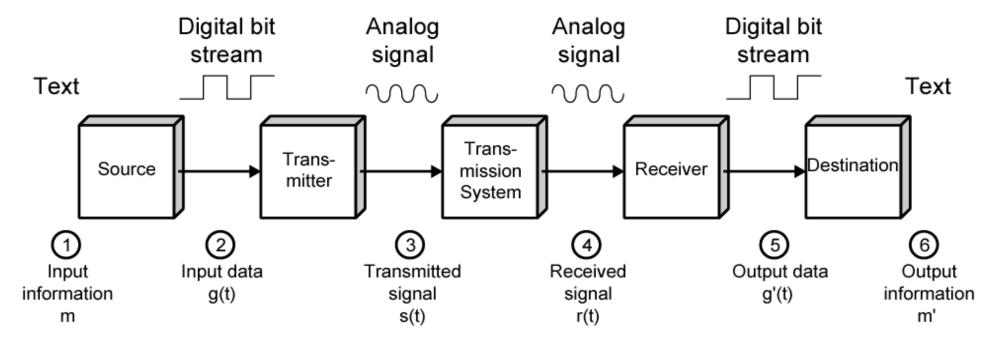
EE 122: Introduction to Communication Networks

MIDTERM PREPARATION

Refreshing individual topics

- What are the basic concepts? Do you really understand them?
- Has there bin some basic formulae? Memorize them...
- Do you understand the implication of the major rules and formulae? What do they influence in the system design?
- Revise shortly problems for homework, problems in the books related to the topic, do you understand what is expected?

During the midterm

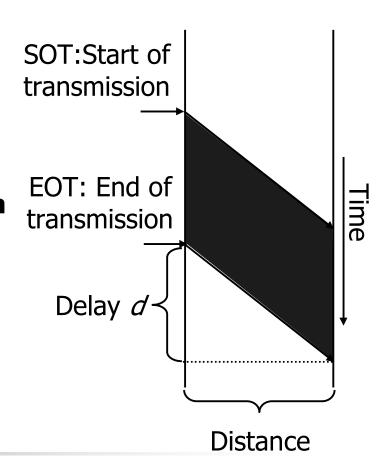

- Read the problems carefully the time devoted to proper understanding of the problem is the best invested time!!!
- It might be a good idea to look at ALL the problems first, and starting solving them form what seems to be easiest for you!!! (but be sure that you have understood it!)
- Avoid getting stuck on a single problem (or part thereof!) which seems very difficult to you, and loosing to much time trying to master this one!

Summary of some key- topics

NOTE: THE FOLLOWING LIST OF TOPICS/ISSUES IS NOT INTENDED TO BE COMPLETE!!

Multimedia Communication

- The information is stored/exchanged in MEDIA
 - Voice, Video, Data, ...



 Different characteristics of the data stream and expected transmission quality led to use of different technologies (Phone, TV, Data networks) → convergence!

Realistic Transmission...

[H.Karl, Paderborn]

- Propagation delay d:
 - Propagation speed ν .
 - speed of light $v=c_r$
 - In copper/fiber $v \sim 2/3$ c
 - d = distance / v
- Data rate r. How much bits/second can a sender transmit?
 - (EOT SOT) = Data size / data
 rate
- Error rate: What is the rate of incorrect bits arriving at the receiver?
 - Messages containing incorrect bits might be DELETED...

Design Challenges: Scalability

- Distributed System Properties
- Scalability:

A system is said to be scalable if it will remain (efficiently) operable when there is a significant increase in the number of **resources** and **users**:

- Controlling the cost of resources
- Controlling the performance loss
- Preventing software resources running out (e.g. addresses)

Hard State vs. Soft State

- Introducing state might be necessary. Typically if some resources have to be kept available...
 - Consider the restructured banking example. If several clients would use the same account a "lock" on access would be needed between Checking Balance and setting New Balance.

Hard State Approach:

- State information has to be deleted as result of a proper action!
- What happens with the "Lock" if the computer of CLERK 1 brakes down after "checking the balance"?

Soft State Approach:

- The state information removed if not reactivated since XXXX
- Like putting shoes in the store on hold for 2 days...

Names, Addresses, Routing...

- Name: WHO (identifies the object)
 - Structured for simple reference
 - E.g. According to organizational structure? Mnemonics?
- Address: WHERE TO FIND (the object)
 - Must be REACHABLE
 - The object can move (mobility) → change address
- Route: HOW TO GET THERE
 - Has to assure delivery.
 - It is nice, if the address structure helps. (e.g. street blocks)

Services and protocols

- The Notion of Service
- The conventions for service description
- The notion of the API
- The notion of Protocol
- For whom are protocols relevant
- Protocol specifications FSMs
- Multilayer Protocol structure
- The ISO_ OSI Protocol Layering

Signal transmission

- Signal: spectrum, bandwidth, effective bandwidth
- Digitization of analog signals, Nyquist sampling theorem
- Fundamental features of media
- Channel coding principles, basic codes
- Theoretical limits of bit rates available form a given bandwidth
 - Nyquist Formula
 - Shannon Formula
- Modulation- adaptive modulation

Multiplexing, Switching

- Multiplexing: FDM, TDM, Space
- Static multiplexing vs. Statistical multiplexing
- Switching: Circuit switching Packet switching
 - Details of the above CONCEPTS!
 - Datagram Packet switching vs. Virtual circuit packet switching
 - Connection oriented services on top of Datagram service vs.
 on top of Virtual Circuits
 - Routing tables, routing vs. forwarding
- Basics of the Telephone Networks: Data and signaling
 - On the Local loop, In the trunks

Queueing

- Basic concepts of Queuing
- The formula for M/M/1 delay
- Delay/Load basic characteristics, M/m/1, M/M/1/K, M/M/n
- The relation between single and multiple server queues

Framing, Error Detection

- Basic concepts of FRAMING
- Typical FLAG, Bit stuffing/symbol stuffing, features
- Other approaches for Framing
- Error detection principles, redundancy, Hamming Distance
- Forward Error Correction concept
- Polynomial codes for Error Detection principle, computation of CRC
- Basic features of Polynomial codes
- CRC Implementation principles

ARQ, Flow Control

- Send and Wait, details, efficiency with /without errors
- Alternating Bit details
- Sliding Window Principles
- Go-Back-N operation Principles
- Selective Repeat operation principles
- Acknowledgments usage: cumulative, individual
- Flow Control Principle
 - Window based , Rate based (Very general)
- Acknowledgement Vs. Permit

Multiple Access,

- Taking Turn Approaches basic features
- Random Access Approaches:
 - Aloha, Slotted ALOHA efficiency
 - CSMA, CSMA/CD (persistency!)
 - Vulnerability periods, Collision detection conditions!
 - Exponential back-off, Capturing