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UDP
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Introduction

• Network Layer (IP)
- RFC 791
- Connection less

n Packets may be lost, delivered out of order or duplicated
n Variable delay

• Transport Layer 
- UDP

n Connection-less
n RFC 768
n TCP

n Connection oriented, reliable
n RFC 793 (and many more, see draft-ietf-tcpm-roadmap-01.txt)
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UDP

• Why is there an second unreliable protocol on top of IP?

• Why should one use an unreliable protocol at all?

• Addressing of applications
- IP is used to address an interface (host)
- Protocol identifier of IP header is used to select receiving protocol
- Ports are used to select the communication end-point (application)

IP

TCP UDP

FTP NN VIC Applications

TCP Sockets UDP Sockets
4711 1345 345 65535
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UDP (II)

• End-to-End Checksum (optional)
• Total length field (redundant, since IP has a length field, too)

•Max. total length = 65535 – 8 – IP Header length
•Each user request is transferred using a single datagram

•UDP provides no send buffer but a receive buffer
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UDP Checksum

• Ones complement of 16 bit words (as IP)

• Covers header and data plus a 12 byte pseudo header
- IP addresses, 0, protocol identifier, length
- Make sure that packet has reached the correct host

• Pad byte in case of an odd packet length (not transmitted)

• Optional 

• Receiver has to verify the checksum



EE 122  Spring 2015AW: Unit 19 7

TCP

Acknowledgement:
- Most information form the seminal book of Stevens, some slides from the
Book of Kurose-Ross. 

- Some slides taken over form Eitan Modiano (MIT)
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Structure

• Where does it fit
• Connection management
• Fields in header
• Byte stream – sequence numbers
• Send events
• Receive events/ACK generation
• Error control – a variant of G- Back _ n
• Timer computation
• Fast retransmit /SACK
• Flow control : when to transmit a segment
• Congestion control
• Throughput 
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Connection – oriented, Connectionless

• Interface between station and network node
- Connection oriented

n User request a reliable service, in order…no duplications

n Data streams – thins of the conn-oriented socket interface
- Connectionless

n Requests handled independently

n Unreliable transmission, order of delivery not sure, 
duplications…
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Connection oriented SERVICE – how to ?

• In Packet switched networks connection oriented service 
can – naturally – be offered on top of the Virtual Circuit 
switching
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Reminder: Virtual Circuit Packet Switching

• The idea is to combine the advantages of circuit switching 
with the advantages of datagram switching

• Connection has to be set-up and released:

- Within connection setup a short (compared to full addresses) 
connection identifier is assigned per Switch per VC.

- During the connection set-up resources can be reserved 

- Only the set of ACTIVE VCs has to be searched during forwarding 
of incoming packets – much smaller table size!

- This reduces the per packet forwarding processing! – nice  for 
high speed links…

- There is, however, state per switch per VC! Doesn’t handle 
switch crashes well: have to teardown and reinitiate a new circuit



EE 122  Spring 2015AW: Unit 19 12

Event Timing
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How does forwarding work in VCs?... (Garcia, Ch7)
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Virtual Circuit and Datagram Operation
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Connection oriented SERVICE – how to ?

• In Packet switched networks connection oriented service 
can – naturally – be offered on top of the Virtual Circuit 
switching

• Connection oriented service can, however, be also offered 
on top of DATAGRAM switching 

- Connection will be established using datagram's handshake
- Loss free operation, in-sequence packet delivery will be provided 

by end-to-end mechanisms between entities establishing the 
connection 

- Examples TCP  over IP

Note:   Connection oriented – vs. Connetionless pertains to the SERVICE 
Virtual Circuit/datagram pertains to the INTERNAL PROTOCOL OPERATION 
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Connection Oriented with VCs, and with Datagrams

(a) VC used: Packet naturally arrive 
without losses and in sequence

(b) Datagram used: Sequencing and 
loss-less operation assured end-to-end 
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Basic TCP Operation 

• At sender
- Application data is broken into TCP segments
- TCP uses a timer while waiting for an ACK of every packet
- Un-ACK’d packets are retransmitted

• At receiver
- Errors are detected using a checksum
- Correctly received data is acknowledged
- Segments are reassembled into their proper order
- Duplicate segments are discarded

• Window based retransmission and flow control + 
Congestion Control…
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TCP segment structure

source port # dest port #

32 bits

application
data 
(variable length)

sequence number

acknowledgement number

rcvr window size
ptr urgent datachecksum

FSRPAUhead
length

not
used

Options (variable length)

URG: urgent data 
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

# bytes 
rcvr willing
to accept

counting
by bytes 
of data
(not segments!)

Internet
checksum

(as in UDP)
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TCP Header Fields
• Port Numbers: Like for UDP

• 32 bit SN uniquely identify the application data contained in the 
TCP segment

- SN is in bytes!
- It identify the first byte of data

• 32 bit RN is used for piggybacking ACK’s
- RN indicates the next byte that the receiver is expecting
- Implicit ACK for all of the bytes up to that point

• Data offset is a header length in 32 bit words (minimum 20 bytes)

• Window size
- Used for error recovery (ARQ) and as a flow control mechanism 

Sender cannot have more than a window of packets in the network 
simultaneously

- Specified in bytes
Window scaling used to increase the window size in high speed 
networks

• Checksum covers the header and data



EE 122  Spring 2015AW: Unit 19 20

Sequence Numbers in TCP

• TCP regards data as a “byte-stream”
- each byte in byte stream is numbered.

• 32 bit value, wraps around
- initial values selected at start up time

• TCP breaks up byte stream in packets
- Packet size is limited to the Maximum Segment Size (MSS)

• Each packet has a sequence number
- seq. no of 1st byte indicates where it fits in the byte stream

• TCP connection is duplex
- data in each direction has its own sequence numbers

Segment 8 Segment 9 Segment 10
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TCP 3-way handshake

SYNbit=1, Seq=x

choose init seq num, x
send TCP SYN msg

ESTAB

SYNbit=1, Seq=y
ACKbit=1; ACKnum=x+1

choose init seq num, y
send TCP SYNACK
msg, acking SYN

ACKbit=1, ACKnum=y+1

received SYNACK(x) 
indicates server is live;
send ACK for SYNACK;

this segment may contain 
client-to-server data

received ACK(y) 
indicates client is live

SYNSENT

ESTAB

SYN RCVD

client state

LISTEN

server state

LISTEN
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TCP Connection Management (1)

Three way handshake:

Step 1: client end system sends TCP SYN control segment to 
server

- specifies initial seq #

- specifies initial window #

Step 2: server end system receives SYN, replies with SYNACK 
control segment

- ACKs received SYN

- allocates buffers

- specifies server-> receiver initial seq. #

- specifies initial window #

Step 3: client system receives SYNACK
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TCP: closing a connection

• client, server each close their side of connection
- send TCP segment with FIN bit = 1

• respond to received FIN with ACK
- on receiving FIN, ACK can be combined with own FIN

• simultaneous FIN exchanges can be handled
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FIN_WAIT_2

CLOSE_WAIT

FINbit=1, seq=y

ACKbit=1; ACKnum=y+1

ACKbit=1; ACKnum=x+1
wait for server

close

can still
send data

can no longer
send data

LAST_ACK

CLOSED

TIMED_WAIT

timed wait 
for 2*max 

segment lifetime

CLOSED

TCP: closing a connection

FIN_WAIT_1 FINbit=1, seq=xcan no longer
send but can
receive data

clientSocket.close()

client state server state

ESTABESTAB
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TCP state machine
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Error Control: A variation of Go-Back_N

• Sliding window with cumulative ACKs
- Receiver can only return a single “ack” sequence number to 

the sender
- Acknowledges all bytes with a lower sequence number
- Starting point for retransmission
- Duplicate ACKs sent when out-of-order packet received

• Sender only retransmits a single packet at a time
- Optimistic assumption: only one that it knows is lost
- Network is congested ⇒ shouldn’t overload it

• Error control is based on byte sequences, not packets
- Retransmitted packet can be different from the original lost 

packet (e.g., due to fragmentation)
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TCP Sender Events

• Data received from application:
- Create segment with sequence number
- Sequence number is byte- stream number of first data byte in 

segment
- start timer if not already running

Think of timer as for oldest un-acknowledged segment
- Timer expiration interval: time-out

• Timeout:
- retransmit segment that caused timeout
- restart timer

• ACK received:
- It acknowledges previously unACKed segments
- update what is known to be ACKed
- start timer if there are outstanding segments
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Fast Retransmit
• When TCP receives a packet with a SN that is greater 

than the expected SN, it sends an ACK packet with a 
request number of the expected packet SN

- This could be due to out-of-order delivery or packet loss

• If a packet is lost then duplicate RNs will be sent by TCP 
until the packet it correctly received

- But the packet will not be retransmitted until a Timeout occurs
- This leads to added delay and inefficiency

• Fast retransmit assumes that if 3 duplicate RNs are 
received by the sending module that the packet was lost

- After 3 duplicate RNs are received the packet is retransmitted
- After retransmission, continue to send new data

• Fast retransmit allows TCP retransmission to behave more 
like Selective Repeat ARQ



EE 122  Spring 2015AW: Unit 19 29

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other 
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that 
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK (reduces ACK traffic)

Immediately send single cumulative 
ACK, ACKing both in-order segments 

Immediately send duplicate ACK, 
indicating seq. # of next expected byte
(trigger fast retransmit)

Immediate send ACK, provided that
segment starts at lower end of gap
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(SACK)

• Option for selective ACKs (SACK) also widely deployed

• Selective acknowledgement (SACK) essentially adds a 
bitmask of packets received

- Implemented as a TCP option (extended TCP header)
- Encoded as a set of received byte ranges (max of 3 0r 4 

ranges)

• When to retransmit?
- Packets may experience different delays
- Still need to deal with reordering
- Wait for out of order by 3 packets
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TCP Retransmission Timeout

• TCP uses one timer only

• Retransmission Timeout (RTO) calculated dynamically
- Based on Round Trip Time estimation (RTT)
- Wait at least one RTT before retransmitting
- Importance of accurate RTT estimators:

n Low  RTT à unneeded retransmissions
n High RTT à poor throughput

- RTT estimator must adapt to change in RTT
n But not too fast, or too slow!

- Spurious timeouts
n “Conservation of packets” principle – more than a window worth of 

packets in flight
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Retransmission Timeout Estimator
• Round trip times exponentially averaged:

- New RTT = α (old RTT) + (1 - α) (new sample)

- 0.875 for most TCP’s

• Retransmit timer set to β RTT, where β = 2 (usually!)

- Every time timer expires, RTO exponentially backed-off

• Key observation: At high loads round trip variance is high

• Solution (currently in use):

- Considers: Base RTO on RTT and standard deviation of RTT:
RTT = New RTT + 4 * rttvar

- rttvar = χ * dev + (1- χ) rttvar

n dev = linear deviation (also referred to as mean deviation)

n Inappropriately named – actually smoothed linear deviation

- RTO is discretized into ticks of 500ms (RTO >= 2ticks)
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Retransmission Ambiguity

A B

ACK

Sample
RTT

Original transmission

retransmission

RTO

A B
Original transmission

retransmission
Sample
RTT

ACKRTO
X

• Karn’s RTT Estimator

- If a segment has been retransmitted: Don’t count RTT sample on ACKs for this 
segment

- Double the timeout for next packet!

- Reuse RTT estimate only after one successful transmission
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TCP Flow Control: sliding window protocol

receiver: explicitly informs 
sender of (dynamically 
changing) amount of free 
buffer space
-rcvr window size 

field in TCP segment

sender: amount of 
transmitted, unACKed data 
less than most recently-
receiver 
rcvr window size

(receiver limited 
operation) 

sender won’t overrun
receiver’s buffers by
transmitting too much,
too fast

TCP is a sliding window protocol
- For window size n, can send up to n bytes without receiving an  

acknowledgement
- When the data is acknowledged then the window slides forward
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Window Flow Control:

Sent but not acked Not yet sent

sender window

Next to be sent

Sent and acked

Acked but not
delivered to user

Not yet
acked

Receive buffer

rcvr window

Sender Side

Receiver Side
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Silly Window Syndrome
• Problem:

- Receiver opens window a small amount
- ACK opens K < MSS bytes (very small amount of data)

• Should sender transmit K bytes?
- Can be very inefficient as most of the packet will contain header 

overhead

• If sender is aggressive, sending available window size
- Results in “silly window syndrome”
- Small segment size remains indefinitely - very inefficient

Note that when the receiver receives the small segment, it sends back and 
ACK (for that small segment), opening the window for another small segment

• Hence a problem when either sender transmits a small 
segment or receiver opens window a small amount

• Mechanism needed to wait for opportunity for sending 
larger amount of data.
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When to transmit: Nagle Algorithm

• Waiting too long hurt interactive applications (Telnet)

• Without waiting, risk of sending a bunch of tiny packets
- silly window syndrome

• Nagle’s Algorithm:
- Continue to buffer data if some un-acknowledged packets still 

outstanding
- If no outstanding data, send segment without delay
- If more than MSS worth of data, send segment without delay

a/ Additional implementation details:
Receiver update of advertise window: avoid small increases in window size  
=> avoid very tiny send opportunities
Applications can disable Nagle’s algorithm to avoid long delays

b/ Implication: if don’t have at least MSS worth of data, wait at least     
one RTT before transmitting new segment:

TCP’s self clocking mechanism
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TCP Congestion Control: details

• sender limits transmission:

• cwnd is dynamic, function of 
perceived network congestion

• BUT CAN YOU JUST START 
WITH SOME cwnd?

TCP sending rate:

• roughly: send cwnd bytes, 
wait RTT for ACKS, then 
send more bytes

last byte
ACKed sent, not-

yet ACKed
(“in-flight”)

last byte 
sent

cwnd

LastByteSent-
LastByteAcked < cwnd

sender sequence number space 

rate ~~
cwnd
RTT

bytes/sec
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TCP Slow Start 

• when connection begins, 
increase rate exponentially 
until first loss event:

- initially cwnd = 1 MSS
- double cwnd every RTT
- done by incrementing cwnd

for every ACK received

• summary: initial rate is 
slow but ramps up 
exponentially fast

Host A

one segment

R
TT

Host B

time

two segments

four segments
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TCP: detecting, reacting to loss

• loss indicated by timeout:
-cwnd set to 1 MSS; 
- window then grows exponentially (as in slow start) to threshold,

then grows linearly

• loss indicated by 3 duplicate ACKs: TCP RENO
- dup ACKs indicate network capable of  delivering some segments 
-cwnd is cut in half window then grows linearly

• TCP Tahoe always sets cwnd to 1 (timeout or 3 duplicate 
acks)
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Q: when should the 
exponential 
increase switch to 
linear? 

A: when cwnd gets to 
1/2 of its value 
before timeout.

Implementation:

• variable ssthresh
• on loss event, ssthresh is 

set to 1/2 of cwnd just 
before loss event

TCP: from slow start to Congestion Avoidance
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Summary: TCP Congestion Control

timeout
ssthresh = cwnd/2

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

Λ
cwnd > ssthresh

congestion
avoidance 

cwnd = cwnd + MSS    (MSS/cwnd)
dupACKcount = 0

transmit new segment(s), as allowed

new ACK.

dupACKcount++
duplicate ACK

fast
recovery 

cwnd = cwnd + MSS
transmit new segment(s), as allowed

duplicate ACK

ssthresh= cwnd/2
cwnd = ssthresh + 3

retransmit missing segment

dupACKcount == 3

timeout
ssthresh = cwnd/2
cwnd = 1 
dupACKcount = 0
retransmit missing segment

ssthresh= cwnd/2
cwnd = ssthresh + 3
retransmit missing segment

dupACKcount == 3cwnd = ssthresh
dupACKcount = 0

New ACK

slow 
start

timeout
ssthresh = cwnd/2 

cwnd = 1 MSS
dupACKcount = 0

retransmit missing segment

cwnd = cwnd+MSS
dupACKcount = 0
transmit new segment(s), as allowed

new ACKdupACKcount++
duplicate ACK

Λ
cwnd = 1 MSS

ssthresh = 64 KB
dupACKcount = 0

New
ACK!

New
ACK!

New
ACK!
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TCP congestion avoidance: AIMD

v approach: sender increases transmission rate (window 
size), probing for usable bandwidth, until loss occurs
§ additive increase: increase  cwnd by 1 MSS every 

RTT until loss detected
§multiplicative decrease: cut cwnd in half after loss 

cw
nd

:T
C

P
 s

en
de

r 
co

ng
es

tio
n 

w
in

do
w

 s
iz

e

AIMD saw tooth
behavior: probing

for bandwidth

additively increase window size …
…. until loss occurs (then cut window in half)

time
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TCP throughput

• avg. TCP throughuput as function of window size, RTT?
- ignore slow start, assume always data to send

• W: window size (measured in bytes) where loss occurs
- avg. window size (# in-flight bytes) is ¾ W
- avg. thruput is 3/4W per RTT

W

W/2

avg TCP thruput = 3
4

W
RTT bytes/sec
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Simple TCP model

• Model: single saturated TCP pumping data into 
bottleneck

- other flows only modeled through packet loss

• Bandwidth as function of packet loss (in packets)

• Where

RTT – Round trip delay p -- Packet loss rate

b -- Number of packets confirmed by a single ACK
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TCP Throughput: An example

Throughput in bit/s for TCP from XXX to TU Berlin….
The capacity of the link is like 640 Mbits/s, no other traffic!!! 

Calculated by simplified Padhye’s formula with
MaxSegmentSize=1460,

Server

In: PER
FhG Fokus Berlin

(RTT 3.4 ms)

Univ. Stuttgart

(RTT 19.2ms)

UC Berkeley

(RTT ~170 ms)

PER 0.01 8.9314 e+05 4.1639 e+05 6.8320 e+04

~64 kbit/s
PER 0.001 1.0338 e+07 2.0187 e+06

~ 2 Mbit/s

2.3255 e+05

PER 0.0001 3.6920 e+07

~34 Mbit/s

6.5615 e+06 7.4158 e+05
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TCP Futures: TCP over “long, fat pipes”

• example: 1500 byte segments, 100ms RTT, 
acknowledgment after each segment, want 10 Gbps
throughput

• requires W = 83,333 in-flight segments

• throughput in terms of segment loss probability, L [Mathis 
1997]:

➜ to achieve 10 Gbps throughput, need a loss rate of L 
= 2·10-10  – a very small loss rate!

TCP throughput = 1.22 . MSS
RTT L
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Fairness goal: if K TCP sessions share same 
bottleneck link of bandwidth R, each should have 
average rate of R/K

TCP connection 1

bottleneck
router

capacity R

TCP Fairness

TCP connection 2
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Fairness (more)

Fairness and UDP

• multimedia apps often do 
not use TCP

- do not want rate throttled 
by congestion control

• instead use UDP:
- send audio/video at 

constant rate, tolerate 
packet loss

Fairness, parallel TCP connections
• application can open multiple parallel 

connections between two hosts

• web browsers do this 

• e.g., link of rate R with 9 existing 
connections:

- new app asks for 1 TCP, gets rate R/10
- new app asks for 11 TCPs, gets R/2 
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TCP Fairness? 
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UDP TCP interactions

• Terminology from RFC 2309:
- TCP-compatible flow:

n in steady state, uses no more bandwidth than a 
conformant TCP under similar conditions

- unresponsive flow:
n does not slow down in response to congestion

- responsive but not TCP-compatible
n responsive to congestion, but does not compete equally 

with TCP in a queue with FIFO scheduling


