
EECS 122: Introduction to Communication  
Networks

Unit 10: Queuing
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Delay on the way – summary         

Just to remind you the issue of queuing...
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So what is queuing about?                     [O Allen]

Whenever there is irregular demand for some „service“ taking
a random time – there unavoidably appear queues....
Only fully deterministic demand, and fully deterministic service
(which never happens!) would eliminate the queuing effect...
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Queuing systems parameters:

• Customers (eg. – packets!;  phone calls!) arrive 
individually in discrete, randomly distributed time intervals 
according to the inter-arrival time distribution.

- Note that if there is no possibility to form a queue (e.g. Buffering 
of packets), the customers experiencing all the servers busy 
might be just lost (busy line in telephone systems).

• The service can be provided on a number of parallel (for 
simplicity identical) servers (e.g. Transmission lines) 

• Each customer has a randomly distributed service time
(e.g. Packet transmission duration, resulting out of packet 
length; e.g. duration of a phone call).



EE 122  Spring 2015AW: Unit 10 5

So , what would we like to know?

• There are values interesting for the customer: 
- The waiting time until the service begins
- The complete time spend in the system (arrival to departure)
- The probability of not obtaining the service …. 

• There are values interesting to the service provider:
- The utilization of the servers 

Comment: setting up the servers is usually an investment –
but also a source of revenue ☺

- The length of the queue (how to dimension buffers?) 

• Basic challenge of the queuing theory: How to 
determine the distributions of the interesting values  
from the queuing system parameters…
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Queuing Components & Random Variables

Customer Source Queue Server
…
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Variable Descriptions

• Random variables related to Customer Numbers:
- n : Total number of customers in the queuing system
- l : Number of customers in the queue
- σ : Number of customers currently served

• Random variables related to Time:
- r : Total time required to pass the queuing system
- w : Time spent in the queue
- t :  Inter-arrival time between two customers
- s : Service demand of a customer

• m : number of parallel servers
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Some useful abstractions

• An infinite amount of potential customers
- Abstraction for a LARGE number of potential customers, or –

in other words – for the case in which the length of the 
queue does not influence the arrival of new customers….

• An infinite queue length
- Abstraction for the case of a “waiting capacity” being long 

enough 

• The selected distributions of random variables
- This is  - for analytical studies – always a tradeoff between 

real, observed features and mathematical abstractions which 
make it possible to compute the interesting  values. 
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Kendall Notation 

• Imagine differences of queuing systems in practice:
- Type of input traffic (deterministic vs. stochastic with a 

certain PDF)
- Type of service time (det. vs. stochastic with a PDF)
- Number of servers
- Number of available slots in the queue
- Queuing discipline

• In order to classify these different queuing systems, 
we use a notation introduced by Kendall:

A/B/X/Y/Z
- A is the inter-arrival-time pattern 
- B the service time pattern
- X the number of parallel servers
- Y the restriction on system capacity (total amount of slots in the 

system)
- Z the queue discipline
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Kendall Notation for Queuing Systems
• Kendall Notation A/B/X/Y/Z

- A is the inter-arrival-time distribution, B the service pattern
- X the number of parallel service channels, Y the restriction on 

system capacity
- Z the queue disciplineCharacteristics Symbol Explanation 

M Exponential 
D Deterministic 
Ek Erlang type k (k = 1, 2, ...) 
Hk Hyperexponential type k 
PH Phase type 

Interarrival-time distribution (A) 

G General 
M Exponential 
D Deterministic 
Ek Erlang type k (k = 1, 2, ...) 
Hk Hyperexponential type k 
PH Phase type 

Service-time distribution (B) 

G General 
Number of parallel servers (X) 1,2, ...  
Restriction on system capacity (Y) 1,2, ...  

FCFS First come, first serve 
LCFS Last come, first serve 
RSS Random selection for service 
PR Priority 
GD General discipline 
PS Processor sharing 

Queue discipline (Z) 

RR Round Robin 
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Unlimited Buffer Case - Some Formula

• The traffic intensity   ρ : ρ = λ/(µ m) : (input to output relation) 
- Note that a system with unlimited buffer size DOES NOT NECESSARILY 

have to be stable, i.e. It could happen that the queue „tends to grow 
indefinitely“.

- Systems are stable only if     ρ < 1 !

• In the stable case, server utilization Uk: Uk = λ/(µ m)
and throughput    Λ = λ. 

- If the system is stable the throughput Λ must equal the long-run rate at 
which customers arrive.

• Further in this considerations we will discuss only features of stable 
queuing systems.

• Arrival rate: λ = 1 / E[t]
– average rate of customers per unit time arriving to the queue 

• Service rate: µ = 1 / E[s]
– average service rate of the queuing system
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The Little Theorem…. 

Arrived at time 0 
Leaves the queue at time W

Arrived in time W

L = λ W
or

n = λ r

Relates the average queue lenght with the average waiting time 
In systems without losses…. Under pretty general assumptions….

Average in the queue

Average in the SYSTEM
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Usual simplifications …

• Customers  (e.g. – packets!;  phone calls!) arrive 
(individually) in discrete, random, independent, 
identically distributed (i. i. d. ) time intervals.

• The parallel servers are identical and operate 
independently 

• Each customer has an random i. i. d. service time
(e.g. packet transmission duration, resulting out of 
packet length; e.g. duration of a phone call).

è Italics emphasizes the simplifications 
(which do not always hold !!!)
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The basic queuing system

E(r)
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The “Flow-Balancing Approach”
• In the “rate diagram” given below, think of the following:

• Each circle representing a state (i.e., number of customer in 
the system) has an unknown probability πj, j= 0, 1, 2, …

• This is called “birth and death process” with constant 
parameters
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Flow balance equations…

• Per iterative elimination 

Cj = (λ0 λ1 λ2…… λj-1)/(µ1 µ2 µ3….. µj)

,...)2,1(0 == jc jj ππ where

1 0

2 1

1

n=0

state 0 :
state 0-1:

Balance equations
state 0-1-...-n:

Normalization equations: 1

n n

n

π µ π λ
π µ π λ

π µ π λ

π

+

∞

=
 =

 =


=∑

M

M



EE 122  Spring 2015AW: Unit 10 17

The result…

• If                 is finite, we can solve the normalization for:

• It can be shown that if                is infinite, then no 

steady-state distribution exists.

• The most common reason for a steady-state failing to 
exist is that the arrival rate is at least as large as the 
maximum rate at which customers can be served.
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Some observations of the behavior...

• The slope of the curve 
increases rapidly as ρ grows 

• a small change in λ, assuming 
causes a huge change in E[r]

• With ρ approaching the value 
of 1 the system becomes 
UNSTABLE, i.e. the mean 
queue length tends to infinity!

Normalized average time in the system, 
E[r]/E[s], for M/M/1 queuing system.

λ* E(S) = ρ

E[r]/E[s],
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Some observations for the behavior... Detailed
• The slope of the curve increases 

rapidly as ρ grows beyond ca. 0.8, as
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Normalized average time in the system, 
E[r]/E[s], for M/M/1 queuing system.

• A small change in ρ (due to a 
small change in Δλ, assuming E[s]
is fixed) causes a change in E[r]
given approximately by

• Thus, if ρ = 0.5, a change in Δλ
in λ will cause a change in E[r] of
about 4*E[s]2Δλ, while, if ρ = 0.9,
the change in E[r] will be about 
100*E[s]2Δλ (i.e. 25 times the
size of the change that occurred
for ρ = 0.5!).

ρ = λE[s]

E[r]/E[s] 
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M/M/1/K

µ µ(1-π0)

λπK K slots for clients

• What happens if we take a more realistic case of limited 
buffer capacity: all in all only N customers are allowed in  
the M/M/1/K queuing system

λ(1-πK)

Probability of customer loss

λ

πk
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M/M/1/K

1
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§ This system is ALWAYS stable,  
§ The normalized mean delay tends asymptotically to K* E(S)
§ Considering the normalized mean delay independently from the loss 
probability curves is not reasonable
§ One typical question: How big should the buffer be, to assure loss 
probability smaller than some threshold....
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M/M/m (1)

• The M/M/m queuing system

m servers

µ

µ

λ
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The case of multiple servers...
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Comparison of three systems – an example
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Some explanations...the case of N separate queues

à It is better to use a system with single queue and multiple servers than
support a separate queue for each server..

The probability of having at least one idle server in spite of at leat one 
non-empty queue in the system of N servers with splitted queues.
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M/G/1 Systems: General service time distribution

è M/D/1

è M/D/1

The coefficient of variation (C) is the 

ratio of the standard deviation to
the mean (of the service time 

distribution)

Asymptote for all 
curves: Infinity at ρ=1

E[r]/E[s
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Telephony: multiple queues with no waiting



EE 122  Spring 2015AW: Unit 10 28

Erlang_B Formula.
Assumptions:  
- Arrivals from an infinite Poisson source 

(the inter-arrival times are exponentially distributed).
This corresponds to a  situation when number of customers is much larger 
than the  number of resources available to service them. Acceptable results if
the number of  customers is at least 10 times the total number of resources (N).

- Calls which cannot be served are lost (and do NOT appear again)

Play with the calculator on http://owenduffy.net/traffic/erlangb.htm
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Let us think in terms of a real network

• Example: A series of switches connected by links….
- This can be modeled as a sequence of queuing systems

• But: are the service times independent?
- Note: in a packet network the sending time of a packet, (i.e. the 

service time !) is - in reality the same in all queues 
(or differs by a constant factor, the inverse of the line speed)

• Kleinrock’s independence assumption: 
- IGNOREE THIS FACT! 
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Kleinrock Independence Assumption

1. Interarrival times at various queues are independent

2. Service time of a given packet at the various queues are 
independent 
- Length of the packet is randomly selected each time it is 

transmitted over a network link

3. Service times and interarrival times: independent

4. Pretty good approximation when:
- Poisson arrivals at entry points of the network
- Packet transmission times “nearly” exponential
- Several packet streams merged on each link
- Densely connected network
- Moderate to heavy traffic load

• But- even if the approximation is not good – it offers 
usually an UPPER BOUND!!! (anyway for a line of queues)
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Jackson´s networks

• Jackson´s theorem: This is true for arbitrary “Open 
Queuing Networks” (i.e. with input and output) iff: 

- The arrivals are Poisson
- The service times are exponential 
- The queues are infinite 
- Outputs of each node are “scattered with fixed probabilities 

among the outputs

Arrival rate to each queue 
can be computed as the 
sum of the proper incoming
rates.


