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Abstract

This paper presents fast and simple algorithms for directly
constructing force-closure grasps based on the shape of the
grasped object. The synthesis of force-closure grasps finds in-
dependent regions of contact for the fingertips, such that the
motion of the grasped object is totally constrained. A force-
closure grasp implies equilibrium grasps exist. In the reverse
direction, we show that most nonmarginal equilibrium
grasps are force-closure grasps.

This paper describes research done while the author was at the
Artificial Intelligence Laboratory at the Massachusetts Institute of
Technology.

1. Introduction

1.1. How Should the Fingers be Placed?

Grasping an object is exerting force and moment on
the object to move it or to keep it in stable equilib-
rium. Grasping is also constraining the motion of the
object by a set of contacts. These two descriptions are
dual to each other. They correspond respectively to a
force-closure grasp and to zero total freedom of the
object. A grasp on an object is force-closure if and
only if we can exert, through the set of contacts, arbi-
trary force and moment on this object. Equivalently,
any motion of the object is resisted by a contact force.
The fingertip contacts are modeled as hard or soft

point contacts, with or without friction. The forward
problem is to analyze whether a grasp, defined by a set

of contacts, is force-closure or not. The reverse prob-
lem is to find places to put the fingertips such that the
grasp is force-closure. The synthesis method we de-
velop finds large independent regions of contact for the
fingertips. Figure 1 shows examples of force-closure
grasps in two (2D) and three dimensions (3D). The in-
dependent regions of contact for the fingertips are .

highlighted by bold segments and circles. The focus
will be 2D and 3D grasps, respectively, on polygonal
and polyhedral objects.

1.2. Main Results

The main results of this paper are as follows:

1. A grasp is described as the combination of
individual contacts, which in turn are modeled
as the combination of a few primitive contacts.
They are hard or soft point contacts with or
without friction. A contact over a finite seg-
ment or surface has a very compact representa-
tion if its normal is constant. This explains
why the synthesis of force-closure grasps is very
simple for polygonal and polyhedral objects.

2. The algorithms for constructing force-closure
grasps on polygons and polyhedra are direct,
fast, and simple. We find not only single grasps
but the complete set of all force-closure grasps
on a set of edges and faces. We can also con-
struct the independent regions of contact for
the fingers. The construction is exponential in
the minimum number of required fingers and
polynomial in the number of total fingers:

3. We show that nonmarginal equilibrium grasps
are force-closure grasps. This proof supports a
very simple heuristic for grasping objects with
two fingers: &dquo;Increase friction and compliance
at the contact by covering the fingertips with
soft rubber. Then grasp the object on two op-
posite sides.&dquo;
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Fig. 1. Examples of force-
closure grasps in 2D and 3D.

1.3. Other Related Works

Related works can be grouped as follows:

1. Force-closure grasps: Force-closure and total
freedom capture the main constraint between
the fingers and the grasped object. Ohwovor-
iole analyzed the geometry of the different
repelling screw systems and used the results to
analyze systems of contracting bodies, such as
an object grasped by a set of fingers, or a pin
being inserted into a hole (Ohwovoriole 1980,
1984). Related to force-closure is the solution

of systems of linear inequalities (Goldman and
Tucker 1956).

2. Form-closure grasps: A grasp is form-closure if
the grasped object is totally constrained by the
set of contacts, irrespective of the magnitude of
the contact forces. Reuleaux (1875) proved
that a 2D grasp needs at least four point con-
tacts for form-closure. Lakshminarayana
(1978) showed that a 3D grasp needs at least
seven point contacts. Form-closure can be
viewed as force-closure with frictionless con-
tacts only. Mishra, Schwartz, and Sharir (1986)
showed that no form-closure grasp exists on
finite surfaces of revolution, on infinite planes,
cylinders, or helical surfaces.

 at UNIV CALIFORNIA BERKELEY LIB on February 27, 2016ijr.sagepub.comDownloaded from 

http://ijr.sagepub.com/


5

Fig. 2. Primitive contacts in
2D and 3D.

2. Contacts and Grasps

2.1. Primitive Contacts

The contacts between the fingertips and the object can
be modeled as frictionless point contacts, hard-finger
contacts, or soft-finger contacts. The three primitive
contacts and their wrench convexes are respectively
shown on the top and bottom rows of Fig. 2. From left
to right the figure shows:

1. Frictionless point contact: The finger can only
exert a normal force through the point of con-
tact. The wrench convex has a single wrench,
with line of action going through the point of
contact and with direction the negative of the
contact normal.

2. Hard-finger contact: This is a point contact
with friction. The finger can exert any force
pointing into the friction cone at the point of
contact. This 2D (resp. 3D) friction cone de-
scribes the wrench convex, which mathemati-

cally is the convex sum of two (resp. infinitely
many) generating wrenches. The 3D friction
cone is usually approximated by a polyhedral
convex, with vertex at the point of contact
(Kerr 1985).

3. Soft-finger contact: The friction over the area
of contact allows the finger to exert pure
torques in addition to pure forces pointing into

the friction cone. A 3D soft finger can exert
torques in both directions, about the normal
axis at the point of contact. So the wrench
convex is described by a one-sided friction
cone plus a two-sided torque. This two-sided
torque has no effect in a 2D grasp, so the soft

finger is reduced to a convex sum of hard
fingers over the small segment of contact.

Any complex contact can be described as a convex
sum of the above primitive contacts. Figure 3 shows
an edge contact without friction whose wrench convex
is the convex sum of two wrench convexes; each de-
scribes the frictionless point contact at one end of the
edge of contact. Similarly, a face contact is the convex
sum of point contacts at the vertices of the face. The
wrench convex of the polygonal face is minimally
described as the convex sum of point contacts that are
on the convex hull of the face. The last column de-
scribes a soft contact touching a vertex and its wrench
convex computed from the convex sum of all friction
cones over the small contact patch between the soft
finger and the vertex. This wrench convex can be ap-
proximated by a friction cone with a much larger sector.

2.2. Dual Representations for Grasp

A wrench convex describes the range of force and
moment that can be applied on the object. A twist
convex reciprocal or repelling to a wrench convex de-
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Fig. 3. Complex contacts.

scribes the range of motions for which the object can
move freely or break contact. We can sum wrench
convexes from all the contacts, or intersect the corre-

sponding twist convexes, to find the resulting wrench
or twist convex of the grasp. The goal here is to get a
wrench convex that spans the whole space of force and
moment, or a null twist convex.
Wrench and twist convexes are two dual representa-

tions for contact and grasp. For planning grasps,
wrench convexes are definitely a more efficient repre-
sentation, since generating wrenches can be deduced
readily from the type and point of contact as above,
and we can just take the union of all the generating
wrenches to describe the grasp. From now on, a grasp
G will be specified by a set of points of contact
Pt, ... , Pn, or a set of wrenches W generating the
wrench convex.
The force-closure problem can be formulated as the

solution of a system of linear inequalities wT’t8 2:= 0,
where each column of the matrix W is a contact
wrench. The product of the ith row of WT and the
spatial transpose of the twist ts is the spatial dot prod-
uct *i’~t, describing the virtual work of the wrench *i
against the twist t. A twist is called reciprocal, repel-
ling, or contrary to a wrench if and only if the spatial
dot product of the twist and the wrench is, respectively,
zero, positive, or negative (Ohwovoriole 1980).
A grasp between an object and many fingers is dif-

ferent from a linked chain or platform, such as a robot
arm, in that forces can be applied in one direction
only. The fingers can only push, not pull, on the object

because there is no glue between the object and the
fingers. In a revolute (resp. prismatic) arm, torques
(resp. forces) can be applied in both directions at the
joints of the arm. This is the reason why the kinematic
constraints in a grasp must be described in terms of

convexes-positive combinations of contact forces-
instead of subspaces-linear combinations of spatial
vectors-as in the analysis of arm kinematics (Feath-
erstone 1983).
A grasp is force-closure if and only if the system of

linear inequalities W-rts 2: 0 has no solution. In gen-
eral, vector closure in an n-dimensional space needs at
least n + 1 vectors.

THEOREM 1 (GOLDMANAND TUCKER) In an n-di-
mensional vector space, a set of vectors V is vector-clo-
sure if and only if V has at least n + 1 vectors

(v, , ... , Vn+I) such that

l. n of the n + 1 vectors are linearly independent.
2. A strictly positive combination of the n + 1

vectors is the zero vector.

The first statement expresses the necessary and suf-
ficient condition for no homogeneous solution to the
system vTx * 0. Y is the matrix with vectors vi as
columns. The number of independent vectors must be
equal to the dimension of the vector space. The sec-
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ond statement expresses the additional necessary and
sufficient condition for no particular solution. The
theorem is just a slightly different form of a lemma
(Lemma 6) proved by Goldman and Tucker (1956).

Polygonal (resp. polyhedral) objects have edges
(resp. faces) with constant normal, so the force-closure
problem can be split into two independent subprob-
lems : (1) force-direction closure, which tests that the
friction cones from the finger contacts span all direc-
tions, and (2) torque-closure, which makes sure that
coupling of the contact forces creates all pure torques.
The placement of a finger within a straight edge (resp.
planar face) affects only the torque-closure condition.
For hard-finger (resp. soft-finger) contacts with fric-
tion, the torque-closure condition in 2D (resp. 3D) has
a very simple geometric formulation, and this results
in fast and simple algorithms for constructing the
independent contact regions. We describe in detail the
analysis and synthesis of force-closure grasps in 2D,
and give extensions in 3D.

3. Resisting Translation and Rotation

3.1. Force-Direction Closure

THEOREM 2 A set ofplanar wrenches W can generate
force in any direction if and only if there exists a three-
tuple of wrenches (i% 1 , W2, W3) whose respective force
directions f,, f2, f3 satisfy

1. Two of the three directions f1, f2, f3 are inde-
pendent.

2. A strictly positive combination of the three
directions is zero: af, + pe2 + yf3 = 0.

The first (resp. second) condition corresponds to no
homogeneous (resp. particular) solution to the system
WTts ? 0, where twist i = (0, d,, dy)l is an infinitesi-
mal translation of the object. Theorem 2 can be cap-
tured in a more suggestive and compact way (Fig. 4) as
follows.

COROLLARY 1 A set of planar wrenches W can gen-
erate forces in any arbitrary direction if and only if

Fig. 4. A geometrical view of
force-direction closure in 2D.

there exists a three-tuple of force-direction vectors (f, ,
f2, f3) whose endpoints draw a nonzero triangle that
includes their common starting point.

Force-direction closure in 3D needs four directions,
three independent and the fourth a negative combina-
tion of the first three. An example is the four normal
directions of a tetrahedron. Most grasps have friction
at the fingertips, and force-direction closure is usually
achieved by having two friction cones whose sectors
counterintersect.

3.2. Torque-Closure

Torque-closure in 2D can be achieved by creating
enough friction on some axis of rotation of the object.
The friction between the rotating object and its sup-
porting axis will create a torque that resists any clock-
wise or counterclockwise rotation of the object. Unfor-
tunately, in most grasp configurations, we have only
point contacts, and through a point contact a finger
can exert only pure force, and not torque on the ob-
ject. A more interesting problem is to achieve torque-
closure with only pure forces.

THEOREM 3 A set of planar forces W can generate
clockwise and counterclockwise torques if and only if
there exists a four-tuple offorces (WI’ W2, W3, W4) such
that the following hold.
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Fig. 5. A geometrical view of
torque-closure in 2D.

1. Three of the four forces have lines of action that
do not intersect at a common point or at infinity.

2. Let f1, ... , f¢ be the force directions of
w~ , ... , W4’ Let P 12 (resp. P 34) be the point
where the lines of action of *1 and W2 (resp. *3
and W4) intersect. There exist a, A y, 6, all
greater than zero, such that

The first (resp. second) condition corresponds to no
homogenous (resp. particular) solution to the system
wTis 2= 0, where twist i = (J,, dx, dy)T is an infinitesi-
mal rotation of the object. For a detailed proof see
Nguyen ( 1986).
Theorem 3 can be formulated in more geometrical

terms as follows.

COROLLARY 2 A set of planar forces W can generate
clockwise and counterclockwise torques if and only if
there exists a four-tuple of forces (*1 , W2, W3, W4) such
that the segment P12P34, or P34P12, points out of and
into the two cones Cf2. C 4 formed by the two pairs
(WI’ W2) and (W3, W4)’
From Fig. 5, one can check for torque-closure in the

plane by drawing a quadrilateral delimiting the over-

lapping region of the two cones C~, Cf4. From this
quadrilateral, one can generate clockwise and counter-
clockwise torques from positive combinations of the
four pure forces. Unfortunately, there is no simple
geometric interpretation for torque-closure in 3D be-
cause nonparallel lines in space generally do not inter-
sect. Torque-closure in 3D needs at least seven forces.
The necessary and sufficient condition for force-clo-

sure is contained in Theorems 2 and 3. If we assume
that through any contact we can only exert force and
not torque, then Theorem 3 subsumes Theorem 2. A
translation can be viewed as a rotation with point of
rotation at infinity. So, if there is no free rotation for
the grasped object constrained by a set of contact
forces, then there exists no free translation. Thus Cor-
ollary 2 describes the geometrical necessary and suffi-
cient condition for force-closure with planar forces only.

4. Finding Force-Closure Grasps

4.1. Two Opposing Fingers

COROLLARY 3 Two point contacts with friction at P
and Q form a planar force-closure grasp if and only if
the segment PQ, or QP, points strictly out of and into
the two friction cones respectively at P and Q or, for-
mally, arg(q - p) E ± (ce , n -ee2) where W, and W2 are
angular sectors of friction cones, respectively, at e, and
e2 .

Proof: This is a well-known fact of planar mechanics.
However, we prove Corollary 3 by using a reduction
from a grasp with two point contacts with friction to a
grasp with four point contacts without friction. A fric-
tion cone at P (resp. Q) is equivalent to two forces we,
*2 (resp. w3, w4) along the edge of the friction cone
and going through P (resp. Q); see Fig. 6. We recognize
that point P (resp. Q) is nothing more than point P12
(resp. P34). So Corollary 3 is a special case of Corollary 2.

LEMMA 1 The set of all force closure grasps with
fraction on two edges el, e2 is completely described by
edges e, , e2 and the counteroverlapping sector ± (ee I n
-’62)-
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Fig. 6. Finding grasps with
friction.

In a 3D grasp, by coupling opposite contact forces,
we can generate arbitrary pure torques perpendicular
to the segment PQ joining the two points of contact.
These torques can be generated if and only if the seg-
ment PQ, or QP, points strictly out of and into the
two friction cones, respectively, at P and Q. If the con-
tacts at P and Q are soft-finger contacts, then the pure
torques about P and Q have projections on the seg-
ment PQ, so the grasp is also torque-closure. Corollary
3 also applies to a 3D grasp with two soft-finger contacts.
We have seen that a soft finger contacting an acute

vertex can be approximated as a point contact with a
much wider friction cone. From Corollary 3, the larger
the friction cones at the points of contact, the greater
is the likelihood that they counteroverlap or that the

grasp is force-closure. This partially explains why peo-
ple grasp objects at edges and comers, and why the
contacting surface of human fingers need to be soft
rather than hard like the fingernails.

4.2. Nonmarginal Equilibrium

A force-closure grasp implies that equilibrium grasps
exist because zero force and moment is spanned by
the set of contact forces. In the reverse direction, it
turns out that most nonmarginal equilibrium grasps
are force-closure grasps. We first prove the simple case
of two point contacts with friction in 2D.

COROLLARY 4 Let G be a 2D grasp with at least two
distinct point contacts with friction. G is a force-closure
grasp if it is an equilibrium grasp and has contact
forces pointing strictly within their friction cones.

Proof: The two friction cones give three lines of force
that are not all parallel, because the friction cones are
not null. These three lines of force do not all intersect
at the same point because the two points of contact
are distinct. So, we have three planar wrenches with
independent spatial vectors. The set of contact
wrenches is also force-closure, or vector-closure, if
there exists a strictly positive combination of four con-
tact wrenches that results in the zero wrench, or equi-
librium. The coefficients of the four contact wrenches
are strictly positive because the contact forces point
strictly inside their respective friction cones.
A 3D grasp with two opposite hard fingers cannot

resist rotations about the segment joining the two
points of contact. To be force-closure, a nonmarginal
equilibrium grasp needs at least two distinct soft-finger
contacts or three distinct hard-finger contacts with
friction. We can extend this result to more complex
contacts, such as edge and face contacts with friction.
For example, an edge contact with friction is equiva-
lent to two hard-finger contacts, so force-closure needs
at least two edge contacts or one edge contact and one
hard-finger contact.
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Fig. 7. Finding the indepen-
dent regions of contact.

5. Finding Independent Regions of Contact

In task planning, we are interested in finding grasps
that require as little accuracy as possible. One aspect
of that goal is to have grasps such that the fingers can
be positioned independently from each other, not at
discrete points, but within large regions of the edges or
faces.

5.1. 2D Grasp with Two Point Contacts with Friction

Corollary 3 allows us to cast the problem of finding
the independent regions of contact on two edges into a
problem of fitting a two-sided cone cutting these two
edges into two segments of largest minimum length
(Fig. 7). A two-sided cone with vertex at I and opposite
sectors ± 16, denoted by C’(I, ± ~ ), is nothing but the
union of the opposite cones C<(I, ~) and C~(7, &horbar;~).
ALGORITHM 1 The independent regions of contact on
two edges e1 and e2 can be constructed as follows:

l. Find the counteroverlapping sector ±~ _
+ (%j 1 n - C(¡J2) from the sectors 16, and C(¡J2 of the
friction cones on edge el and e2.

2. Find the two-sided cone eX(I1 , + % ) that cuts
all of edge e, and very little or none of edge e2.
We get a triangle.6] formed by edge e, and
vertex I]. This triangle represents the set of ver-
tices I, where the two-sided cone ex(/, ±16)
monotonically cuts the larger segment eí and
the smaller segment e as we move from edge e,
to edge e2. Similarly, we find the two-sided
cone C’(I2, ± ~ ) such that this later cuts ex-
actly the edge e~ and very little or none of edge
e, . We get a triangle .62 formed by edge e2 and
vertex I~ .

3. Find the tradeoff region for vertex I by inter-
secting triangles.6] and .62< The tradeoff region
describes the locus of vertex I for which the
two-sided cone eX(I, :tcg) cuts both edges el
and e2 into segments eí and e2’ The length of
the independent segments eí and e is propor-
tional to the distance fram vertex I of the two-
sided cone to the respective edges.

4. We cut the trad’eoff region with the bisector of
edges el and e2. The intersection is the locus of
vertex I for which segments eí and e2 have the
same length. The optimal vertex I * is any-
where on the intersecting segment, or at one of
the two endpoints of this segment, depending
on whether or not the two edges are parallel. If
no intersecting segment exists, then the optimal
vertex is the point of the tradeo, ff region that is
nearest to the bisector.

5. From the optimal vertex 1*, the independent
regions of contact s, and s2 are found by inter-
secting the two-sided cone eX(I*, :tcg) and the
grasping edges e, and e2.

The computation of the optimum independent
regions of contact for two point contacts with friction
on two edges takes about 0.05 s. The code is written in
Zeta Lisp and compiled and run on a Symbolics ma-
chine.

5.2. 3D Grasps with Two Soft-Finger Contacts

The polyhedral faces have constant normals, so the
force-direction closure condition reduces to a simple
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Fig. 8. Force-closure with
two soft-finger contacts.

test of the angle between the two plane normals. Once
the force-direction closure is satisfied, the two friction
cones counteroverlap, and the counteroverlapping
sector is ::!:: (cg2 n cg 1)’ With soft-finger contacts, the
torque-closure condition is satisfied if and only if the
segment Pl P2 has orientation inside the counterover-
lapping sector. The independent contact regions can be
constructed by intersecting the two faces with a two-
sided cone, having cone angle ± (~2 fl - ~1 ) and a
vertex between the two faces (Fig. 8).
The construction is similar to its 2D analogue given

in Algorithm 1. The faces are approximated by their
bounding circular disks. The sector cg2 n - TI is ap-
proximated by the maximum cone inside ’62n -,C,.
The two-sided cone is positioned between the two
disks bounding the two faces. The intersections be-
tween the two disks and their respective cones give the
independent contact regions. The approximate com-
putation of the independent regions for two soft-finger
contacts on two faces takes about 0.05 s.

If the face has holes or if it is nonconvex, then the
circular disk bounding the face no longer preserves the
compactness or convexity property of the face. A non-
convex face is approximated by a set of overlapping
circular disks; each disk approximates a local con-
vex region of the face. Local convex regions can be
computed from the Voronoi diagram of the face
(Shamos 1978). They can be approximated by the
generalized cones between opposing edges as in Nguyen
( 1984).

5.3. 3D Grasps with Three Hard-Finger Contacts

The force-closure condition becomes a constraint on
the relative configuration of the friction cones. The
independent contact regions are constructed by cutting
the two-sided cones and the faces of contact. The
force-closure grasps with three hard-finger contacts
can be split into four classes (Fig. 9), depending on the
number of friction cones that pairwise counteroverlap.

1. The first grasp has no pair of counteroverlap-
ping cones. An example is a three-point grasp
on a ball with very little friction. The three

grasp points are symmetrically placed on a cir-
cle that has the same center as the ball. Note
that the ball will slip away from the fingers if
one of the three contact points is removed.

2. The second grasp has one pair of counterover-
lapping cones, from the top and bottom con-
tacts. The third contact contributes a torque
component about P,P2. This contact can be
removed without having the object slip from

. the fingers.
3. The third grasp has two pairs of counterover-

lapping cones. The second contact serves as a
pivot when either the first or the third contact
is added or removed. An example is a three-
point grasp on two parallel faces, with two of
the fingers on the same face.
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Fig. 9. Force-closure grasps
with three hard-finger con-
tacts.

4. The fourth grasp has three pairs of counter-
overlapping cones. All three contacts can be
used as pivots, and any fingertip can be re-
moved or added while the other two grasp the

object. This grasp exists only if the coefficient
of friction is greater than tan 30 ° .

The foregoing classification arises directly from the
geometric construction of the independent contact
regions. The classification highlights the similarity and
difference between grasps with soft fingers and grasps
with hard fingers. We can change from one grasp to
another by searching for a sequence of two-point and
three-point grasps. The two-point grasps are force-clo-
sure if the fingertips are soft. We can also synthesize
virtual springs at the fingertips such that the two-point
and three-point grasps are stable (Nguyen 1987). In
other words, one grasp is changed to another by a
sequence of stable force-closure grasps. Only one finger
is removed or added at a time, while the other two
fingers maintain a stable force-closure grasp on the ob-
ject.

5.4. 2D Grasps with Four Frictionless Contacts

With Corollary 2, the problem of finding the indepen-
dent regions of contact on three or four edges becomes
a problem of fitting a two-sided cone between two
parallelograms. Figure 10 illustrates the fitting of a
two-sided cone between the two parallelograms n 12
and rI 34. The two-sided cone has vertex at I and sector
± ~ = :!::(cg12 n -cg34)’ This two-sided cone cuts the
two parallelograms n12 and II34 into two disjoint re-
gions, for which Corollary 2 is satisfied for any pair of
points (P,2, P34) from these two regions. Even better,
we restrict the two disjoint regions to two smaller par-
allelograms rI’12 and n~4 so that the point of contact
P, (resp. P3) can be independently placed from P2
(resp. P4). The problem is to find the optimum posi-
tion of the vertex I such that H’12 and rI’34 have largest
minimum distance between parallel edges. The inde-
pendent contact regions are found by backprojecting
the smaller parallelogram n~2 on edges e, and e2, and
similarly for n~4’
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Fig. 10. Independent regions
for four frictionless point
contacts in 2D.

As we translate one of the edges of the cone
C~(7, ± ~ ), then TI~2 and TI34 vary monotonically in
opposite directions. This monotonicity allows us to
consider only a finite number of boundary cases. We
partition the plane into regions R~’s depending on how
the two-sided cone cuts TI 12’ In each region R b the
loci of vertex I, for which r,’,2 has constant area, form
parallel lines. We find similar regions R~’s and loci for
TI34’ The problem then reduces to computing all pair-
wise intersections R~ n Rj from the two sets of regions
and, for each intersection, computing the locally opti-
mum vertex I from the two corresponding loci. The
computation of the four optimal independent regions
of contact takes about 0.25 s on a Symbolics machine.
The synthesis of the four independent segments of

contact can be viewed as finding four convexes
C1, ... , C~, such that any four-tuple of wrenches
(WI’ ... , W4) is vector-closure or

assuming that three of the four wrenches are indepen-

dent. The wrench Wj and the convex C; correspond,
respectively, to a point contact and a range of point
contacts on edge e; .
Equation (2) can be rewritten as either of the follow-

ing:

which imply the following necessary conditions:

By permutating the indexes, we get five other necessary
conditions:

The intersection of two convexes generally gives a
smaller convex, so the necessary conditions in Eq. (5)
restrict edges e, , ... , e4 to smaller segments
51’ .. - , s~. These segments represent the indepen-
dent regions of contact if their respective convexes are
disjoint. In a plane, two nonparallel lines always inter-
sect. This is why Ci U C2 can be geometrically repre-
sented by point P,2 and sector cg 12’ The geometric
representation is exact, because it captures all the
strictly positive combinations of vectors in C1 and C2 .
The fitting of the two-sided cone CX(I, ± ~ ) between

parallelograms n 12 and Ft 34 captures the operation
(C1 U C2 ) f1-(C3 U CQ ). The enumeration of the re-
gions R; and R~;, the pairwise intersection of these
regions, Rl n R f, and the computation of the locally
optimum vertex I are just a geometric search of the
optimum set of four disjoint convexes that satisfy the
necessary condition

The geometric construction makes explicit the location
of the points of contact. If the four convexes found
from Eq. (6) are disjoint and three of the four convexes
are linearly independent, then the other six necessary
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Fig. 11. Force-closure grasps
with seven frictionless con-
tacts.

conditions in Eqs. (4) and (5) are also satisfied. This
explains why we need to consider only one pairing of
edges e, , eZ against e3 , e4 , instead of all three. Equation
(6) plus the condition that the convexes are disjoint
and that they linearly span the space is a necessary
and sufficient condition for force-closure grasps with

independent regions of contact.

5.5. 3D Grasps with Seven Frictionless Contacts

Without friction, we need at least seven frictionless
point contacts instead of two soft-finger contacts or
three hard-finger contacts. Figure 11 shows a force-
closure grasp G on a cube with seven frictionless point
contacts. The wrenches are:

One can verify that 2w, + *2 + *3 + w4 + *5 + w~ +
*7 = 0- If we remove W7 and move the point of con-
tact of *1 to vertex A, then grasp G is similar to a grasp
with two opposing hard-finger contacts pressing at A
and B. Note that no torque about the diagonal AB can

be applied by pushing through vertices A and B only.
By adding Wy at vertex C and placing the point of
contact of *, at point D, we can create torques in both
directions about AB and make grasp G force-closure.

Constructing the seven independent regions of con-
tact is more expensive and harder. A convex region
for a point of contact on a planar face corresponds to
a wrench convex in the 6D wrench space. The problem
is to find seven disjoint wrench convexes in this 6D
space such that any seven-tuple of wrenches from
these seven convexes is force-closure. Due to the con-

vexity of the domain, the problem is transformed into
finding seven disjoint wrench convexes such that six
of the convexes are linearly independent and satisfy
one of the following equations:

There are (D, Q, and (3) equations, respectively, simi-
lar to the three in Eq. (7). Note that nonparallel lines
in space do not generally intersect, so there is no geo-
metric construction for 3D grasps with seven friction-
less point contacts, as there is for 2D grasps with four
frictionless point contacts.

Let d be the dimension of the space, and let c be the
number of required contacts (d = 6 and c = 7 for fric-
tionless point contacts in 3D). The c wrench convexes,
corresponding to c regions of contact on the object,
generally overlap in the d-dimensional wrench space.
The number of possible intersections among c con-
vexes is 0(2c). For each such intersection, we locally
trade off between the intersecting convexes to get a set
of c disjoint subconvexes that have largest minimum
independent region of contact. Then, we check for
vector-closure on a representative c-tuple of vectors
taken from these disjoint subconvexes. In this way, we
enumerate all c-tuples of disjoint subconvexes from
the c convexes, and check each for vector-closure.

Assuming that convexes are approximated by circu-
lar cones, we can intersect the two convexes in con-
stant time. Intersecting cones are traded against each
other by changing their respective sector. The local
tradeoff is done in O(c) time because the area of the
region of contact is directly proportional to the sector
of the cone. Checking vector-closure of c vectors in
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d-dimensional space is equivalent to doing Gaussian
elimination on a c X d matrix, and so costs O(cd2)
time. Hence, constructing c optimal disjoint subcon-
vexes that span the whole space costs O(c2‘) time.
This O( c2 C) complexity makes the construction for in-
dependent regions of contact more expensive for fric-
tionless grasps (c = 7) than for grasps with friction
(c = 2 or 3).
Redundant contacts do not change the force-closure

property of the grasp and so can be placed anywhere
on the object. Optimal grasps on n > c given regions
can be found by finding optimal grasps for all (~ ) c-
tuples of the grasping regions, and so costs 0(ncc2l)
time.

COMPLEXITY 1 Let G be a grasp with n fingertips,
requiring c minimum contacts (n > c).

l. Analyzing whether grasp G at n given contacts
is force-closure or not costs O(n) time.

2. Synthesizing the n independent regions of con-
tacts af G costs 0(ncc2c) time.

The construction of the independent contact regions
is tranformed into the problem of finding disjoint
convexes satisfying necessary conditions like Eq. (7).
This transformation depends on the convexity prop-
erty and on the correspondence between vectors in the
convex and points of contact on the object. Formally,
any a~ne combination of two point contacts PI and
P2 inside a contact region must be a point contact P
inside the same region:

A frictionless point contact is represented by a pure
force going through the point of contact and normal
to the surface. A pure force is a line vector, so the dot
product of the upper and lower parts of the spatial
vector must be zero:

Substituting s and So from Eq. (8) into the third equa-
tion of Eq. (9), we deduce that the following must hold:

This equation expresses the condition that the two
lines of force at points P, and P2 must intersect or be
parallel. If we extrapolate this condition to other points
of the contact region, the convexity property and the
correspondence between vectors and contact points
imply that the region of contact must (1) be either flat
or spherical, and (2) have a convex boundary. This
explains why the construction of the contact regions is
so simple for polygonal and polyhedral objects. This
suggests that frictionless grasps on curved regions with
constant curvature can be synthesized similarly to the
construction sketched here. Only friction can relax
this constant-curvature condition.

6. Conclusion

Finding places to put the fingertips is formalized into
finding independent regions of contact such that the
grasp is force-closure. Constructing force-closure
grasps is definitely a geometric problem, and one that
is very simple for two point contacts with friction in
2D or two soft-finger contacts in 3D. For two such
contacts, the contact regions are back-to-back or face-
to-face.
We have shown how to construct the independent

regions of contact for grasps on polygonal and polyhe-
dral objects. We have analyzed why these contact
regions are harder to construct for arbitrary curved
objects, and sketched how such regions can be directly
constructed from local regions of constant curvature
so that incremental search as in Asada (1979) is not
needed. The current synthesis can be extended to han-
dle grasps with edge and face contacts. A more inter-
esting extension is the synthesis of grasps that use the
structural restraint from many contacts on different
links of a same finger (Trinkle, Abel, and Paul 1987).
Finding a formal framework for these structural grasps
will give us deep insight into the power grasps found
in humans (Cutkosky and Wright 1986).
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