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ERM and uniform laws of large numbers I

Empirical risk minimization:
Choose f,, € F' to minimize R.

A

R(f) < inf R(f) + sup | R(f) = R(f)| + O(1/v7)

= inf R(f)+ O E|fn]r).




‘ Covering and packing numbers I

Definition: A pseudometric space (S, d) is a set S and a

function d : S x S — [0, 00) satisfying

1. d(xz,x) =0,

2. d(z,y) = d(y, x),
3. d(x,z) < d(x,y) + d(y, z).




Covering numbers I

Definition: An e-cover of a subset T" of a pseudometric space (S, d)
is a set 7' C T such that for each t € T there is a ¢ € 7' such that
d(t,t) < €. The e-covering number of 7T is

N(e,T,d) = min{|T| : T is an e-cover of T'}.

A set T is totally bounded if, for all € > 0, N'(¢, T, d) < <.
The function € — log N (e, T, d) is the metric entropy of 7T'.
If lim,_,q log M (€)/log(1/€) exists, it is called the metric dimension.

e Entropy: number of bits to approximately specify an element of 7'.

o Example: ([0,1]%, 1) has N'(e) = ©(1/¢).

Intuition: A d-dimensional set has metric dimension d.




Covering numbers I

Theorem: For F' C [—1,1]Y and 2y, ...,z, € X, consider the Ly (P,)
pseudometric on F',

di(f,9)° = Pu(f — g)°.

a>0 n

E|[Ry|» < inf <E\/210g(2N<O"F’ dn)) +a> .




Covering numbers I
Proof:

For a sample X, ..., X, fix a minimal a-cover Fof F.

n

1
E|Rallr = Esup |- 3 e f(X:)

fer |
= Esup sup
feF feFnBa(f) |" i=1

- E\/Qlog(QN(a,F, d,)) .

n




Covering numbers I

Example: If V(o F, d,,) = a~%, we can choose o = 1/4/n to get

n

dlogn
ERnF0< 5 )




Packing numbers I

Definition: An e-packing of a subset 7' of a pseudometric space
(S,d) is a subset T C T such that each pair s,t € T satisfies
d(s,t) > €. The e-packing number of T is

M(e, T, d) = max{|T| : T is an e-packing of T'}.




‘ Covering and packing numbers I

Theorem: For all ¢ > 0, M(2¢) < N (e) < M(e).

Thus, the scaling of the covering and packing numbers is the same.




Covering and packing numbers: Proof'

For the first inequality, consider a minimal e-cover T. Any two elements
of a 2e-packing of 7' cannot be within € of the same element of T.
(Otherwise, the triangle inequality shows that they are within 2¢ of each
other.) Thus, there can be no more than one element of a 2e packing for

each of the \V(¢) elements of 7'. That is, M (2¢) < N (e).

For the second inequality, consider an e-packing 7" of size M((e). Since it
1s maximal, no other point s € I" can be added for which some ¢ & T has

d(s,t) > €. Thus, T is an e-cover. So the minimal e-cover has size

N(€) < M(e).




‘ Example: smoothly parameterized functions I

Let F' be a parameterized class of functions,
F=A{f(,-):0c 06}

Let || - [[e be anorm on © and let || - || 7 be a norm on F'. Suppose that the
mapping 6 — f(4,-) is L-Lipschitz, that is,

1f(6,-) = f(0,)llr < LI|6 — 0o

Then N(e, F || - [[r) S N(e/L, 0, - [lo).
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‘ Example: smoothly parameterized functions I

A Lipschitz parameterization allows us to translates a cover of the
parameter space into a cover of the function space.

Example: If F'is smoothly parameterized by a (compact set of) d
parameters, then A (e, F) = O(1/€%).
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Example: non-decreasing functions I

Example: For the class F' of non-decreasing functions

from R to [0, 1], and the random pseudometric d,, on F,

d(f,9)° = Pu(f — g)°.

N (e, F,d,) =n®1/9,

For this class, the metric dimension is infinite.
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Example: non-decreasing functions I

To see this, notice that we need only approximate restrictions of functions
in this class to X1, ..., X,,. We can replace the range [0, 1] by a

discretization ) := {0, €, 2¢, ..., |1/€|e, 1}. Then for any f € F there is
af:{Xy,...,X,} — YVthathas d,(f, f) < e So we just need to count
the number of non-decreasing f ’S.

We can specify a non-decreasing function f by specifying, for each value
n J>, the smallest X; at which it lies on or above that value.
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Example: non-decreasing functions I

N (e, F,d,) = n®/e).

Two consequences of this covering number bound:

We can write the class of functions of total variation no more than 1
asG={(f—g)/2: f,g € F},soithas N(e,G,d,) =n°1/9).

The discretization theorem implies

, logn logn 1/3
E||R,|r < inf [ c +a| =0 .
a>0 an n

(But we know that this result 1s loose. Why?)
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‘ Chaining and Dudley’s entropy integral I

Theorem: For some universal constant ¢, if /' C |0, 1]X ,

> /] F.d,
E|R,|F < cE/ \/ e Nl Fdn) 4,
0 n
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Proof of Dudley’s entropy integral I

Rather than choosing a fixed value of o, we approximate an element of F
at progressively finer scales:

N
f=In+Ff—fIn=Fo+> (fi—=fii)+f—Fn,
1=1

fi € Fy, do(fi, fic1) < ai,
o; = 27 'diam(F),

A

F; = «;-cover of F'.

We can set fo = 0 and notice that diam(F) < 1.
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Proof of Dudley’s entropy integral I

1
E| R, | F = Esup

sup <€:fj—fj—1>‘+ESUP <€7f—fN>‘

2log(2|F;| | F
Z \/ sCEIFD




Proof of Dudley’s entropy integral I

NOW, ‘Fj—l‘ < |Fj‘ = N(Oéj,F, dn) and aj = 2Oéj_|_1 = Q(Oéj — Oéj_|_1)2

log N'(ay, F' dn)

N

El|Rnllr < cE | Y (a; — 04j+1)\/ +ay

n
J=1

o | F.d,
ch/ \/og/\f(a, ) 4o+ o
QN +1 n

where at the last step we’ve lower bounded the integral by the piecewise

constant function.




‘ Chaining and Dudley’s entropy integral I

Theorem: For some universal constant ¢, if /' C |0, 1]X ,

> /] F.d,
E|R,|F < cE/ \/ e Nl Fdn) 4,
0 n




‘ Applications of chaining and Dudley’s entropy integral I

Example: For a subset I’ of a d-dimensional linear space,
log N (e, F,d,) ~ dlog(1/e).
A single discretization gives

dlogn
E|[Rallr < ¢f ——.

Chaining gives

d [ d
EHRnHFSC\/j/ \/logl/ede:c’\/j.
n Jo n

(To calculate the integral, notice that y = +/log(1/x)

2
means x = e Y )




‘ Applications of chaining and Dudley’s entropy integral I

Example: For the class F' of non-decreasing functions
from R to [0, 1], we calculated

, logn logn 1/3
E||R,|r < inf | c +a| =0 .
a>0 an n

But chaining gives

1 1/2
/1 1
El|lRullr < C/ B e =¢ ( ogn) .
0 en n




‘ Applications of chaining and Dudley’s entropy integral I

Example: For F' C {£1}F with dy¢(F) < d, we have
seen that Sauer’s Lemma plus the finite class lemma 1m-

plies
dl
E|R,|r < ¢/ 2"
n

However, Haussler showed that

N(a, F,d,) < (E)Qd.

0%

So Dudley’s entropy integral evaluates to

d
E|R, | < \ﬁ
mn
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‘ Sudakov’s Theorem I

Theorem:

EHRnHF Z & Sup (aE\/log<N(&7Fa dn))) .

logn o n

Ignoring the log n, this lower bound is the largest rectangle that we can fit
under the graph of /log(N (a, F,d,,))/n.




Covering numbers I

There is a gap between the upper and lower bounds on E||R,, || ¢ in
terms of covering numbers. This gap 1s essential.

We have seen that E||R,, || = gives tight bounds on ||P — P, || .

Covering numbers do not.

Covering numbers are convenient: it is often easy to bound them by

piecing together approximations.
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