EECS 122: Introduction to Communication
Networks

Unit 19: UDP/TCP

UDP

AW: Unit 19 2 EE 122 Spring 2015

Introduction

e Network Layer (IP)
- RFC 791

- Connection less
= Packets may be lost, delivered out of order or duplicated
= Variable delay

e Transport Layer

- UDP
= Connection-less
= RFC 768
« TCP

= Connection oriented, reliable
= RFC 793 (and many more, see draft-ietf-tcpm-roadmap-01.txt)

AW: Unit 19 3 EE 122 Spring 2015

UDP

e Why is there an second unreliable protocol on top of IP?

» Why should one use an unreliable protocol at all?

» Addressing of applications
- IP is used to address an interface (host)
- Protocol identifier of IP header is used to select receiving protocol
- Ports are used to select the communication end-point (application)

Applications

TCP Sockets UDP Sockets

65535

AW: Unit 19 4 EE 122 Spring 2015

UDP (II)

Source Port

Destination Port

Length

Checksum

» End-to-End Checksum (optional)

e Total length field (redundant, since IP has a length field, too)
*Max. total length = 65535 — 8 — IP Header length

sEach user request is transferred using a single datagram
*UDP provides no send buffer but a receive buffer

AW: Unit 19

EE 122 Spring 2015

UDP Checksum

e Ones complement of 16 bit words (as IP)

e Covers header and data plus a 12 byte pseudo header
- IP addresses, 0, protocol identifier, length
- Make sure that packet has reached the correct host

 Pad byte in case of an odd packet length (not transmitted)
e Optional
e Receiver has to verify the checksum

AW: Unit 19 6 EE 122 Spring 2015

TCP

Acknowledgement:
- Most information form the seminal book of Stevens, some slides from the
Book of Kurose-Ross.

- Some slides taken over form Eitan Modiano (MIT)

AW: Unit 19 7/ EE 122 Spring 2015

Structure

e Where does it fit

e Connection management

e Fields in header

 Byte stream — sequence numbers

e Send events

» Receive events/ACK generation

e Error control — a variant of G- Back _n
e Timer computation

e Fast retransmit /SACK

e Flow control : when to transmit a segment
» Congestion control

e Throughput

AW: Unit 19 8 EE 122 Spring 2015

Connection — oriented, Connectionless

e Interface between station and network node
- Connection oriented

= User request a reliable service, in order...no duplications

= Data streams — thins of the conn-oriented socket interface
- Connectionless

= Requests handled independently

= Unreliable transmission, order of delivery not sure,
duplications...

AW: Unit 19 9 EE 122 Spring 2015

Connection oriented SERVICE — how to ?

e In Packet switched networks connection oriented service
can — naturally — be offered on top of the Virtual Circuit
switching

AW: Unit 19 10 EE 122 Spring 2015

Reminder: Virtual Circuit Packet Switching

e The idea is to combine the advantages of circuit switching
with the advantages of datagram switching
» Connection has to be set-up and released:

- Within connection setup a short (compared to full addresses)
connection identifier is assigned per Switch per VC.

- During the connection set-up resources can be reserved

- Only the set of ACTIVE VCs has to be searched during forwarding
of incoming packets — much smaller table size!

- This reduces the per packet forwarding processing! — nice for
high speed links...

- There is, however, state per switch per VC! Doesn't handle
switch crashes well: have to teardown and reinitiate a new circuit

AW: Unit 19 11 EE 122 Spring 2015

Event Timing

() Circuit switching (R Yirtual circuitl packet switching (c) Datagram packet switching
Propagalion processing
all delay delay Call
reguest | per redquest
signal pracki »
Ry = e
Call] Call e
aceep O | aCCCpl PEIZ] Pr——
signal [— packer e | Phil
— e Phi3 | e
—"1 | Pl
-l-l"-'-'-'-I
,_.-l-l'"—- Ilkl_:" [———
— PEil ——
Liser data — | Plis
P12 [r— [——
Acknowledge- h-:'""" Pt |
meni signal PEL T P ———
l'_._._._._._..._._...---l-" F—— | Pkil
I'_,_,..---"" Prid --.._.__‘_-
| P12
l-l-_._‘__l-
Pt Acknowledge-
[— el PRk
e —
e
soats
link link limk
ol —

Nodes: (L (2 (& & oo & W oo @ W

AW: Unit 19 12 EE 122 Spring 2015

How does forwarding work in VCS?... (Garcia, ch7)

Node 3
Incoming Outgoing
Node 1 Node VCI | Node VCI Node 6
Incoming | Outgoing T 2 6 7 Incoming | Outgoing
Node VCI | Node VCI T 3 4 4 | Node VCI | Node VCI |
A 1 3 2 |[—14 2 6 1 [T—~—J3 7 B 8
A 5§ 3 3 6 7 1 2 3 1 B 5
3 2 A1 6 1 4 2 B 5 3 1
S A 5 4 4 1 3 B 8 S
Aode 4
Incoming Outgoing
Node VCI | Node VCI
Node 2 % 3 g g Node 5
Incoming | Outgoing / 3 2 DI Incoming | Outgoing
Lol il Ll 55 3 4 Node VCI | Node VCI
C 6 4 3
4 5 D 2
4 3 C 6 D 2 4 5

AW: Unit 19 13 EE 122 Spring 2015

Virtual Circuit and Datagram Operation

(a) Intermal virtual circuit. A route Tor packets berween bwo
stations i defined and Tabeled. Al packets for that vinmal
circuit follow the same route and arive in the same sequence.

AW: Unit 19

B

4 {5

(b Internal datageam. Each packet s treated independently
by the netwaork. Packets are labeled with a destination address
and may armive at the destination msde out of sequence

14 EE 122 Spring 2015

Connection oriented SERVICE — how to ?

e In Packet switched networks connection oriented service
can — naturally — be offered on top of the Virtual Circuit
switching

» Connection oriented service can, however, be also offered

on top of DATAGRAM switching

- Connection will be established using datagram's handshake

- Loss free operation, in-sequence packet delivery will be provided
by end-to-end mechanisms between entities establishing the
connection

- Examples TCP over IP

AW: Unit 19 15 EE 122 Spring 2015

Connection Oriented with VCs, and with Datagrams

—
(3] [12] 1] Packet-switching
A
[2.3] [22] [2.1] network

(@) VC used: Packet naturally arrive
without losses and in sequence

—_—
||3.3| |u.:| |15.||

Packet-switching
network

lca] |ez| [ca]
SR N,

(b) Datagram used: Sequencing and
loss-less operation assured end-to-end

C

AW: Unit 19 16 EE 122 Spring 2015

Basic TCP Operation

» At sender
- Application data is broken into TCP segments
- TCP uses a timer while waiting for an ACK of every packet
- Un-ACK'd packets are retransmitted

At receiver
- Errors are detected using a checksum
- Correctly received data is acknowledged
- Segments are reassembled into their proper order
- Duplicate segments are discarded

e Window based retransmission and flow control +
Congestion Control...

AW: Unit 19 17 EE 122 Spring 2015

TCP segment structure

32 bits

A

v

URG: urgent data
(generally not used)™_

source port # dest port #

7

ACK: ACK #

"\ Sequence number /

valid

Wedgemen‘r humber

PSH: push data now

head|not : : :
|:;,2T used FA PJE S|IF| rcvr window size |

(generally not used)

}h@eks/u;n , ptr urgent data

RST, SYN, FIN:—
connection estab

—
Op’rMar‘iable length)

(setup, teardown
commands)

Internet /

checksum
(as in UDP)

/ application

data
(variable length)

AW: Unit 19

counting

by bytes

of data

(not segments!)

bytes
rcvr willing
to accept

18 EE 122 Spring 2015

TCP Header Fields

e Port Numbers: Like for UDP

32 bit SN uniquely identify the application data contained in the
TCP segment
- SN is in bytes!
- It identify the first byte of data

32 bit RN is used for piggybacking ACK's
- RN indicates the next byte that the receiver is expecting
- Implicit ACK for all of the bytes up to that point

» Data offset is a Aeader /engthin 32 bit words (minimum 20 bytes)

o Window size

- Used for error recovery (ARQ) and as a flow control mechanism
Sender cannot have more than a window of packets in the network
simultaneously

- Specified in bytes
Window scaling used to increase the window size in high speed
networks

e Checksum covers the header and data

AW: Unit 19 19 EE 122 Spring 2015

Sequence Numbers in TCP

e TCP regards data as a "byte-stream”
- each byte in byte stream is numbered.

e 32 bit value, wraps around
- initial values selected at start up time

e TCP breaks up byte stream in packets
- Packet size is limited to the Maximum Segment Size (MSS)

e Each packet has a sequence number
- seq. no of 1st byte indicates where it fits in the byte stream

e TCP connection is duplex
- data in each direction has its own sequence numbers

13450 14950 16050 17550
¢ e ¢

~/ ~/ s

Segment 8 Segment9 | Segment 10

AW: Unit 19 20 EE 122 Spring 2015

TCP 3-way handshake

server state
LISTEN

client state /w/
LISTEN e

choose init seq num, x

send TCP SYN msg |~

SYNSENT SYNbit=1, Seq=x
choose init seq num, y
send TCP SYNACK

/ msg, acking SYN SYN RCVD
SYNbit=1, Segq=y
ACKbit=1; ACKnum=x+1

v received SYNACK(x)
indicates server is live;
ESTAB send ACK for SYNACK;

this segment may contain | ACKbit=1, ACKnum=y+1

client-to-server data
T~~~ received ACK(y)
indicates client is live

/\

ESTAB

AW: Unit 19 21 EE 122 SPHRG261Y

TCP Connection Management (1)

Three way handshake:

Step 1: client end system sends TCP SYN control segment to
server

- specifies initial seq #
- specifies initial window #
Step 2: server end system receives SYN, replies with SYNACK
control segment

- ACKs received SYN

- allocates buffers

- specifies server-> receiver initial seq. #

- specifies initial window #

Step 3: client system receives SYNACK

AW: Unit 19 22 EE 122 Spring 2015

TCP: closing a connection

e client, server each close their side of connection
- send TCP segment with FIN bit = 1

 respond to received FIN with ACK
- on receiving FIN, ACK can be combined with own FIN

» simultaneous FIN exchanges can be handled

AW: Unit 19 23 EE 122 SPHRG261Y

TCP: closing a connection

client state
ESTAB
clientSocket.close ()
FIN WAIT 1 can no longer
send but can
l receive data
FIN WAIT 2 wait for server
n - close
TIMED WAIT T
timed wait
for 2*max
segment lifetime
CLOSED l

g

2

\FINb't 1
it=1, SGK

/
ACKbit=1; ACKnum=x+1
—

/
)Nbit=1, seq=y
\

ACKbit=1; ACKnum=y+1
\

AW: Unit 19

24

can still
send data

can no longer
send data

EE 122

server state
ESTAB

CLOSE_WAIT

LAST ACK

CLOSED

SPHRG eIy

TCP state machine

SFeitTing pavinr

pessive cpen

appl: close

or tineont

e fike ot

send; FIN

appliclose

SiRTtrame St s close

|
l
I
| : |
: : i
I W recy: F1N : : appll close
l send: ACK : | send: FIN
i o[2 *q‘s-. i :
[= | ! B
: e) @]i; g : | fecv ACK
: | v RN 7 | | Fed <noth
| 8| o Bt) , sepd. <nothi ng=
I = i L e S I
i recy: F1M : pesssive close
! G send: ACK |
| |
! 1

2 M 5L rintesier

wcfire close

AW: Unit 19 25 EE 122 Spring 2015

Error Control: A variation of Go-Back N

e Sliding window with cumulative ACKs

- Receiver can only return a single “ack” sequence number to
the sender

- Acknowledges all bytes with a lower sequence number
- Starting point for retransmission
- Duplicate ACKs sent when out-of-order packet received

» Sender only retransmits a single packet at a time
- Optimistic assumption: only one that it knows is lost
- Network is congested = shouldn't overload it

e Error control is based on byte sequences, not packets

- Retransmitted packet can be different from the original lost
packet (e.g., due to fragmentation)

AW: Unit 19 26 EE 122 Spring 2015

TCP Sender Events

 Data received from application:
- Create segment with sequence number

- Sequence number is byte- stream number of first data byte in
segment

- start timer if not already running

Think of timer as for oldest un-acknowledged segment
- Timer expiration interval: time-out

e Timeout:
- retransmit segment that caused timeout
- restart timer

e ACK received:
- It acknowledges previously unACKed segments
- update what is known to be ACKed
- start timer if there are outstanding segments

AW: Unit 19 27 EE 122 Spring 2015

Fast Retransmit

e When TCP receives a packet with a SN that is greater
than the expected SN, it sends an ACK packet with a
request number of the expected packet SN

- This could be due to out-of-order delivery or packet loss

o If a packet is lost then duplicate RNs will be sent by TCP

until the packet it correctly received
- But the packet will not be retransmitted until a Timeout occurs
- This leads to added delay and inefficiency

e Fast retransmit assumes that if 3 duplicate RNs are

received by the sending module that the packet was lost
- After 3 duplicate RNs are received the packet is retransmitted
- After retransmission, continue to send new data

e Fast retransmit allows TCP retransmission to behave more
like Selective Repeat ARQ

AW: Unit 19 28 EE 122 Spring 2015

TCP ACK generation [rrc 1122, RFC 2581]

Event at Receiver

Arrival of with
All data up to
expected seq # already ACKed

Arrival of with
expected seq #. One other
segment has ACK pending

Arrival of
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

AW: Unit 19

TCP Receiver action

. Wait up to 500ms
for next segment. If no next segment,
send ACK (reduces ACK traffic)

Immediately send single

, ACKing both in-order segments

send :
indicating seq. # of next expected byte
(trigger fast retransmit)

Immediate send ACK, provided that
segment starts at lower end of gap

29 EE 122 Spring 2015

(SACK)

e Option for selective ACKs (SACK) also widely deployed

e Selective acknowledgement (SACK) essentially adds a
bitmask of packets received
- Implemented as a TCP option (extended TCP header)

- Encoded as a set of received byte ranges (max of 3 Or 4
ranges)

e When to retransmit?
- Packets may experience different delays
- Still need to deal with reordering
- Wait for out of order by 3 packets

AW: Unit 19 30 EE 122 Spring 2015

TCP Retransmission Timeout

e TCP uses one timer only

e Retransmission Timeout (RTO) calculated dynamically
- Based on Round Trip Time estimation (RTT)
- Wait at least one RTT before retransmitting

- Importance of accurate RTT estimators:
= Low RTT - unneeded retransmissions
= High RTT - poor throughput

- RTT estimator must adapt to change in RTT
= But not too fast, or too slow!

- Spurious timeouts

= "'Conservation of packets” principle — more than a window worth of
packets in flight

AW: Unit 19 31 EE 122 Spring 2015

Retransmission Timeout Estimator

e Round trip times exponentially averaged:
- New RTT = o (old RTT) + (1 - o) (new sample)
- 0.875 for most TCP’s
e Retransmit timer set to B RTT, where p = 2 (usually!)

- Every time timer expires,

» Key observation: At high loads round trip variance is high

e Solution (currently in use):

- Considers: Base RTO on RTT and standard deviation of RTT:
RTT = New RTT + 4 * rttvar

- rttvar = y * dev + (1- y) rttvar
= dev = linear deviation (also referred to as mean deviation)
= Inappropriately named — actually smoothed linear deviation

- RTO is discretized into ticks of 500ms (RTO >= 2ticks)

AW: Unit 19 32 EE 122 Spring 2015

Retransmission Ambiguity

A B A B
W Original tr ansmission
I RTO I RTO
Sample) Sample
RTT RTT L

A\ A\ A\ A\

e Karn’s RTT Estimator

- If a segment has been retransmitted: Don’t count RTT sample on ACKs for this
segment

- Double the timeout for next packet!

- Reuse RTT estimate only after one successful transmission

AW: Unit 19 33 EE 122 Spring 2015

TCP Flow Control: sliding window protocol

TCP Is a sliding window protocol

- For window size n, can send up to n bytes without receiving an
acknowledgement

- When the data is acknowledged then the window slides forward

receiver: explicitly informs

sender of (dynamically
7 / 00 changing) amount of free
/ cp / __applicatinn buffer space

-||— RevWindow —||-

data from

]P Process . .
—rcvr window size
7 / 7 / field in TCP segment
'|l— RevBuffer —I‘*
sender: amount of
transmitted, unACKed data
sender won't overrun less than most recently-
receiver's buffers by receiver
transmitting too much, rcvr window size
too fast (receiver limited
operation)
AW: Unit 19 34

EE 122 Spring 2015

Window Flow Control:

sender window

»!
I

A

Sender Side

Sent and acked

T

Next to be sent

Receive buffer

Receiver Side

rcvr window

AW: Unit 19 35 EE 122 Spring 2015

Silly Window Syndrome

e Problem:
- Receiver opens window a small amount
- ACK opens K < MSS bytes (very small amount of data)

e Should sender transmit K bytes?

- Can be very inefficient as most of the packet will contain header
overhead

o If sender is aggressive, sending available window size
- Results in “silly window syndrome”
- Small segment size remains indefinitely - very inefficient

Note that when the receiver receives the small segment, it sends back and

ACK (for that small segment), opening the window for another small segment
e Hence a problem when either sender transmits a small

segment or receiver opens window a small amount

e Mechanism needed to wait for opportunity for sending
larger amount of data.

AW: Unit 19 36 EE 122 Spring 2015

When to transmit: Nagle Algorithm

» Waiting too long hurt interactive applications (Telnet)

 Without waiting, risk of sending a bunch of tiny packets
- silly window syndrome

e Nagle's Algorithm:
- Continue to buffer data if some un-acknowledged packets still
outstanding
- If no outstanding data, send segment without delay
- If more than MSS worth of data, send segment without delay

a/ Additional implementation details:

Receiver update of advertise window: avoid small increases in window size
=> avoid very tiny send opportunities

Applications can disable Nagle’s algorithm to avoid long delays

b/ Implication: if don’t have at least MSS worth of data, wait at least
one RTT before transmitting new segment:

TCP’s self clocking mechanism

AW: Unit 19 37 EE 122 Spring 2015

TCP Congestion Control: details

sender sequence number space .
q|<— cwnd —p TCP 56'/70’//79 rate:

ML AN - o sena e o
wait RTT for ACKS, then

J_TL send more bytes
last byte last byte

ACKed sent, not- gent
yet ACKed
(“in-flight”)

. . cwnd
e sender limits transmission: rate ~ RTT bytes/sec

2

LastByteSent- < cwnd
LastByteAcked

cwnd is dynamic, function of
perceived network congestion

o BUT CAN YOU JUST START
WITH SOME cwnd?

AW: Unit 19 38 EE 122 SPHRG261Y

TCP Slow Start

Host A Host B

e when connection begins,
increase rate exponentially
until first loss event:

- initially ecwnd = 1 MSS
- double cwnd every RTT

- done by incrementing cwnd
for every ACK received

one segment

«— RTT— 4’ i
ol

WO segments

four segments

o summary:. initial rate is
slow but ramps up
exponentially fast

time

EE 122 SPHRG261Y

AW: Unit 19 39

TCP: detecting, reacting to loss

e loss indicated by timeout:
—cwnd set to 1 MSS;

- window then grows exponentially (as in slow start) to threshold,
then grows linearly

e loss indicated by 3 duplicate ACKs: TCP RENO

- dup ACKs indicate network capable of delivering some segments
- cwnd is cut in half window then grows linearly

e TCP Tahoe always sets cwnd to 1 (timeout or 3 duplicate
acks)

AW: Unit 19 40 EE 122 SPHRG261Y

TCP: from slow start to Congestion Avoidance

Q: when should the
exponential
increase switch to
linear? TCP Reno

— —
N
| |

A: when ecwnd gets to
1/2 of its value
before timeout.

— 10
ssthresh

ssthresh

Congestion window
(in segments

TCP Tahoe

. 0 o Fr o 1T T T 1T |
Implementation: 01 2 3456 7 8 9101112131415

Transmission round

e Vvariable ssthresh

e on loss event, ssthresh is
set to 1/2 of cwnd just

before loss event

AW: Unit 19 41 EE 122 SPHRG261Y

Summary: TCP Congestion Control

. " = = neW ACI‘ i’uﬁ; T N " :

duplicate ACK ~ “Zpi g 4k cwnd = cwnd + MSS * (MSS/cwnd)

dupACKcount++ NeWACK dupACKcount = 0
cwnd = cwnd+MSS transmit new segment(s), as allowed
dupACKcount = 0

A transmit new segment(s), as allowed
cwnd = 1 MSS
ssthresh = 64 KB cwnd > ssthresh

_dupACKcount=0__ A R
h (’9:) timeout
"\) ssthresh = cwnd/2 .
Zig </ cwnd = 1 MSS M
,(A timeout dUpACKCOUnt =0 dupACKcount++
<" sSthresh = cwnd/2 4 retransmit missing segment 4
cwnd = 1 MSS
dupACKcount = 0 ’p"‘(\\
retransmit missing segment) ((c o]
timeout ‘).
ssthresh = cwnd/2
cwnd =1
dupACKcount = 0 “wnd = ssthresh
dupACKcount == retransmit missing segment dﬁ\[,)vACIZC?)Sunte:S 0 dupACKcount ==
s%threshhz cvxr/]nd/2 ssth&esh=t%wndr{2 3
cwnd = ssthresh + 3 cwnd = ssthresh +
retransmit missing segment retransmit missing segment

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

AW: Unit 19 42 EE 122 SEHWG 261

TCP congestion avoidance: AIMD

% approach: sender increases transmission rate (window
size), probing for usable bandwidth, until loss occurs

" additive increase: increase cwnd by | MSS every
RTT until loss detected

= multiplicative decrease: cut cwnd in half after loss

additively increase window size ...
... until loss occurs (then cut window in half)

J

AIMD saw tooth
behavior: probing
for bandwidth

cwnd: TCP sender
congestion window size
L

[
»

time

AW: Unit 19 43 EE 122 SPHRG261Y

TCP throughput

e avg. TCP throughuput as function of window size, RTT?
- ignore slow start, assume always data to send

o W: window size (measured in bytes) where loss occurs
- avg. window size (# in-flight bytes) is 34 W
- avqg. thruput is 3/4W per RTT

avg TCP thruput = % %‘I’ bytes/sec

N4

AW: Unit 19 44 EE 122 SPHRG261Y

Simple TCP model

e Model: single saturated TCP pumping data into
bottleneck

- other flows only modeled through packet loss
o Bandwidth as function of packet loss (in packets)

1 / 3 _
B(p) = m % + 0o(1/4/p)
e Where

RTT — Round trip delay p -- Packet loss rate
b -- Number of packets confirmed by a single ACK

AW: Unit 19 45 EE 122 Spring 2015

TCP Throughput: An example

Throughput in bit/s for TCP from XXX to TU Berlin....
The capacity of the link is like 640 Mbits/s, no other traffic!!!

Calculated by simplified Padhye’s formula with
MaxSegmentSize=1460,

f::'";’eErR FhG Fokus Berlin | Univ. Stuttgart | UC Berkeley
(RTT 3.4 ms) | (RTT 19.2ms) | (RTT ~170 ms)
PER 0.01 8.9314 e+05 |4.1639 e+05 |6.8320 e+04
~64 kbit/s
PER 0.001 1.0338 e+07 |2.0187 e+06 |2.3255 e+05
~ 2 Mbit/s
PER 0.0001 3.6920 e+07 |6.5615 e+06 |7.4158 e+05
~34 Mbit/s

AW: Unit 19 46 EE 122 Spring 2015

TCP Futures: TCP over “long, fat pipes”

e example: 1500 byte segments, 100ms RTT,
acknowledgment after each segment, want 10 Gbps
throughput

e requires W = 83,333 in-flight segments

e throughput in terms of segment loss probability, L [Mathis

19971]:
] _1.22-MSS
TCP throughput = RTTJ_ m

->» to achieve 10 Gbps throughput, need a loss rate of L
= 21010 — g very small loss rate!

AW: Unit 19 47 EE 122 SPHRG261Y

TCP Fairness

Fairness goal. if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connectlon 1

\m

bottleneck
router

&*” capacity R

TCP connection 2

AW: Unit 19 48 EE 122 SPHRG261Y

Fairness (more)

Fairness and UDP

e multimedia apps often do
not use TCP

- do not want rate throttled
by congestion control

e instead use UDP:

- send audio/video at
constant rate, tolerate
packet loss

AW: Unit 19

Fairness, parallel/ TCP connections

« application can open multiple parallel
connections between two hosts

e web browsers do this

e e.g., link of rate R with 9 existing
connections:
- new app asks for 1 TCP, gets rate R/10
- new app asks for 11 TCPs, gets R/2

49 EE 122 SPHRG261Y

TCP Fairness?

AW: Unit 19 50 EE 122 Spring 2015

UDP TCP interactions

e Terminology from RFC 2309:

- TCP-compatible flow:

= in steady state, uses no more bandwidth than a
conformant TCP under similar conditions

- unresponsive flow:
= does not slow down in response to congestion

- responsive but not TCP-compatible

= responsive to congestion, but does not compete equally
with TCP in a queue with FIFO scheduling

AW: Unit 19 51 EE 122 Spring 2015

