
Scaling Distributed Machine Learning
with the Parameter Server

By M. Li, D. G. Andersen, J. W. Park, A. Ahmed, V. Josifovski, J. Long, E. J.
Shekita, B. Su, and A. J. Smola, OSDI 2014.

Presented by Marquita Ellis, CS294 Scalable Machine Learning, February 2016

The World We Live in Now
Real world training data sizes 1TB - 1PB

resulting in models with 109 - 1012
parameters.

The necessity of fault tolerance at scale

Easily accessible clouds

Goal

A distributed system supporting efficient execution of Machine
Learning algorithms used daily on “trillions of trillion-length feature

vectors” possibly even in real-time.

Parameter
Server
Architecture

System Aspects
● Server and worker elasticity (4.5-4.6)

● (Key, Value) vector data representation (3.1)

○ with ordering for vector and matrix semantics

● Asynchronous tasks with optional user-defined dependencies (3.4)

● Range-based communication batching for efficient communication (3.2, 4.2)

● Range-based vector clocks supporting fast recovery and consistency (4.1)

● Fault tolerance via replication optimized with aggregation (4.4)

● Flexible consistency (3.5)

Flexible Consistency

A maximal delay time (or
number of iterations) t is set
such that, any new task
blocks until all the tasks t
timesteps ago have
completed.

All tasks can run
simultaneously. The
system becomes
consistent eventually.

Tasks can start only
after previous ones
have finished

t = 0

Key insight: there’s a trade-off between system
efficiency and algorithm convergence rate

t = infinity

Sparse
Logistic
Regression
Results

● System A and System B
are special purpose
systems “developed by a
large [unnamed] internet
company”.

● A and B are > 10k lines
of code

● Parameter Server
requires 300 lines of
code for the same
functionality as B

Sparse Logistic Regression Results Continued

Other Results
● Latent Dirichlet Allocation (LDA)

○ (nothing surprising)
○ handles more data than any other LDA system the authors are aware of
○ they show scaling speeds up convergence
○ and the importance of coping with stragglers and fault tolerance

● Sketches for generality evaluation
○ performs bulk communication with compressed messages
○ peak and average operations per second and time to recover failed node measured
○ impressive numbers (other systems for comparison not included)

Goal
A distributed system supporting efficient execution of Machine Learning algorithms
used daily on “trillions of trillion-length feature vectors” possibly even in real-time.

Resulting Design Summary
● asynchronous communication with batching, exploiting ML algorithm design
● fast (< 1s) non-disruptive recovery fault tolerance

○ with vector clocks ensuring well-defined behavior
● various levels of consistency from which the algorithm designer can choose
● vector and matrix global parameter representation to support ease-of-use for

ML application development
● non-restarting elastic scalability
● generality across “the most popular” machine learning algorithms

