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The World We Live in Now
Real world training data sizes 1TB - 1PB

resulting in models with 109 - 1012
parameters.

The necessity of fault tolerance at scale

Easily accessible clouds



Goal

A distributed system supporting efficient execution of Machine 
Learning algorithms used daily on “trillions of trillion-length feature 

vectors” possibly even in real-time.



Parameter 
Server 
Architecture



System Aspects
● Server and worker elasticity (4.5-4.6)

● (Key, Value) vector data representation (3.1)

○ with ordering for vector and matrix semantics

● Asynchronous tasks with optional user-defined dependencies (3.4)

● Range-based communication batching for efficient communication (3.2, 4.2)

● Range-based vector clocks supporting fast recovery and consistency (4.1)

● Fault tolerance via replication optimized with aggregation (4.4)

● Flexible consistency (3.5)



Flexible Consistency

A maximal delay time (or 
number of iterations) t is set 
such that, any new task 
blocks until all the tasks t 
timesteps ago have 
completed.

All tasks can run 
simultaneously.  The 
system becomes 
consistent eventually.

Tasks can start only 
after previous ones 
have finished

t = 0

Key insight: there’s a trade-off between system 
efficiency and algorithm convergence rate

t = infinity



Sparse 
Logistic 
Regression 
Results

● System A and System B 
are special purpose 
systems “developed by a 
large [unnamed] internet 
company”.

● A and B are > 10k lines 
of code

● Parameter Server 
requires 300 lines of 
code for the same 
functionality as B



Sparse Logistic Regression Results Continued



Other Results
● Latent Dirichlet Allocation (LDA)

○ (nothing surprising)
○ handles more data than any other LDA system the authors are aware of 
○ they show scaling speeds up convergence 
○ and the importance of coping with stragglers and fault tolerance

● Sketches for generality evaluation
○ performs bulk communication with compressed messages
○ peak and average operations per second and time to recover failed node measured
○ impressive numbers (other systems for comparison not included)



Goal
A distributed system supporting efficient execution of Machine Learning algorithms 
used daily on “trillions of trillion-length feature vectors” possibly even in real-time.

Resulting Design Summary
● asynchronous communication with batching, exploiting ML algorithm design
● fast (< 1s) non-disruptive recovery fault tolerance 

○ with vector clocks ensuring well-defined behavior
● various levels of consistency from which the algorithm designer can choose
● vector and matrix global parameter representation to support ease-of-use for 

ML application development
● non-restarting elastic scalability 
● generality across “the most popular” machine learning algorithms


