultiplexing | | 2 | Physical | TC | Cell rate decoupling Header checksum generation and verification Cell generation Packing/unpacking cells from the enclosing envelope Frame generation | | 1 | | PMD | Bit timing
Physical network access | Figure 1-33. The ATM layers and sublayers, and their functions. The AAL layer is split into a **SAR** (**Segmentation And Reassembly**) sublayer and a **CS** (**Convergence Sublayer**). The lower sublayer breaks up packets into cells on the transmission side and puts them back together again at the destination. The upper sublayer makes it possible to have ATM systems offer different kinds of services to different applications (e.g., file transfer and video on demand have different requirements concerning error handling, timing, etc.). As it is probably mostly downhill for ATM from now on, we will not discuss it further in this book. Nevertheless, since it has a substantial installed base, it will probably be around for at least a few more
years. For more information about ATM, see (Dobrowski and Grise, 2001; and Gadecki and Heckart, 1997). #### 1.5.3 Ethernet Both the Internet and ATM were designed for wide area networking. However, many companies, universities, and other organizations have large numbers of computers that must be connected. This need gave rise to the local area network. In this section we will say a little bit about the most popular LAN, Ethernet. The story starts out in pristine Hawaii in the early 1970s. In this case, "pristine" can be interpreted as "not having a working telephone system." While not being interrupted by the phone all day long makes life more pleasant for vacationers, it did not make life more pleasant for researcher Norman Abramson and his colleagues at the University of Hawaii who were trying to connect users on remote islands to the main computer in Honolulu. Stringing their own cables under the Pacific Ocean was not in the cards, so they looked for a different solution. The one they found was short-range radios. Each user terminal was equipped with a small radio having two frequencies: upstream (to the central computer) and downstream (from the central computer). When the user wanted to contact the computer, it just transmitted a packet containing the data in the upstream channel. If no one else was transmitting at that instant, the packet probably got through and was acknowledged on the downstream channel. If there was contention for the upstream channel, the terminal noticed the lack of acknowledgement and tried again. Since there was only one sender on the downstream channel (the central computer), there were never collisions there. This system, called ALOHANET, worked fairly well under conditions of low traffic but bogged down badly when the upstream traffic was heavy. About the same time, a student named Bob Metcalfe got his bachelor's degree at M.I.T. and then moved up the river to get his Ph.D. at Harvard. During his studies, he was exposed to Abramson's work. He became so interested in it that after graduating from Harvard, he decided to spend the summer in Hawaii working with Abramson before starting work at Xerox PARC (Palo Alto Research Center). When he got to PARC, he saw that the researchers there had designed and built what would later be called personal computers. But the machines were isolated. Using his knowledge of Abramson's work, he, together with his colleague David Boggs, designed and implemented the first local area network (Metcalfe and Boggs, 1976). They called the system **Ethernet** after the *luminiferous ether*, through which electromagnetic radiation was once thought to propagate. (When the 19th century British physicist James Clerk Maxwell discovered that electromagnetic radiation could be described by a wave equation, scientists assumed that space must be filled with some ethereal medium in which the radiation was propagating. Only after the famous Michelson-Morley experiment in 1887 did physicists discover that electromagnetic radiation could propagate in a vacuum.) The transmission medium here was not a vacuum, but a thick coaxial cable (the ether) up to 2.5 km long (with repeaters every 500 meters). Up to 256 machines could be attached to the system via transceivers screwed onto the cable. A cable with multiple machines attached to it in parallel is called a **multidrop cable**. The system ran at 2.94 Mbps. A sketch of its architecture is given in Fig. 1-34. Ethernet had a major improvement over ALOHANET: before transmitting, a computer first listened to the cable to see if someone else was already transmitting. If so, the computer held back until the current transmission finished. Doing so avoided interfering with existing transmissions, giving a much higher efficiency. ALOHANET did not work like this because it was impossible for a terminal on one island to sense the transmission of a terminal on a distant island. With a single cable, this problem does not exist. Figure 1-34. Architecture of the original Ethernet. Despite the computer listening before transmitting, a problem still arises: what happens if two or more computers all wait until the current transmission completes and then all start at once? The solution is to have each computer listen during its own transmission and if it detects interference, jam the ether to alert all senders. Then back off and wait a random time before retrying. If a second collision happens, the random waiting time is doubled, and so on, to spread out the competing transmissions and give one of them a chance to go first. The Xerox Ethernet was so successful that DEC, Intel, and Xerox drew up a standard in 1978 for a 10-Mbps Ethernet, called the **DIX standard**. With two minor changes, the DIX standard became the IEEE 802.3 standard in 1983. Unfortunately for Xerox, it already had a history of making seminal inventions (such as the personal computer) and then failing to commercialize on them, a story told in *Fumbling the Future* (Smith and Alexander, 1988). When Xerox showed little interest in doing anything with Ethernet other than helping standardize it, Metcalfe formed his own company, 3Com, to sell Ethernet adapters for PCs. It has sold over 100 million of them. Ethernet continued to develop and is still developing. New versions at 100 Mbps, 1000 Mbps, and still higher have come out. Also the cabling has improved, and switching and other features have been added. We will discuss Ethernet in detail in Chap. 4. In passing, it is worth mentioning that Ethernet (IEEE 802.3) is not the only LAN standard. The committee also standardized a token bus (802.4) and a token ring (802.5). The need for three more-or-less incompatible standards has little to do with technology and everything to do with politics. At the time of standardization, General Motors was pushing a LAN in which the topology was the same as Ethernet (a linear cable) but computers took turns in transmitting by passing a short packet called a **token** from computer to computer. A computer could only send if it possessed the token, thus avoiding collisions. General Motors announced that this scheme was essential for manufacturing cars and was not prepared to budge from this position. This announcement notwithstanding, 802.4 has basically vanished from sight. Similarly, IBM had its own favorite: its proprietary token ring. The token was passed around the ring and whichever computer held the token was allowed to transmit before putting the token back on the ring. Unlike 802.4, this scheme, standardized as 802.5, is still in use at some IBM sites, but virtually nowhere outside of IBM sites. However, work is progressing on a gigabit version (802.5v), but it seems unlikely that it will ever catch up with Ethernet. In short, there was a war between Ethernet, token bus, and token ring, and Ethernet won, mostly because it was there first and the challengers were not as good. ### 1.5.4 Wireless LANs: 802.11 Almost as soon as notebook computers appeared, many people had a dream of walking into an office and magically having their notebook computer be connected to the Internet. Consequently, various groups began working on ways to accomplish this goal. The most practical approach is to equip both the office and the notebook computers with short-range radio transmitters and receivers to allow them to communicate. This work rapidly led to wireless LANs being marketed by a variety of companies. The trouble was that no two of them were compatible. This proliferation of standards meant that a computer equipped with a brand *X* radio would not work in a room equipped with a brand *Y* base station. Finally, the industry decided that a wireless LAN standard might be a good idea, so the IEEE committee that standardized the wired LANs was given the task of drawing up a wireless LAN standard. The standard it came up with was named 802.11. A common slang name for it is **WiFi**. It is an important standard and deserves respect, so we will call it by its proper name, 802.11. The proposed standard had to work in two modes: - 1. In the presence of a base station. - 2. In the absence of a base station. In the former case, all communication was to go through the base station, called an **access point** in 802.11 terminology. In the latter case, the computers would just send to one another directly. This mode is now sometimes called **ad hoc networking**. A typical example is two or more people sitting down together in a room not equipped with a wireless LAN and having their computers just communicate directly. The two modes are illustrated in Fig. 1-35. The first decision was the easiest: what to call it. All the other LAN standards had numbers like 802.1, 802.2, 802.3, up to 802.10, so the wireless LAN standard was dubbed 802.11. The rest was harder. In particular, some of the many challenges that had to be met were: finding a suitable frequency band that was available, preferably worldwide; dealing with the fact that radio signals have a finite range; ensuring that users' privacy was Figure 1-35. (a) Wireless networking with a base station. (b) Ad hoc networking. maintained; taking limited battery life into account; worrying about human safety (do radio waves cause cancer?); understanding the implications of computer mobility; and finally, building a system with enough bandwidth to be economically viable. At the time the standardization process started (mid-1990s), Ethernet had already come to dominate local area networking, so the committee decided to make 802.11 compatible with Ethernet above the data link layer. In particular, it should be possible to send an IP packet over the wireless LAN the same way a wired computer sent an IP packet over Ethernet. Nevertheless, in the physical and data link layers, several inherent differences with Ethernet exist and had to be dealt with by the standard. First, a computer on Ethernet always listens to the ether before transmitting. Only if the ether is idle
does the computer begin transmitting. With wireless LANs, that idea does not work so well. To see why, examine Fig. 1-36. Suppose that computer A is transmitting to computer B, but the radio range of A's transmitter is too short to reach computer C. If C wants to transmit to B it can listen to the ether before starting, but the fact that it does not hear anything does not mean that its transmission will succeed. The 802.11 standard had to solve this problem. The second problem that had to be solved is that a radio signal can be reflected off solid objects, so it may be received multiple times (along multiple paths). This interference results in what is called **multipath fading**. The third problem is that a great deal of software is not aware of mobility. For example, many word processors have a list of printers that users can choose from to print a file. When the computer on which the word processor runs is taken into a new environment, the built-in list of printers becomes invalid. The fourth problem is that if a notebook computer is moved away from the ceiling-mounted base station it is using and into the range of a different base station, some way of handing it off is needed. Although this problem occurs with cellular telephones, it does not occur with Ethernet and needed to be solved. In Figure 1-36. The range of a single radio may not cover the entire system. particular, the network envisioned consists of multiple cells, each with its own base station, but with the base stations connected by Ethernet, as shown in Fig. 1-37. From the outside, the entire system should look like a single Ethernet. The connection between the 802.11 system and the outside world is called a **portal**. Figure 1-37. A multicell 802.11 network. After some work, the committee came up with a standard in 1997 that addressed these and other concerns. The wireless LAN it described ran at either 1 Mbps or 2 Mbps. Almost immediately, people complained that it was too slow, so work began on faster standards. A split developed within the committee, resulting in two new standards in 1999. The 802.11a standard uses a wider frequency band and runs at speeds up to 54 Mbps. The 802.11b standard uses the same frequency band as 802.11, but uses a different modulation technique to achieve 11 Mbps. Some people see this as psychologically important since 11 Mbps is faster than the original wired Ethernet. It is likely that the original 1-Mbps 802.11 will die off quickly, but it is not yet clear which of the new standards will win out. To make matters even more complicated than they already were, the 802 committee has come up with yet another variant, 802.11g, which uses the modulation technique of 802.11a but the frequency band of 802.11b. We will come back to 802.11 in detail in Chap. 4. That 802.11 is going to cause a revolution in computing and Internet access is now beyond any doubt. Airports, train stations, hotels, shopping malls, and universities are rapidly installing it. Even upscale coffee shops are installing 802.11 so that the assembled yuppies can surf the Web while drinking their lattes. It is likely that 802.11 will do to the Internet what notebook computers did to computing: make it mobile. ## 1.6 NETWORK STANDARDIZATION Many network vendors and suppliers exist, each with its own ideas of how things should be done. Without coordination, there would be complete chaos, and users would get nothing done. The only way out is to agree on some network standards. Not only do standards allow different computers to communicate, but they also increase the market for products adhering to the standard. A larger market leads to mass production, economies of scale in manufacturing, VLSI implementations, and other benefits that decrease price and further increase acceptance. In the following sections we will take a quick look at the important, but little-known, world of international standardization. Standards fall into two categories: de facto and de jure. **De facto** (Latin for "from the fact") standards are those that have just happened, without any formal plan. The IBM PC and its successors are de facto standards for small-office and home computers because dozens of manufacturers chose to copy IBM's machines very closely. Similarly, UNIX is the de facto standard for operating systems in university computer science departments. **De jure** (Latin for "by law") standards, in contrast, are formal, legal standards adopted by some authorized standardization body. International standardization authorities are generally divided into two classes: those established by treaty among national governments, and those comprising voluntary, nontreaty organizations. In the area of computer network standards, there are several organizations of each type, which are discussed below. ### 1.6.1 Who's Who in the Telecommunications World The legal status of the world's telephone companies varies considerably from country to country. At one extreme is the United States, which has 1500 separate, privately owned telephone companies. Before it was broken up in 1984, AT&T, at that time the world's largest corporation, completely dominated the scene. It provided telephone service to about 80 percent of America's telephones, spread throughout half of its geographical area, with all the other companies combined servicing the remaining (mostly rural) customers. Since the breakup, AT&T continues to provide long-distance service, although now in competition with other companies. The seven Regional Bell Operating Companies that were split off from AT&T and numerous independents provide local and cellular telephone service. Due to frequent mergers and other changes, the industry is in a constant state of flux. Companies in the United States that provide communication services to the public are called **common carriers**. Their offerings and prices are described by a document called a **tariff**, which must be approved by the Federal Communications Commission for the interstate and international traffic and by the state public utilities commissions for intrastate traffic. At the other extreme are countries in which the national government has a complete monopoly on all communication, including the mail, telegraph, telephone, and often, radio and television. Most of the world falls in this category. In some cases the telecommunication authority is a nationalized company, and in others it is simply a branch of the government, usually known as the **PTT** (**Post, Telegraph & Telephone** administration). Worldwide, the trend is toward liberalization and competition and away from government monopoly. Most European countries have now (partially) privatized their PTTs, but elsewhere the process is still slowly gaining steam. With all these different suppliers of services, there is clearly a need to provide compatibility on a worldwide scale to ensure that people (and computers) in one country can call their counterparts in another one. Actually, this need has existed for a long time. In 1865, representatives from many European governments met to form the predecessor to today's ITU (International Telecommunication Union). Its job was standardizing international telecommunications, which in those days meant telegraphy. Even then it was clear that if half the countries used Morse code and the other half used some other code, there was going to be a problem. When the telephone was put into international service, ITU took over the job of standardizing telephony (pronounced te-LEF-ony) as well. In 1947, ITU became an agency of the United Nations. ITU has three main sectors: - 1. Radiocommunications Sector (ITU-R). - 2. Telecommunications Standardization Sector (ITU-T). - 3. Development Sector (ITU-D). ITU-R is concerned with allocating radio frequencies worldwide to the competing interest groups. We will focus primarily on ITU-T, which is concerned with telephone and data communication systems. From 1956 to 1993, ITU-T was known as **CCITT**, an acronym for its French name: Comité Consultatif International Télégraphique et Téléphonique. On March 1, 1993, CCITT was reorganized to make it less bureaucratic and renamed to reflect its new role. Both ITU-T and CCITT issued recommendations in the area of telephone and data communications. One still frequently runs into CCITT recommendations, such as CCITT X.25, although since 1993 recommendations bear the ITU-T label. ITU-T has four classes of members: - 1. National governments. - 2. Sector members. - 3. Associate members. - 4. Regulatory agencies. ITU-T has about 200 governmental members, including almost every member of the United Nations. Since the United States does not have a PTT, somebody else had to represent it in ITU-T. This task fell to the State Department, probably on the grounds that ITU-T had to do with foreign countries, the State Department's specialty. There are approximately 500 sector members, including telephone companies (e.g., AT&T, Vodafone, WorldCom), telecom equipment manufacturers (e.g., Cisco, Nokia, Nortel), computer vendors (e.g., Compaq, Sun, Toshiba), chip manufacturers (e.g., Intel, Motorola, TI), media companies (e.g., AOL Time Warner, CBS, Sony), and other interested companies (e.g., Boeing, Samsung, Xerox). Various nonprofit scientific organizations and industry consortia are also sector members (e.g., IFIP and IATA). Associate members are smaller organizations that are interested in a particular Study Group. Regulatory agencies are the folks who watch over the telecom business, such as the U.S. Federal Communications Commission. ITU-T's task is to make technical recommendations about telephone, telegraph, and data communication interfaces. These often become internationally recognized standards, for example, V.24 (also known as EIA RS-232 in the United States), which specifies the placement and meaning of the various pins on the connector used by most asynchronous terminals and external modems. It should be
noted that ITU-T recommendations are technically only suggestions that governments can adopt or ignore, as they wish (because governments are like 13-year-old boys—they do not take kindly to being given orders). In practice, a country that wishes to adopt a telephone standard different from that used by the rest of the world is free to do so, but at the price of cutting itself off from everyone else. This might work for North Korea, but elsewhere it would be a real problem. The fiction of calling ITU-T standards "recommendations" was and is necessary to keep nationalist forces in many countries placated. The real work of ITU-T is done in its 14 Study Groups, often as large as 400 people. There are currently 14 Study Groups, covering topics ranging from telephone billing to multimedia services. In order to make it possible to get anything at all done, the Study Groups are divided into Working Parties, which are in turn divided into Expert Teams, which are in turn divided into ad hoc groups. Once a bureaucracy, always a bureaucracy. Despite all this, ITU-T actually gets things done. Since its inception, it has produced close to 3000 recommendations occupying about 60,000 pages of paper. Many of these are widely used in practice. For example, the popular V.90 56-kbps modem standard is an ITU recommendation. As telecommunications completes the transition started in the 1980s from being entirely national to being entirely global, standards will become increasingly important, and more and more organizations will want to become involved in setting them. For more information about ITU, see (Irmer, 1994). ## 1.6.2 Who's Who in the International Standards World International standards are produced and published by **ISO** (**International Standards Organization**[†]), a voluntary nontreaty organization founded in 1946. Its members are the national standards organizations of the 89 member countries. These members include ANSI (U.S.), BSI (Great Britain), AFNOR (France), DIN (Germany), and 85 others. ISO issues standards on a truly vast number of subjects, ranging from nuts and bolts (literally) to telephone pole coatings [not to mention cocoa beans (ISO 2451), fishing nets (ISO 1530), women's underwear (ISO 4416) and quite a few other subjects one might not think were subject to standardization]. Over 13,000 standards have been issued, including the OSI standards. ISO has almost 200 Technical Committees, numbered in the order of their creation, each dealing with a specific subject. TC1 deals with the nuts and bolts (standardizing screw thread pitches). TC97 deals with computers and information processing. Each TC has subcommittees (SCs) divided into working groups (WGs). The real work is done largely in the WGs by over 100,000 volunteers worldwide. Many of these "volunteers" are assigned to work on ISO matters by their employers, whose products are being standardized. Others are government officials keen on having their country's way of doing things become the international standard. Academic experts also are active in many of the WGs. On issues of telecommunication standards, ISO and ITU-T often cooperate (ISO is a member of ITU-T) to avoid the irony of two official and mutually incompatible international standards. The U.S. representative in ISO is **ANSI** (**American National Standards Institute**), which despite its name, is a private, nongovernmental, nonprofit organization. Its members are manufacturers, common carriers, and other interested parties. ANSI standards are frequently adopted by ISO as international standards. The procedure used by ISO for adopting standards has been designed to achieve as broad a consensus as possible. The process begins when one of the [†] For the purist, ISO's true name is the International Organization for Standardization. national standards organizations feels the need for an international standard in some area. A working group is then formed to come up with a **CD** (**Committee Draft**). The CD is then circulated to all the member bodies, which get 6 months to criticize it. If a substantial majority approves, a revised document, called a **DIS** (**Draft International Standard**) is produced and circulated for comments and voting. Based on the results of this round, the final text of the **IS** (**International Standard**) is prepared, approved, and published. In areas of great controversy, a CD or DIS may have to go through several versions before acquiring enough votes, and the whole process can take years. **NIST** (National Institute of Standards and Technology) is part of the U.S. Department of Commerce. It used to be the National Bureau of Standards. It issues standards that are mandatory for purchases made by the U.S. Government, except for those of the Department of Defense, which has its own standards. Another major player in the standards world is **IEEE** (**Institute of Electrical and Electronics Engineers**), the largest professional organization in the world. In addition to publishing scores of journals and running hundreds of conferences each year, IEEE has a standardization group that develops standards in the area of electrical engineering and computing. IEEE's 802 committee has standardized many kinds of LANs. We will study some of its output later in this book. The actual work is done by a collection of working groups, which are listed in Fig. 1-38. The success rate of the various 802 working groups has been low; having an 802.x number is no guarantee of success. But the impact of the success stories (especially 802.3 and 802.11) has been enormous. ### 1.6.3 Who's Who in the Internet Standards World The worldwide Internet has its own standardization mechanisms, very different from those of ITU-T and ISO. The difference can be crudely summed up by saying that the people who come to ITU or ISO standardization meetings wear suits. The people who come to Internet standardization meetings wear jeans (except when they meet in San Diego, when they wear shorts and T-shirts). ITU-T and ISO meetings are populated by corporate officials and government civil servants for whom standardization is their job. They regard standardization as a Good Thing and devote their lives to it. Internet people, on the other hand, prefer anarchy as a matter of principle. However, with hundreds of millions of people all doing their own thing, little communication can occur. Thus, standards, however regrettable, are sometimes needed. When the ARPANET was set up, DoD created an informal committee to oversee it. In 1983, the committee was renamed the **IAB** (**Internet Activities Board**) and was given a slighter broader mission, namely, to keep the researchers involved with the ARPANET and the Internet pointed more-or-less in the same direction, an activity not unlike herding cats. The meaning of the acronym "IAB" was later changed to **Internet Architecture Board**. | Number | Торіс | | | | |----------|--|--|--|--| | 802.1 | Overview and architecture of LANs | | | | | 802.2 ↓ | Logical link control | | | | | 802.3 * | Ethernet | | | | | 802.4 ↓ | Token bus (was briefly used in manufacturing plants) | | | | | 802.5 | Token ring (IBM's entry into the LAN world) | | | | | 802.6 ↓ | Dual queue dual bus (early metropolitan area network) | | | | | 802.7 ↓ | Technical advisory group on broadband technologies | | | | | 802.8 † | Technical advisory group on fiber optic technologies | | | | | 802.9 ↓ | Isochronous LANs (for real-time applications) | | | | | 802.10 ↓ | Virtual LANs and security | | | | | 802.11 * | Wireless LANs | | | | | 802.12 ↓ | Demand priority (Hewlett-Packard's AnyLAN) | | | | | 802.13 | Unlucky number. Nobody wanted it | | | | | 802.14 ↓ | Cable modems (defunct: an industry consortium got there first) | | | | | 802.15 * | Personal area networks (Bluetooth) | | | | | 802.16 * | Broadband wireless | | | | | 802.17 | Resilient packet ring | | | | **Figure 1-38.** The 802 working groups. The important ones are marked with *. The ones marked with \downarrow are hibernating. The one marked with \dagger gave up and disbanded itself. Each of the approximately ten members of the IAB headed a task force on some issue of importance. The IAB met several times a year to discuss results and to give feedback to the DoD and NSF, which were providing most of the funding at this time. When a standard was needed (e.g., a new routing algorithm), the IAB members would thrash it out and then announce the change so the graduate students who were the heart of the software effort could implement it. Communication was done by a series of technical reports called **RFCs** (**Request For Comments**). RFCs are stored on-line and can be fetched by anyone interested in them from <code>www.ietf.org/rfc</code>. They are numbered in chronological order of creation. Over 3000 now exist. We will refer to many RFCs in this book. By 1989, the Internet had grown so large that this highly informal style no longer worked. Many vendors by then offered TCP/IP products and did not want to change them just because ten researchers had thought of a better idea. In the summer of 1989, the IAB was reorganized again. The researchers were moved to the IRTF (Internet Research Task Force), which was made subsidiary to IAB, along with the IETF (Internet Engineering Task Force). The IAB was repopulated with people representing a broader range of organizations than just the research community. It was initially a self-perpetuating group, with members serving for a 2-year term and new members being appointed by the old ones. Later, the **Internet Society** was created, populated by people interested in the Internet. The Internet Society is thus in a sense comparable to ACM or IEEE. It is governed by elected trustees who appoint the IAB members. The idea of this split was to have the IRTF concentrate on long-term research while the IETF dealt with short-term
engineering issues. The IETF was divided up into working groups, each with a specific problem to solve. The chairmen of these working groups initially met as a steering committee to direct the engineering effort. The working group topics include new applications, user information, OSI integration, routing and addressing, security, network management, and standards. Eventually, so many working groups were formed (more than 70) that they were grouped into areas and the area chairmen met as the steering committee. In addition, a more formal standardization process was adopted, patterned after ISOs. To become a **Proposed Standard**, the basic idea must be completely explained in an RFC and have sufficient interest in the community to warrant consideration. To advance to the **Draft Standard** stage, a working implementation must have been rigorously tested by at least two independent sites for at least 4 months. If the IAB is convinced that the idea is sound and the software works, it can declare the RFC to be an Internet Standard. Some Internet Standards have become DoD standards (MIL-STD), making them mandatory for DoD suppliers. David Clark once made a now-famous remark about Internet standardization consisting of "rough consensus and running code." # 1.7 METRIC UNITS To avoid any confusion, it is worth stating explicitly that in this book, as in computer science in general, metric units are used instead of traditional English units (the furlong-stone-fortnight system). The principal metric prefixes are listed in Fig. 1-39. The prefixes are typically abbreviated by their first letters, with the units greater than 1 capitalized (KB, MB, etc.). One exception (for historical reasons) is kbps for kilobits/sec. Thus, a 1-Mbps communication line transmits 10^6 bits/sec and a 100 psec (or 100 ps) clock ticks every 10^{-10} seconds. Since milli and micro both begin with the letter "m," a choice had to be made. Normally, "m" is for milli and " μ " (the Greek letter mu) is for micro. It is also worth pointing out that for measuring memory, disk, file, and database sizes, in common industry practice, the units have slightly different meanings. There, kilo means 2^{10} (1024) rather than 10^3 (1000) because memories are always a power of two. Thus, a 1-KB memory contains 1024 bytes, not 1000 bytes. Similarly, a 1-MB memory contains 2^{20} (1,048,576) bytes, a 1-GB memory contains 2^{30} (1,073,741,824) bytes, and a 1-TB database contains 2^{40} | Ехр. | Explicit | Prefix | Ехр. | Explicit | Prefix | |-------------------|---|--------|------------------|-------------------------------|--------| | 10 ⁻³ | 0.001 | milli | 10 ³ | 1,000 | Kilo | | 10 ⁻⁶ | 0.000001 | micro | 10 ⁶ | 1,000,000 | Mega | | 10 ⁻⁹ | 0.00000001 | nano | 10 ⁹ | 1,000,000,000 | Giga | | 10-12 | 0.00000000001 | pico | 10 ¹² | 1,000,000,000,000 | Tera | | 10 ⁻¹⁵ | 0.00000000000001 | femto | 10 ¹⁵ | 1,000,000,000,000,000 | Peta | | 10 ⁻¹⁸ | 0.000000000000000000000001 | atto | 10 ¹⁸ | 1,000,000,000,000,000,000 | Exa | | 10-21 | 0.000000000000000000000000001 | zepto | 10 ²¹ | 1,000,000,000,000,000,000,000 | Zetta | | 10-24 | 0.0000000000000000000000000000000000000 | yocto | 10 ²⁴ | 1,000,000,000,000,000,000,000 | Yotta | Figure 1-39. The principal metric prefixes. (1,099,511,627,776) bytes. However, a 1-kbps communication line transmits 1000 bits per second and a 10-Mbps LAN runs at 10,000,000 bits/sec because these speeds are not powers of two. Unfortunately, many people tend to mix up these two systems, especially for disk sizes. To avoid ambiguity, in this book, we will use the symbols KB, MB, and GB for 2^{10} , 2^{20} , and 2^{30} bytes, respectively, and the symbols kbps, Mbps, and Gbps for 10^3 , 10^6 , and 10^9 bits/sec, respectively. ### 1.8 OUTLINE OF THE REST OF THE BOOK This book discusses both the principles and practice of computer networking. Most chapters start with a discussion of the relevant principles, followed by a number of examples that illustrate these principles. These examples are usually taken from the Internet and wireless networks since these are both important and very different. Other examples will be given where relevant. The book is structured according to the hybrid model of Fig. 1-24. Starting with Chap. 2, we begin working our way up the protocol hierarchy beginning at the bottom. The second chapter provides some background in the field of data communication. It covers wired, wireless, and satellite transmission systems. This material is concerned with the physical layer, although we cover only the architectural rather than the hardware aspects. Several examples of the physical layer, such as the public switched telephone network, mobile telephones, and the cable television network are also discussed. Chapter 3 discusses the data link layer and its protocols by means of a number of increasingly complex examples. The analysis of these protocols is also covered. After that, some important real-world protocols are discussed, including HDLC (used in low- and medium-speed networks) and PPP (used in the Internet). Chapter 4 concerns the medium access sublayer, which is part of the data link layer. The basic question it deals with is how to determine who may use the network next when the network consists of a single shared channel, as in most LANs and some satellite networks. Many examples are given from the areas of wired LANs, wireless LANs (especially Ethernet), wireless MANs, Bluetooth, and satellite networks. Bridges and data link switches, which are used to connect LANs, are also discussed here. Chapter 5 deals with the network layer, especially routing, with many routing algorithms, both static and dynamic, being covered. Even with good routing algorithms though, if more traffic is offered than the network can handle, congestion can develop, so we discuss congestion and how to prevent it. Even better than just preventing congestion is guaranteeing a certain quality of service. We will discuss that topic as well here. Connecting heterogeneous networks to form internetworks leads to numerous problems that are discussed here. The network layer in the Internet is given extensive coverage. Chapter 6 deals with the transport layer. Much of the emphasis is on connection-oriented protocols, since many applications need these. An example transport service and its implementation are discussed in detail. The actual code is given for this simple example to show how it could be implemented. Both Internet transport protocols, UDP and TCP, are covered in detail, as are their performance issues. Issues concerning wireless networks are also covered. Chapter 7 deals with the application layer, its protocols and applications. The first topic is DNS, which is the Internet's telephone book. Next comes e-mail, including a discussion of its protocols. Then we move onto the Web, with detailed discussions of the static content, dynamic content, what happens on the client side, what happens on the server side, protocols, performance, the wireless Web, and more. Finally, we examine networked multimedia, including streaming audio, Internet radio, and video on demand. Chapter 8 is about network security. This topic has aspects that relate to all layers, so it is easiest to treat it after all the layers have been thoroughly explained. The chapter starts with an introduction to cryptography. Later, it shows how cryptography can be used to secure communication, e-mail, and the Web. The book ends with a discussion of some areas in which security hits privacy, freedom of speech, censorship, and other social issues collide head on. Chapter 9 contains an annotated list of suggested readings arranged by chapter. It is intended to help those readers who would like to pursue their study of networking further. The chapter also has an alphabetical bibliography of all references cited in this book. The author's Web site at Prentice Hall: http://www.prenhall.com/tanenbaum has a page with links to many tutorials, FAQs, companies, industry consortia, professional organizations, standards organizations, technologies, papers, and more. #### 1.9 SUMMARY Computer networks can be used for numerous services, both for companies and for individuals. For companies, networks of personal computers using shared servers often provide access to corporate information. Typically they follow the client-server model, with client workstations on employee desktops accessing powerful servers in the machine room. For individuals, networks offer access to a variety of information and entertainment resources. Individuals often access the Internet by calling up an ISP using a modem, although increasingly many people have a fixed connection at home. An up-and-coming area is wireless networking with new applications such as mobile e-mail access and m-commerce. Roughly speaking, networks can be divided up into LANs, MANs, WANs, and internetworks, with their own characteristics, technologies, speeds, and niches. LANs cover a building and operate at high speeds. MANs cover a city, for example, the cable television system, which is now used by many people to access the Internet. WANs cover a country or continent. LANs and MANs are unswitched (i.e., do not have routers); WANs are switched. Wireless networks are becoming extremely popular, especially wireless LANs. Networks can be interconnected to form internetworks. Network software consists of protocols, which are rules by which processes communicate. Protocols are either connectionless or connection-oriented. Most networks support protocol hierarchies, with each layer providing services to the layers above it and insulating them from the details of the protocols used in the lower layers. Protocol stacks are typically based either on the OSI model or on the TCP/IP model. Both have network, transport, and application layers, but they differ on the other layers. Design issues
include multiplexing, flow control, error control, and others. Much of this book deals with protocols and their design. Networks provide services to their users. These services can be connectionoriented or connectionless. In some networks, connectionless service is provided in one layer and connection-oriented service is provided in the layer above it. Well-known networks include the Internet, ATM networks, Ethernet, and the IEEE 802.11 wireless LAN. The Internet evolved from the ARPANET, to which other networks were added to form an internetwork. The present Internet is actually a collection of many thousands of networks, rather than a single network. What characterizes it is the use of the TCP/IP protocol stack throughout. ATM is widely used inside the telephone system for long-haul data traffic. Ethernet is the most popular LAN and is present in most large companies and universities. Finally, wireless LANs at surprisingly high speeds (up to 54 Mbps) are beginning to be widely deployed. To have multiple computers talk to each other requires a large amount of standardization, both in the hardware and software. Organizations such as the ITU-T, ISO, IEEE, and IAB manage different parts of the standardization process. #### **PROBLEMS** - 1. Imagine that you have trained your St. Bernard, Bernie, to carry a box of three 8mm tapes instead of a flask of brandy. (When your disk fills up, you consider that an emergency.) These tapes each contain 7 gigabytes. The dog can travel to your side, wherever you may be, at 18 km/hour. For what range of distances does Bernie have a higher data rate than a transmission line whose data rate (excluding overhead) is 150 Mbps? - **2.** An alternative to a LAN is simply a big timesharing system with terminals for all users. Give two advantages of a client-server system using a LAN. - 3. The performance of a client-server system is influenced by two network factors: the bandwidth of the network (how many bits/sec it can transport) and the latency (how many seconds it takes for the first bit to get from the client to the server). Give an example of a network that exhibits high bandwidth and high latency. Then give an example of one with low bandwidth and low latency. - **4.** Besides bandwidth and latency, what other parameter is needed to give a good characterization of the quality of service offered by a network used for digitized voice traffic? - 5. A factor in the delay of a store-and-forward packet-switching system is how long it takes to store and forward a packet through a switch. If switching time is $10 \, \mu sec$, is this likely to be a major factor in the response of a client-server system where the client is in New York and the server is in California? Assume the propagation speed in copper and fiber to be 2/3 the speed of light in vacuum. - **6.** A client-server system uses a satellite network, with the satellite at a height of 40,000 km. What is the best-case delay in response to a request? - 7. In the future, when everyone has a home terminal connected to a computer network, instant public referendums on important pending legislation will become possible. Ultimately, existing legislatures could be eliminated, to let the will of the people be expressed directly. The positive aspects of such a direct democracy are fairly obvious; discuss some of the negative aspects. - **8.** A collection of five routers is to be connected in a point-to-point subnet. Between each pair of routers, the designers may put a high-speed line, a medium-speed line, a low-speed line, or no line. If it takes 100 ms of computer time to generate and inspect each topology, how long will it take to inspect all of them? - 9. A group of $2^n 1$ routers are interconnected in a centralized binary tree, with a router at each tree node. Router i communicates with router j by sending a message to the root of the tree. The root then sends the message back down to j. Derive an approximate expression for the mean number of hops per message for large n, assuming that all router pairs are equally likely. - **10.** A disadvantage of a broadcast subnet is the capacity wasted when multiple hosts attempt to access the channel at the same time. As a simplistic example, suppose that time is divided into discrete slots, with each of the n hosts attempting to use the channel with probability p during each slot. What fraction of the slots are wasted due to collisions? - 11. What are two reasons for using layered protocols? - 12. The president of the Specialty Paint Corp. gets the idea to work with a local beer brewer to produce an invisible beer can (as an anti-litter measure). The president tells her legal department to look into it, and they in turn ask engineering for help. As a result, the chief engineer calls his counterpart at the other company to discuss the technical aspects of the project. The engineers then report back to their respective legal departments, which then confer by telephone to arrange the legal aspects. Finally, the two corporate presidents discuss the financial side of the deal. Is this an example of a multilayer protocol in the sense of the OSI model? - **13.** What is the principal difference between connectionless communication and connection-oriented communication? - **14.** Two networks each provide reliable connection-oriented service. One of them offers a reliable byte stream and the other offers a reliable message stream. Are these identical? If so, why is the distinction made? If not, give an example of how they differ. - 15. What does "negotiation" mean when discussing network protocols? Give an example. - **16.** In Fig. 1-19, a service is shown. Are any other services implicit in this figure? If so, where? If not, why not? - 17. In some networks, the data link layer handles transmission errors by requesting damaged frames to be retransmitted. If the probability of a frame's being damaged is p, what is the mean number of transmissions required to send a frame? Assume that acknowledgements are never lost. - 18. Which of the OSI layers handles each of the following: - (a) Dividing the transmitted bit stream into frames. - (b) Determining which route through the subnet to use. - **19.** If the unit exchanged at the data link level is called a frame and the unit exchanged at the network level is called a packet, do frames encapsulate packets or do packets encapsulate frames? Explain your answer. - **20.** A system has an *n*-layer protocol hierarchy. Applications generate messages of length *M* bytes. At each of the layers, an *h*-byte header is added. What fraction of the network bandwidth is filled with headers? - 21. List two ways in which the OSI reference model and the TCP/IP reference model are the same. Now list two ways in which they differ. - 22. What is the main difference between TCP and UDP? - **23.** The subnet of Fig. 1-25(b) was designed to withstand a nuclear war. How many bombs would it take to partition the nodes into two disconnected sets? Assume that any bomb wipes out a node and all of the links connected to it. - **24.** The Internet is roughly doubling in size every 18 months. Although no one really knows for sure, one estimate put the number of hosts on it at 100 million in 2001. Use - these data to compute the expected number of Internet hosts in the year 2010. Do you believe this? Explain why or why not. - **25.** When a file is transferred between two computers, two acknowledgement strategies are possible. In the first one, the file is chopped up into packets, which are individually acknowledged by the receiver, but the file transfer as a whole is not acknowledged. In the second one, the packets are not acknowledged individually, but the entire file is acknowledged when it arrives. Discuss these two approaches. - **26.** Why does ATM use small, fixed-length cells? - **27.** How long was a bit on the original 802.3 standard in meters? Use a transmission speed of 10 Mbps and assume the propagation speed in coax is 2/3 the speed of light in vacuum. - **28.** An image is 1024 × 768 pixels with 3 bytes/pixel. Assume the image is uncompressed. How long does it take to transmit it over a 56-kbps modem channel? Over a 1-Mbps cable modem? Over a 10-Mbps Ethernet? Over 100-Mbps Ethernet? - **29.** Ethernet and wireless networks have some similarities and some differences. One property of Ethernet is that only one frame at a time can be transmitted on an Ethernet. Does 802.11 share this property with Ethernet? Discuss your answer. - **30.** Wireless networks are easy to install, which makes them inexpensive since installation costs usually far overshadow equipment costs. Nevertheless, they also have some disadvantages. Name two of them. - List two advantages and two disadvantages of having international standards for network protocols. - **32.** When a system has a permanent part and a removable part (such as a CD-ROM drive and the CD-ROM), it is important that the system be standardized, so that different companies can make both the permanent and removable parts and everything still works together. Give three examples outside the computer industry where such international standards exist. Now give three areas outside the computer industry where they do not exist. - **33.** Make a list of activities that you do every day in which computer networks are used. How would your life be altered if these networks were suddenly switched off? - **34.** Find out what networks are used at your school or place of work. Describe the network types, topologies, and switching methods used there. - **35.** The *ping* program allows you to send a test packet to a given location and see how long it takes to get there and back. Try using *ping* to see how long it takes to get from your location to several known locations. From thes data, plot the one-way transit time over the Internet as a function of distance. It is best to use universities since the location of their servers is known very
accurately. For example, *berkeley.edu* is in Berkeley, California, *mit.edu* is in Cambridge, Massachusetts, *vu.nl* is in Amsterdam, The Netherlands, *www.usyd.edu.au* is in Sydney, Australia, and *www.uct.ac.za* is in Cape Town, South Africa. - **36.** Go to IETF's Web site, *www.ietf.org*, to see what they are doing. Pick a project you like and write a half-page report on the problem and the proposed solution. - **37.** Standardization is very important in the network world. ITU and ISO are the main official standardization organizations. Go to their Web sites, *www.itu.org* and *www.iso.org*, respectively, and learn about their standardization work. Write a short report about the kinds of things they have standardized. - **38.** The Internet is made up of a large number of networks. Their arrangement determines the topology of the Internet. A considerable amount of information about the Internet topology is available on line. Use a search engine to find out more about the Internet topology and write a short report summarizing your findings.