
EECS 122: Introduction to Communication
Networks

Unit 22: Above the transort
Layer…

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 2

The Internet Hourglass

Data Link

Physical

Applications

The Hourglass Model

Waist

There is just one network-layer protocol, IP.
The “narrow waist” facilitates interoperability.

SMTP HTTP NTPDNS

TCP UDP

IP

Ethernet SONET 802.11

Transport

FiberCopper Radio

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 3

End-to-End Layering View

16.25.31.10 128.15.11.12

Proc. A
(port 10)

Internet
Proc. B
(port 7)

Transport
Network
Datalink
Physical

Proc. A
(port 10)

Proc. B
(port 7)

Transport
Network
Datalink
Physical

data

16.25.31.10 128.15.11.12data 10 7

data 10 7

16.25.31.10 128.15.11.12

data

data

data

10 7

10 7

Internet16.25.31.10 128.15.11.12

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 4

Internet End-to-End View [Stoica]

• Process A sends a packet to process B

16.25.31.10 128.15.11.12

Proc. A
(port 10)

Proc. B
(port 7)

Internet

IP Address:
A four-part “number” used by Network Layer to route a
packet from one computer to another

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 5

Process Address
• to receive messages, process must have identifier
• identifier includes both IP address and port numbers

associated with process on host.
• example port numbers:

– HTTP server: 80
– Mail server: 25

• to send HTTP message to gaia.cs.umass.edu web server:
– IP address: 128.119.245.12
– Port number: 80

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 6

Creating a network app

write programs that:
• run on (different) end systems
• communicate over network

no need to write software for
network-core devices

• network-core devices do not run
user applications

• applications on end systems
allows for rapid app development,
propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 7

Streams of Bits/bytes can be transmitted: so what?

How do we know what is the INFORMATION inside?

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 8

Simple example
• Representation of base types

– floating point: IEEE 754 versus non-standard
– integer: big-endian versus little-endian (e.g., 34,677,374)

(126)(34)(17)(2)

00000010Big- endian

Little- endian

(2)(17)(34)(126)

Low
address

High
address

0 0111111 00 001 0 01

00 001 001 00 001 0 01

00 001 001 000 000 01

0 0111111

– on a 680x0 CPU, the 32 bit integer number 255 is stored as:
00000000 00000000 00000000 11111111

but an Intel 80x86-CPU stores this as:
11111111 00000000 00000000 00000000

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 9

Taxonomy
• Data types

– base types (e.g., ints, floats); must convert
– flat types (e.g., structures, arrays); must pack
– complex types (e.g., pointers);

• Conversion Strategy
– canonical intermediate form

• receiver-makes-right (an N x N solution)

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 10

Data Conversion
• Two different types of rules are needed:

– Abstract syntax: a station must define what datatypes are to be
transmitted

– Transfer syntax: it must be defined how these datatypes are
transmitted, i.e. which representation has to be used.
Tagged versus untagged data

type =
INT len = 4 value = 417892

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 11

Abstract Syntax Notation.1 - ASN.1
• Each transmitted data value belongs to an associated data

type.
• For the lower layers of the OSI-RM, only a fixed set of data

types is needed (frame formats), for applications with their
complex data types ASN.1 provides rules for the definition
and usage of data types.

• ASN.1 distinguishes between a data type (as the set of all
possible values of this type) and values of this type (e.g.
‘1’ is a value of data type Integer).

• Basic ideas of ASN.1:
– Every data type has a globally unique name (type identifier)
– Every data type is stored in a library with its name and a

description of its structure (written in ASN.1)
– A value is transmitted with its type identifier and some additional

information (e.g. length of a string).

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 12

Definition of Datatypes using ASN.1 (1)
• A data type definition is called „abstract syntax“; it uses a Pascal-like

syntax.
• Lexical rules:

– Lowercase letters and uppercase letters are different
– A type identifier must start with an uppercase letter
– Keywords are written in uppercase letters

• ASN.1 offers some predefined simple types:
– BOOLEAN (Values: True, False)
– INTEGER (natural numbers without upper bound)
– ENUMERATED (association between identifier and Integer value)
– REAL (floating point values without upper or lower bound)
– BIT STRING (unbounded sequence of bits)
– OCTET STRING (unbounded sequence of bytes/ octets)
– NULL (special value denoting absence of a value)
– OBJECT IDENTIFIER (denoting type names or other ASN.1-objects)

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 13

Definition of Datatypes using ASN.1 (2)

• Examples:
– MonthsPerYear ::= INTEGER

MonthsPerYear ::= INTEGER (1..12)
Answer ::= ENUMERATED (correct(0), wrong(1),noAnswer(3))

• With the following type constructors new types can be built from
existing ones:

– SET: the order of transmission of the elements of a set is not specified.
The number of elements is unbounded, their types can differ

– SET OF: like SET, but all elements are of the same type.
– SEQUENCE: the elements of a sequence are transmitted in the defined

order. They can be of different types. The number of elements is
unbounded.

– SEQUENCE OF: like SEQUENCE, but all elements are of the same type
– CHOICE: the type of a given value is chosen from a list of types (like a

Pascal variant record)
– ANY: unspecified type

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 14

ASN.1 Transfer Syntax (1)

• Some coding rules (the „transfer syntax“) specifies how a value of a
given type is transmitted. A value to be transmitted is coded in four
parts:

– identification (type field or tags)
– length of data field in bytes
– data field
– termination flag, if length is unknown.

• The coding of data depends on their type:
– integer numbers are transmitted in High-Endian Two’s

complement representation, using the minimal number of bytes:
numbers smaller 128 are encoded in one byte, numbers smaller
than 32767 are encoded in two bytes, ...

– Booleans: 0 is false, every value not equal 0 is true.
– for a sequence type first a type identification of the sequence

itself is transmitted, followed by each member of the sequence.
– Similar rules apply to the transfer of set types

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 15

The Client- Server approach
• Is the messagepassing/stream interface enough?

What about more complex cooperation patterns….

• The client / server approach:
– A client wants to perform a specific action, e.g. to print a file. The

client itself is not able or willing to do that (he has no printer), but
he knows someone (another computer), who could do it (the printer
is connected to that other computer). The other one is the server.

– The client transmits a request message to the server (including the
file to be printed), asking the server to perform the service

– The server receives this messages and performs (probably) the
appropriate action (i.e. prints the file).

– The results are send back to the client via a reply message.

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 16

Service
• Service: Any act or performance that one party can offer to

another that is essentially intangible and does not result in
the ownership of anything. Its production may or may not
be tied to a physical product.

D. Jobber, Principles and Practice of Marketing

• Focus is on the output, the result of the service
• NOT the means to achieve it

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 17

Client-Server Model

server:
– always-on host
– permanent IP address
– server farms for scaling

clients:
– communicate with server
– may be intermittently

connected
– may have dynamic IP

addresses
– do not communicate

directly with each other

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 18

Berkeley Sockets for Client-Server

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 19Application Layer 2-19

An Alternative … P2P architecture

• no always-on server
• arbitrary end systems directly

communicate
• peers request service from other

peers, provide service in return
to other peers

– self scalability – new peers
bring new service capacity,
as well as new service
demands

• peers are intermittently
connected and change IP
addresses

– complex management

peer-peer

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 20

A useful tool: Remote Procedure Calls (RPC)
• Remote Procedural Calls are the preferred tool to implement

the client-server model.
• In classical procedure calls the code of the procedure is located

on the same computer (in the same address space) as the
calling program, in an RPC the code is located on another
computer.

• One major design goal of an RPC system is transparency:
ideally the caller should not know if the callee is located locally
or remotely. So in RPC we have to consider the following
topics:

– Parameter handling and marshalling
– Semantics
– Addressing

• An RPC system is attractive for the users because automatic
support for the conversion from local to remote procedural call
can be supported (see below).

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 21

Local vs. Remote Procedural Call (SLIDES 21- 28 are a supplement!)

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 22

Marshaling [Karl, Paderborn]

• Marshalling: taking parameters/results of a procedure call
and prepare them for transmission over a network

– To ensure, e.g., transparency between different hardware,
operating systems, programming languages

– Handled by client stub & server stub/skeleton

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 23

RPC Parameter Passing
• Procedures in common programming languages have

different types of parameters and calling conventions,
which have to be treated in a RPC:

– Simple call-by-value parameters are passed “as is“ (e.g. simple
integer values)

– Call-by-reference parameters are pointers; since different address
spaces are used by sender and receiver, the denoted value (e.g. a
buffer) has to be completely transmitted (so its length and its type
must be known in advance). If the server changes some buffer
values, the buffer must be retransmitted.

– Complex data types using pointers (e.g. graphs, trees or lists)
cannot (or only with difficulty) be transmitted.

• The stub procedures must use a common encoding
convention for different parameter types.

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 24

Finding an RPC server (Addressing)
• A client can use fixed, hard coded addresses for finding

the appropriate server station. This approach is simple but
not flexible.

• A dynamic binding approach can be used:
– A server stub transmits at its initialization a message containing its

name (procedure name), its version number, its address and a
unique (within the server station) identification to a special station,
the „bindery“ station, which maintains a database of all available
services.

– A client stub, if operating the first time, queries the bindery station
for an appropriate server providing the requested service (i.e.
service name, version number). If no server exists, the client stub
fails. Otherwise, the bindery returns the address and the unique
identification to the client stub.

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 25

RPC Semantics (1)
• In normal operation the RPC should behave exactly as the

corresponding local procedure call (LPC). In the local case
it is assumed that a procedure call returns correctly
(unless the system fails). This assumption is not valid for
RPC systems. Several problems can arise:

– Addressing (the client could not find an appropriate service)
– The client or the server can fail
– Message loss

• If the client could not find an appropriate server, a kind of
exception handling is needed, thus violating the
transparency requirement.

• The server can fail before executing the requested action
or while executing it or immediately before returning an
answer; another possibility is the loss of either an answer
of a request message. The client is not able to distinguish
these cases.

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 26

RPC Semantics (2)
• The client stub has three possibilities for further behavior if the result is

missing:
– He can retransmit his request until he receives a correct message (the

server can be restarted or another server was found). In case that the
server crashed after execution of the command, it could be executed
twice. This is called „at least once semantics“.

– He can stop after transmitting one message and report an error to the
client. This is called „at most once semantics“

– He can do anything else (e.g. make exactly 37 attempts), thus failing to
give any guarantees to the client.

• An action is called idempotent if multiple executions do not change the
result or the state of the system (e.g. reading from a file does not
change its state - a second read operation yields the same result - but
this is not true for writing to a file). There are also semi-idempotent
actions.

• If all RPC actions are idempotent, the RPC semantics does not matter,
since every request can be repeated without harm.

• If there are non-idempotent actions, „exactly once“ semantics is
required

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 27

Idempotent operations [Mullender]

• An operation is idempotent if
1. Doing it twice has the same effect as doing it once
2. Doing it partially (several times, possibly) and then doing

it whole has the same effect as doing it once

• Example: writing a block to disk
– Doing it partially, results in a bad checksum for the block (so the

block becomes unreadable)
– Doing it whole makes the block readable
– Doing it again doesn’t matter (it’s the same block again)

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 28

Making an operation idempotent [Mullender]

• Let’s say you want to transfer $1000 to my (remote) bank
account. Commands sent to the bank account are in blue.

• Here’s the non-idempotent way:
Add $1000 to my balance

• This is non-idempotent, because doing it twice (which I
can only encourage) will give me $2000.

• The idempotent way:
Keep trying to read my balance (idempotent) until that succeeds, call

it x
Add $1000 to it (a local operation)
Keep trying to write x+$1000 to my balance (idempotent) until that

succeeds

• Now we have a new problem to deal with: concurrency

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 29

Internet End-to-End View [Stoica]

• Process A sends a packet to process B

16.25.31.10 128.15.11.12

Proc. A
(port 10)

Proc. B
(port 7)

Internet

IP Address:
A four-part “number” used by Network Layer to route a
packet from one computer to another

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 30

Do I have to memorize the IP Address?
• Host names depict machines in the organizations

• Eg. robotics.eecs.berkeley.edu
• This conveys more information to humans than

128.32.48.234
• Why IP address?

– The network needs an address to route

• Host names yield information to people and IP addresses
yield information to routers

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 31

DNS: Domain Name System

people: many identifiers:
– SSN, name, passport #

Internet hosts, routers:
– IP address (32 bit) - used for

addressing datagrams
– “name”, e.g., www.yahoo.com

- used by humans

Q: map between IP address and
name, and vice versa ?

Domain Name System:
• distributed database implemented in

hierarchy of many name servers
• application-layer protocol host,

routers, name servers to
communicate to resolve names
(address/name translation)

– note: core Internet function,
implemented as application-layer
protocol

– complexity at network’s “edge”

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 32

DNS Features
• Hierarchical Namespace
• Distributed architecture for storing names

– Name servers assigned zones of the hierarchical namespace
– Backup servers available for redundancy

• Administration divided along the same hierarchy

• Client server interaction on UDP Port 53

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 33

Host names are organized hierarchically

• The first level names are called
“Top Level Domains”

• Depth of tree is arbitrary (limit
128)

• Domains are subtrees
– E.g. berkeley.edu and

eecs.berkeley.edu

root

edu com gov mil org net uk fr

berkeley mit

eecs sims

argus

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 34

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; 1st approx:
• client queries root server to find com DNS server
• client queries .com DNS server to get amazon.com DNS server
• client queries amazon.com DNS server to get IP address for

www.amazon.com

… …

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 35

DNS: Root name servers

• contacted by local name server that can not resolve name
• root name server:

– contacts authoritative name server if name mapping not known
– gets mapping
– returns mapping to local name server

13 root name
servers worldwide

b USC-ISI Marina del Rey, CA
l ICANN Los Angeles, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA (and 36 other locations)

i Autonomica, Stockholm (plus
28 other locations)

k RIPE London (also 16 other locations)

m WIDE Tokyo (also Seoul,
Paris, SF)

a Verisign, Dulles, VA
c Cogent, Herndon, VA (also LA)
d U Maryland College Park, MD
g US DoD Vienna, VA
h ARL Aberdeen, MD
j Verisign, (21 locations)

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 36

TLD and Authoritative Servers

Top-level domain (TLD) servers:
– responsible for com, org, net, edu, aero, jobs, museums, and

all top-level country domains, e.g.: uk, fr, ca, jp
– Network Solutions maintains servers for com TLD
– Educause for edu TLD

Authoritative DNS servers:
– organization’s DNS servers, providing authoritative hostname

to IP mappings for organization’s servers (e.g., Web, mail).
– can be maintained by organization or service provider

Local Name Server
– each ISP (residential ISP, company, university) has one
– when host makes DNS query, query is sent to its local DNS

server

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 37

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

78

TLD DNS server

DNS name resolution

èhost at cis.poly.edu wants
IP address for
gaia.cs.umass.edu

iterated query:
v contacted server

replies with name
of server to
contact

v “I don’t know this
name, but ask this
server”

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 38

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2

45

6

authoritative DNS server
dns.cs.umass.edu

7

8

TLD DNS server

3recursive query:
v puts burden of

name resolution
on contacted
name server

v heavy load?

Alternatively: Recursive Query Resolution

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 39

DNS Caching
• Performing all these queries takes time

– And all this before actual communication takes place
– E.g., 1-second latency before starting Web download

• Caching can greatly reduce overhead
– The top-level servers very rarely change
– Popular sites (e.g., www.cnn.com) visited often
– Local DNS server often has the information cached

• How DNS caching works
– DNS servers cache responses to queries
– Responses include a “time to live” (TTL) field
– Server deletes cached entry after TTL expires

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 40

Separating Naming and Addressing
• Names are easier to remember

– www.cnn.com vs. 64.236.16.20 (but not tiny urls)

• Addresses can change underneath
– Move www.cnn.com to 4.125.91.21
– E.g., renumbering when changing providers

• Name could map to multiple IP addresses
– www.cnn.com to multiple (8) replicas of the Web site
– Enables

• Load-balancing
• Reducing latency by picking nearby servers
• Tailoring content based on requester’s location/identity

• Multiple names for the same address
– E.g., aliases like www.cnn.com and cnn.com

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 41

DNS records

DNS: distributed db storing resource records (RR)

type=NS
– name is domain (e.g.,

foo.com)
– value is hostname of

authoritative name server for
this domain

RR format: (name, value, type, ttl)

type=A
§ name is hostname
§ value is IP address

type=CNAME
§ name is alias name for some

“canonical” (the real) name

§ www.ibm.com is really
servereast.backup2.
ibm.com

§ value is canonical name

type=MX
§ value is name of mailserver

associated with name

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 42

The WWW
• Content: A distributed database of URLs
• Client- Server Principle :

– Servers which store files and execute remote commands
– Clients retrieve and display “pages” of content linked by hypertext
è note: the idea is old!!!

• The basic aspects:
– Need a language to define the objects and the layout HTML,

XML
– Need the way to identify the resource – URL
– Need a protocol to transfer information between clients and servers

- HTTP

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 43

Architectural Overview [Tanenbaum]

The parts of the Web model.

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 44

HTML
• A Web page has several components

– Base HTML file
– Referenced objects (e.g., images)

• HyperText Markup Language (HTML)
– Representation of hypertext documents in ASCII format
– Web browsers interpret HTML when rendering a page
– Several functions:

• Format text, reference images, embed hyperlinks (HREF)

• Straight-forward to learn
– Syntax easy to understand
– Authoring programs can auto-generate HTML
– Source almost always available

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 45

Uniform Record Locator

• protocol://host-name:port/directory-
path/resource

• Extend the idea of hierarchical namespaces to
include anything in a file system

• Extend to program executions as well…
– Server side processing can be incorporated in the

name

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 46

HTTP Overview [this and following EECS122, Abhay Parekh]

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 47

HTTP overview (cont)

Uses DNS to obtain the IP address

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 48

HTTP request message
GET – transfer resource from given URL
HEAD – GET resource metadata (headers) only
PUT – store/modify resource under the given URL
DELETE – remove resource
POST – provide input for a process identified by the given URL (usually
used to post CGI parameters)

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 49

How does it work - Example

• After finding out the IP address of the host…(DNS)
1. http client initiates a TCP connection on :80
2. Client sends the get request via socket

established in 1
3. Server sends the html file, which is encapsulated

in its response
4. http server tells tcp to terminate connection
5. http client receives the file and the browser parses

it…contains ten jpeg images
6. Client repeats steps 1-4

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 50

Persistency of TCP usage

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 51

HTTP 1.0 Performance

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 52

Internal organization of HTTP

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 53

The advantage of pipelining

Comment: remember – we have already discussed pipelining
in another context – different level...

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 54

Caching

Where? Possibly everywhere:
at the servers, at your network, at the client!!!

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 55

Perfortmance and Reliability...

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 56

Server side caching

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 57

... and forward caching

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 58

HTTP is Stateless

• Stateless protocol (e.g. GET, PUT, DELETE)
– Each request-response exchange treated independently
– Servers not required to retain state

• This is good - Improves scalability on the server-side
• Don’t have to retain info across requests
• Can handle higher rate of requests
• Order of requests doesn’t matter

• This is also bad - Some applications need persistent
state

• Need to uniquely identify user or store temporary info
• e.g., Shopping cart, user preferences/profiles, usage tracking, …

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 59

State in a Stateless Protocol: Cookies

• Client-side state maintenance
– Client stores small(?) state on behalf of server
– Client sends state in future requests to the server

• Can provide authentication
Request

Response
Set-Cookie: XYZ

Request
Cookie: XYZ

Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 60

Notion of Fate-Sharing
• Idea: when storing state in a distributed system, keep it

co-located with the entities that ultimately rely on the state
• Fate-sharing is a technique for dealing with failure

– Only way that failure can cause loss of the critical state is if the
entity that cares about it also fails ...

– … in which case it doesn’t matter

• Often argues for keeping network state at end hosts rather
than inside routers
– In keeping with End-to-End principle
– E.g., packet-switching rather than circuit-switching
– E.g., HTTP “cookies”

