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End-to-End Layering View                    
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Internet End-to-End View                            [Stoica]

• Process A sends a packet to process B

16.25.31.10 128.15.11.12

Proc. A
(port 10)

Proc. B
(port 7)

Internet

IP Address:
A four-part “number” used by Network Layer to route a 
packet from one computer to another
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Process Address
• to receive messages, process  must have identifier
• identifier includes both IP address and port numbers

associated with process on host.
• example port numbers:

– HTTP server: 80
– Mail server: 25

• to send HTTP message to gaia.cs.umass.edu web server:
– IP address: 128.119.245.12
– Port number: 80
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Creating a network app

write programs that:
• run on (different) end systems
• communicate over network

no need to write software for 
network-core devices

• network-core devices do not run 
user applications 

• applications on end systems  
allows for rapid app development, 
propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
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physical
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Streams of Bits/bytes can be transmitted: so what?

How do we know what is the INFORMATION inside?
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Simple example 
• Representation of base types

– floating point: IEEE 754 versus non-standard 
– integer: big-endian versus little-endian (e.g., 34,677,374)

(126)(34)(17)(2)

00000010Big- endian

Little- endian

(2)(17)(34)(126)

Low
address

High
address

0 0111111 00 001 0 01

00 001 001 00 001 0 01

00 001 001 000 000 01

0 0111111

– on a 680x0 CPU, the 32 bit integer number 255 is stored as:
00000000 00000000 00000000 11111111

but an Intel 80x86-CPU stores this as:
11111111 00000000 00000000 00000000
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Taxonomy
• Data types

– base types (e.g., ints, floats); must convert
– flat types (e.g., structures, arrays); must pack
– complex types (e.g., pointers);

• Conversion Strategy
– canonical intermediate form

• receiver-makes-right (an N x N solution) 
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Data Conversion
• Two different types of rules are needed:

– Abstract syntax: a station must define what datatypes are to be 
transmitted

– Transfer syntax: it must be defined how these datatypes are 
transmitted, i.e. which representation has to be used.
Tagged versus untagged data

type =
INT len = 4 value = 417892
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Abstract Syntax Notation.1 - ASN.1
• Each transmitted data value belongs to an associated data 

type.
• For the lower layers of the OSI-RM, only a fixed set of data 

types is needed (frame formats), for applications with their 
complex data types ASN.1 provides rules for the definition 
and usage of data types.

• ASN.1 distinguishes between a data type (as the set of all 
possible values of this type) and values of this type (e.g. 
‘1’ is a value of data type Integer).

• Basic ideas of ASN.1:
– Every data type has a globally unique name (type identifier)
– Every data type is stored in a library with its name and a 

description of its structure (written in ASN.1)
– A value is transmitted with its type identifier and some additional 

information (e.g. length of a string). 
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Definition of Datatypes using ASN.1 (1)
• A data type definition is called „abstract syntax“; it uses a Pascal-like 

syntax. 
• Lexical rules:

– Lowercase letters and uppercase letters are different
– A type identifier must start with an uppercase letter
– Keywords are written in uppercase letters

• ASN.1 offers some predefined simple types:
– BOOLEAN (Values: True, False)
– INTEGER (natural numbers without upper bound)
– ENUMERATED (association between identifier and Integer value)
– REAL (floating point values without upper or lower bound)
– BIT STRING (unbounded sequence of bits)
– OCTET STRING (unbounded sequence of bytes/ octets)
– NULL (special value denoting absence of a value)
– OBJECT IDENTIFIER (denoting type names or other ASN.1-objects)
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Definition of Datatypes using ASN.1 (2)

• Examples:
– MonthsPerYear ::= INTEGER

MonthsPerYear ::= INTEGER (1..12)
Answer ::= ENUMERATED (correct(0), wrong(1),noAnswer(3))

• With the following type constructors new types can be built from
existing ones:

– SET: the order of transmission of the elements of a set is not specified. 
The number of elements is unbounded, their types can differ

– SET OF: like SET, but all elements are of the same type.
– SEQUENCE: the elements of a sequence are transmitted in the defined 

order. They can be of different types. The number of elements is
unbounded.

– SEQUENCE OF: like SEQUENCE, but all elements are of the same type
– CHOICE: the type of a given value is chosen from a list of types (like a 

Pascal variant record)
– ANY: unspecified type 
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ASN.1 Transfer Syntax (1)

• Some coding rules (the „transfer syntax“) specifies how a value of a 
given type is transmitted. A value to be transmitted is coded in four 
parts:

– identification (type field or tags)
– length of data field in bytes
– data field
– termination flag, if length is unknown.

• The coding of data depends on their type:
– integer numbers are transmitted in High-Endian Two’s 

complement representation, using the minimal number of bytes: 
numbers smaller 128 are encoded in one byte, numbers smaller 
than 32767 are encoded in two bytes, ...

– Booleans: 0 is false, every value not equal 0 is true.
– for a sequence type first a type identification of the sequence 

itself is transmitted, followed by each member of the sequence.
– Similar rules apply to the transfer of set types
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The Client- Server approach
• Is the messagepassing/stream interface enough? 

What about more complex cooperation patterns….

• The client / server approach:
– A client wants to perform a specific action, e.g. to print a file. The 

client itself is not able or willing to do that (he has no printer), but 
he knows someone (another computer), who could do it (the printer 
is connected to that other computer). The other one is the server.

– The client transmits a request message to the server (including the 
file to be printed), asking the server to perform the service

– The server receives this messages and performs (probably) the 
appropriate action (i.e. prints the file).

– The results are send back to the client via a reply message.
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Service
• Service: Any act or performance that one party can offer to 

another that is essentially intangible and does not result in 
the ownership of anything. Its production may or may not 
be tied to a physical product.

D. Jobber, Principles and Practice of Marketing

• Focus is on the output, the result of the service
• NOT the means to achieve it
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Client-Server Model

server:
– always-on host
– permanent IP address
– server farms for scaling

clients:
– communicate with server
– may be intermittently 

connected
– may have dynamic IP 

addresses
– do not communicate 

directly with each other
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Berkeley Sockets for Client-Server 
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An Alternative … P2P architecture

• no always-on server
• arbitrary end systems directly 

communicate
• peers request service from other 

peers, provide service in return 
to other peers

– self scalability – new peers 
bring new service capacity, 
as well as new service 
demands

• peers are intermittently 
connected and change IP 
addresses

– complex management

peer-peer
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A useful tool: Remote Procedure Calls (RPC) 
• Remote Procedural Calls are the preferred tool to implement 

the client-server model. 
• In classical procedure calls the code of the procedure is located 

on the same computer (in the same address space) as the 
calling program, in an RPC the code is located on another 
computer. 

• One major design goal of an RPC system is transparency: 
ideally the caller should not know if the callee is located locally 
or remotely. So in RPC we have to consider the following 
topics:

– Parameter handling and marshalling
– Semantics
– Addressing

• An RPC system is attractive for the users because automatic 
support for the conversion from local to remote procedural call 
can be supported (see below).
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Local vs. Remote Procedural Call (SLIDES 21- 28 are a supplement!)
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Marshaling                             [Karl, Paderborn]

• Marshalling: taking parameters/results of a procedure call 
and prepare them for transmission over a network

– To ensure, e.g., transparency between different hardware, 
operating systems, programming languages

– Handled by client stub & server stub/skeleton 
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RPC Parameter Passing
• Procedures in common programming languages have 

different types of parameters and calling conventions, 
which have to be treated in a RPC:

– Simple call-by-value parameters are passed “as is“ (e.g. simple 
integer values)

– Call-by-reference parameters are pointers; since different address 
spaces are used by sender and receiver, the denoted value (e.g. a 
buffer) has to be completely transmitted (so its length and its type 
must be known in advance). If the server changes some buffer 
values, the buffer must be retransmitted.

– Complex data types using pointers (e.g. graphs, trees or lists) 
cannot (or only with difficulty) be transmitted.

• The stub procedures must use a common encoding 
convention for different parameter types. 
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Finding an RPC server (Addressing)
• A client can use fixed, hard coded addresses for finding 

the appropriate server station. This approach is simple but 
not flexible.

• A dynamic binding approach can be used:
– A server stub transmits at its initialization a message containing its 

name (procedure name), its version number, its address and a 
unique (within the server station) identification to a special station, 
the „bindery“ station, which maintains a database of all available 
services.

– A client stub, if operating the first time, queries the bindery station 
for an appropriate server providing the requested service (i.e. 
service name, version number). If no server exists, the client stub 
fails. Otherwise, the bindery returns the address and the unique
identification to the client stub.
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RPC Semantics (1)
• In normal operation the RPC should behave exactly as the 

corresponding local procedure call (LPC). In the local case 
it is assumed that a procedure call returns correctly 
(unless the system fails). This assumption is not valid for 
RPC systems. Several problems can arise:

– Addressing  (the client could not find an appropriate service)
– The client or the server can fail
– Message loss

• If the client could not find an appropriate server, a kind of 
exception handling is needed, thus violating the 
transparency requirement.

• The server can fail before executing the requested action 
or while executing it or immediately before returning an 
answer; another possibility is the loss of either an answer 
of a request message. The client is not able to distinguish 
these cases.
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RPC Semantics (2)
• The client stub has three possibilities for further behavior if the result is 

missing:
– He can retransmit his request until he receives a correct message (the 

server can be restarted or another server was found). In case that the 
server crashed after execution of the command, it could be executed 
twice. This is called „at least once semantics“.

– He can stop after transmitting one message and report an error to the 
client. This is called „at most once semantics“

– He can do anything else (e.g. make exactly 37 attempts), thus failing to 
give any guarantees to the client.

• An action is called idempotent if multiple executions do not change the 
result or the state of the system (e.g. reading from a file does not 
change its state - a second read operation yields the same result - but 
this is not true for writing to a file). There are also semi-idempotent 
actions.

• If all RPC actions are idempotent, the RPC semantics does not matter, 
since every request can be repeated without harm.

• If there are non-idempotent actions, „exactly once“ semantics is 
required
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Idempotent operations                                      [Mullender]

• An operation is idempotent if
1. Doing it twice has the same effect as doing it once
2. Doing it partially (several times, possibly) and then doing 

it whole has the same effect as doing it once

• Example: writing a block to disk
– Doing it partially, results in a bad checksum for the block (so the 

block becomes unreadable)
– Doing it whole makes the block readable
– Doing it again doesn’t matter (it’s the same block again)
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Making an operation idempotent [Mullender]

• Let’s say you want to transfer $1000 to my (remote) bank 
account.  Commands sent to the bank account are in blue.

• Here’s the non-idempotent way:
Add $1000 to my balance

• This is non-idempotent, because doing it twice (which I 
can only encourage) will give me $2000.

• The idempotent way:
Keep trying to read my balance (idempotent) until that succeeds, call 

it x
Add $1000 to it (a local operation)
Keep trying to write x+$1000 to my balance (idempotent) until that 

succeeds

• Now we have a new problem to deal with: concurrency
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Internet End-to-End View                                      [Stoica]

• Process A sends a packet to process B

16.25.31.10 128.15.11.12

Proc. A
(port 10)

Proc. B
(port 7)

Internet

IP Address:
A four-part “number” used by Network Layer to route a 
packet from one computer to another
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Do I have to memorize the IP Address?
• Host names depict machines in the organizations

• Eg. robotics.eecs.berkeley.edu
• This conveys more information to humans than 

128.32.48.234
• Why IP address?

– The network needs an address to route

• Host names yield information to people and IP addresses 
yield information to routers
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DNS: Domain Name System

people: many identifiers:
– SSN, name, passport #

Internet hosts, routers:
– IP address (32 bit) - used for 

addressing datagrams
– “name”, e.g., www.yahoo.com

- used by humans

Q: map between IP address and 
name, and vice versa ?

Domain Name System:
• distributed database implemented in 

hierarchy of many name servers
• application-layer protocol host, 

routers, name servers to 
communicate to resolve names 
(address/name translation)

– note: core Internet function, 
implemented as application-layer 
protocol

– complexity at network’s “edge”
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DNS Features
• Hierarchical Namespace
• Distributed architecture for storing names 

– Name servers assigned zones of the hierarchical namespace
– Backup servers available for redundancy

• Administration divided along the same hierarchy

• Client server interaction on UDP Port 53 
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Host names are organized hierarchically

• The first level names are called 
“Top Level Domains”

• Depth of tree is arbitrary (limit 
128)

• Domains are subtrees
– E.g. berkeley.edu and      

eecs.berkeley.edu

root

edu com gov mil org net uk fr

berkeley mit

eecs sims

argus
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Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; 1st approx:
• client queries root server to find com DNS server
• client queries .com DNS server to get amazon.com DNS server
• client queries amazon.com DNS server to get  IP address for 

www.amazon.com

… …
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DNS: Root name servers

• contacted by local name server that can not resolve name
• root name server:

– contacts authoritative name server if name mapping not known
– gets mapping
– returns mapping to local name server

13 root name 
servers worldwide

b USC-ISI Marina del Rey, CA
l  ICANN Los Angeles, CA

e NASA Mt View, CA
f  Internet Software C. Palo Alto, 
CA (and 36 other locations)

i Autonomica, Stockholm (plus     
28 other locations)

k RIPE London (also 16 other locations)

m WIDE Tokyo (also Seoul, 
Paris, SF)

a Verisign, Dulles, VA
c Cogent, Herndon, VA (also LA)
d U Maryland College Park, MD
g US DoD Vienna, VA
h ARL Aberdeen, MD
j  Verisign, ( 21 locations)
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TLD and Authoritative Servers

Top-level domain (TLD) servers:
– responsible for com, org, net, edu, aero, jobs, museums, and 

all top-level country domains, e.g.: uk, fr, ca, jp
– Network Solutions maintains servers for com TLD
– Educause for edu TLD

Authoritative DNS servers:
– organization’s DNS servers, providing authoritative hostname 

to IP mappings for organization’s servers (e.g., Web, mail).
– can be maintained by organization or service provider

Local Name Server
– each ISP (residential ISP, company, university) has one
– when host makes DNS query, query is sent to its local DNS 

server
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requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

78

TLD DNS server

DNS name resolution

èhost at cis.poly.edu wants 
IP address for 
gaia.cs.umass.edu

iterated query:
v contacted server 

replies with name 
of server to 
contact

v “I don’t know this 
name, but ask this 
server”



Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 38

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2

45

6

authoritative DNS server
dns.cs.umass.edu

7

8

TLD DNS server

3recursive query:
v puts burden of 

name resolution 
on contacted 
name server

v heavy load?

Alternatively: Recursive Query Resolution
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DNS Caching
• Performing all these queries takes time

– And all this before actual communication takes place
– E.g., 1-second latency before starting Web download

• Caching can greatly reduce overhead
– The top-level servers very rarely change
– Popular sites (e.g., www.cnn.com) visited often
– Local DNS server often has the information cached

• How DNS caching works
– DNS servers cache responses to queries
– Responses include a “time to live” (TTL) field
– Server deletes cached entry after TTL expires
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Separating Naming and Addressing
• Names are easier to remember

– www.cnn.com vs. 64.236.16.20 (but not tiny urls)

• Addresses can change underneath
– Move www.cnn.com to 4.125.91.21
– E.g., renumbering when changing providers

• Name could map to multiple IP addresses
– www.cnn.com to multiple (8) replicas of the Web site
– Enables

• Load-balancing
• Reducing latency by picking nearby servers
• Tailoring content based on requester’s location/identity

• Multiple names for the same address
– E.g., aliases like www.cnn.com and cnn.com
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DNS records

DNS: distributed db storing resource records (RR)

type=NS
– name is domain (e.g., 

foo.com)
– value is hostname of 

authoritative name server for 
this domain

RR format: (name, value, type, ttl)

type=A
§ name is hostname
§ value is IP address

type=CNAME
§ name is alias name for some 

“canonical” (the real) name

§ www.ibm.com is really
servereast.backup2.
ibm.com

§ value is canonical name

type=MX
§ value is name of mailserver

associated with name
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The WWW
• Content:  A distributed database of URLs
• Client- Server Principle :

– Servers which store files and execute remote commands
– Clients retrieve and display “pages” of content linked by hypertext 
è note: the idea is old!!!

• The basic aspects:
– Need a language to define the objects and the layout    HTML, 

XML
– Need the way to identify the resource – URL
– Need a protocol to transfer information between clients and servers  

- HTTP
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Architectural Overview    [Tanenbaum]

The parts of the Web model.
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HTML
• A Web page has several components

– Base HTML file
– Referenced objects (e.g., images)

• HyperText Markup Language (HTML)
– Representation of hypertext documents in ASCII format
– Web browsers interpret HTML when rendering a page
– Several functions:

• Format text, reference images, embed hyperlinks (HREF)

• Straight-forward to learn
– Syntax easy to understand
– Authoring programs can auto-generate HTML
– Source almost always available



Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 45

Uniform Record Locator

• protocol://host-name:port/directory-
path/resource

• Extend the idea of hierarchical namespaces to 
include anything in a file system

• Extend to program executions as well…
– Server side processing can be incorporated in the 

name
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HTTP Overview [this and following EECS122, Abhay Parekh]



Prof. Dr.-Ing. Adam Wolisz TU-Berlin EE 122 Sp. 2015 47

HTTP overview (cont)

Uses DNS to obtain the IP address
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HTTP request message
GET – transfer resource from given URL
HEAD – GET resource metadata (headers) only
PUT – store/modify resource under the given URL
DELETE – remove resource
POST – provide input for a process identified by the given URL (usually 
used to post CGI parameters)
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How does it work - Example

• After finding out the IP address of the host…(DNS)
1. http client initiates a TCP connection on :80
2. Client sends the get request via socket 

established in 1
3. Server sends the html file, which is encapsulated 

in its response
4. http server tells tcp to terminate connection
5. http client receives the file and the browser parses 

it…contains ten jpeg images
6. Client repeats steps 1-4
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Persistency of TCP usage
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HTTP 1.0 Performance
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Internal organization of HTTP 
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The advantage of pipelining

Comment: remember – we have already discussed pipelining
in another context – different level...
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Caching

Where?  Possibly everywhere: 
at the servers, at your network, at the client!!!
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Perfortmance and Reliability...
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Server  side caching
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... and forward caching
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HTTP is Stateless 

• Stateless protocol (e.g.  GET, PUT, DELETE)
– Each request-response exchange treated independently
– Servers not required to retain state

• This is good - Improves scalability on the server-side
• Don’t have to retain info across requests
• Can handle higher rate of requests
• Order of requests doesn’t matter

• This is also bad - Some applications need persistent 
state

• Need to uniquely identify user or store temporary info
• e.g., Shopping cart, user preferences/profiles, usage tracking, …
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State in a Stateless Protocol:  Cookies

• Client-side state maintenance
– Client stores small(?) state on behalf of server
– Client sends state in future requests to the server

• Can provide authentication
Request

Response
Set-Cookie: XYZ

Request
Cookie: XYZ
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Notion of Fate-Sharing
• Idea: when storing state in a distributed system, keep it 

co-located with the entities that ultimately rely on the state
• Fate-sharing is a technique for dealing with failure

– Only way that failure can cause loss of the critical state is if the 
entity that cares about it also fails ...

– … in which case it doesn’t matter

• Often argues for keeping network state at end hosts rather 
than inside routers
– In keeping with End-to-End principle
– E.g., packet-switching rather than circuit-switching
– E.g., HTTP “cookies”


