XML

5 October 2016

Bob Glushko

1of44

Plan for the Lecture

Syntax and Structure Matters!

Minimal XML Syntax Introduction
Document Types

Implementing Document Types in XML

XML Transformation

2 of 44

Separating Content from Container

Not all information content can be completely separated from its container
(sometimes the medium is the message)

But it is important to think of the information content abstractly if you can
because that's the key to representing the same information in multiple
formats, media, or technologies

Some information formats or representations are inherently more
processable or reusable than others; this reflects how completely they
separate content from presentation

30f44

Microsoft Word "Rich Text Format"

wpar Fypardywplain “\trparygl \Ti0wri0\widctl ar\wragdefau]t\aspa1pha\aspnum\faautﬂ
vadjustright\rind\1in0\itap0ipararsid796323 ‘rtlch\fcsl “\af0\afs24‘alangl025 “1trchifcs0
\Fagkfszd lang1033'\langfel033 cgrﬁd\1angnp1033\1angfen€1033 {\Ft1th\ft5g Yafo
\trchyfes0 \insrsid796323\charrsidl12983421 It is simplest to think of a resource
description as being associated with another individual resource. However, as discussed
i} {\rtlch\fcs1 “af0 ‘\ltrch\fcs0O \insrsid796323
n Chapter 3, it can be challenging to determine what to treat as an individual resource
when resources are themselves objects or systems that are composed of other parts or
resources, For example, we sometimes describ
e a football team as a single resource and at other tTimes we focus on each individual
layer. However}{\rtlch\fcsl ‘\af0o ‘\1trch\fcs0 \insrsid2321504 , }{\rtlch\fcsi \afo0
ETtrch\fcso \insrsid796323 after we have }{\rtlch\fcsl \af0 “1trch\fcs0
“insrsid2321504 decided on resource granularity}{‘rtich\fcsl “af0 “1trch\fcs0O
‘ainsrg‘idfgﬁﬂza , The question remains whether each resource needs a separate
escription.

4 of 44

Microsoft Word XML

w:pStyle wival="Heading3"/> </w:pPr=<w:r><w:t>4.3.1.</w:t></w:r><wr wsp:rsidR="00721F09"><w:t
=1 <fw:t></wr=<wrr=<wit> Granularity — </w:t><ivr=<wr wsp:rsidR="00721F09"> <w:t>Describing
Instances or Describing Collections</w:it=</wr=</w.p=<w:p wsp:rsidR="000C26A3"
wsp:.rsidRDefault="000C26A3" wsp:rsidP="000C26A3"><w:r wsp:rsidRPr="00C61C7D"><w:t>Itis
simplest to think of a resource description as being associated with another individual resource.
However, as discussed i</w:t=</w.r><w.r><w:t=n Chapter 3, it can be challenging to determine what
to treat as an individual resource when resources are themselves objects or systems that are
composed of other parts or resources. For example, we sometimes describe a football team as a
single resource and at other times we focus on each individual player. However</w:t=<w:r><w:r
wep:rsidR="00236CB80"><w:t>, </w:t></wr><wr><w:it>after we have </w:t><iwr><wr wsp:reidR="
00236C60"><w:t>decided on resource granularity</w:t></w.r><w:r><w:t>, the question remains
whether each resource needs a separate description. </w:t><w:r=</w:p><w:p wsprrsidR="00721F09

5of 44

XML -- Assuming a Style Sheet

|<para>

It is simplest to think of a resource description as being associated with another individual
resource. However, as discussed in Chapter 3, it can be challenging to determine what to
treat as an individual resource when resources are themselves objects or systems that are
composed of other parts or resources. For example, we sometimes describe a football
team as a single resource and at other times we focus on each individual player. However,
after we have decided on resource granularity, the question remains whether each resource
needs a separate description.</para=>

6 of 44

"Information IQ"

INFORMATION IQ
1
% -|-|=L|_,.-‘ll cxm;:\ -
e T
g
o
T
< N W
i:;’ ASCIT
S
5
N
6 | [z
@

Explicitness of Content Representation

7 of 44

Unstructured Information as Sentence Blob

Moby Dick is a fiction book written by Melville in 1851

8 of 44

Structure as Tree

BOOK

,

Moby Dick Melville 1851 Fiction

9 of 44

HTML Implementation of a Document Modeled
as Tree

<p>

Moby Dick
Melville
1851</1i>
Fiction

</p>

10 of 44

An XML Implementation of same Document
Model

<Book>
<Title>Moby Dick</Title>
<Author>Melville</Author>
<PublicationYear>1851</PublicationYear>
<Category>Fiction</Category>

</Book>

11 of 44

Comparing HTML and XML

Superficial Similarity in Syntax: Both use
« Begin and End Tags

« Containers

But XML
« Isn't a specific "tag language" like HTML is
. Is a metalanguage that can define new "tag languages"

« Changes the task from "how do | make this web page look" to "what is this web
page about?"

12 of 44

A Purchase Order in HTML

<HTML>

<BODY>

<H1>Purchase Order (#1234)</H1>
<HR>

<H2>Buyer Information</H2>
<P>Smith and Company (Buyer # AB24567)</BR>
123 High St., Suite 100</BR>
Anytown, California 12345

</P>

<HR>

<H2>1tems</H2>

<0OL>

<L1>20 Widgets

</0L>

</BODY>

</HTML>

13 of 44

A Purchase Order in XML

<?xml version="1.0" encoding="UTF-8"?>
<PurchaseOrder OrderNo="1234">
<Buyer BuyerNo="AB24567''>
<Name>Smith and Company</Name>
<Address1>123 High Street</Addressl>
<Address2>Suite 100</Address2>
<City>Anytown</City>
<State>California</State>
<ZipCode>12345</ZipCode>
</Buyer>
<ltems>
<ltem>
<Quantity>10</Quantity>
<ltemName>Widget</IltemName>
</ltem>
<ltem>
<Quantity>20</Quantity>
<ltemName>Bazooka</ltemName>
</ltem>
</ltems>
</PurchaseOrder>

14 of 44

HTML is a Model of a Document Type

HTML's idea of using tags to mark up pieces of text according to how they
should appear on the page for people to read them is a simple model of a
document

This model (until HTMLS) emphasizes structures like headings and lists, and
presentation or formatting

This model specifies a FIXED set of element types ("tags") and attributes
that a document can contain

Because the set of tags is fixed, browsers can implement all of them with
default presentation and behavior

15 of 44

XML is a Metamodel for Document Types

XML is a syntax for encoding domain-specific models and instances in ways
that can be handled by applications

So XML is a METALANGUAGE that can be used to define new languages;
XHTML is an example of one, as is the "Book" language here

What kind of information (types of elements) is needed to encode a model
of:

A Shakespeare play?

« A chemical molecule?

Because an XML vocabulary can contain any tag, browsers can't be
hard-wired to render them in any particular way

16 of 44

Shakespeare in XML

<?xml version="1.0" encoding="UTF-8"?>
<PLAY>
<TITLE>The Tragedy of Hamlet, Prince of Denmark</TITLE>
<PERSONAE>
<TITLE>Dramatis Personae</TITLE>
<PERSONA>CLAUDIUS, king of Denmark. </PERSONA>
<PERSONA>HAMLET, son to the late, and nephew to the present king.</PERSONA>
<PERSONA>POLONIUS, lord chamberlain. </PERSONA>
</PERSONAE>
<ACT><TITLE>ACT I11I</TITLE>
<SCENE><TITLE>SCENE 1. A room in the castle.</TITLE>
<STAGEDIR>Exeunt KING CLAUDIUS and POLONIUS</STAGEDIR>
<STAGEDIR>Enter HAMLET</STAGEDIR>
<SPEECH>
<SPEAKER>HAMLET</SPEAKER>
<LINE>To be, or not to be: that is the question:</LINE>
<LINE>Whether "tis nobler in the mind to suffer</LINE>
<LINE>The slings and arrows of outrageous fortune,</LINE>
<LINE>Or to take arms against a sea of troubles,</LINE>
</SPEECH>
</SCENE>
</ACT>
</PLAY>

17 of 44

Chemistry in XML

<cml xmIns:stm="http://www.xml-cml.org/schema/cml2/core"
xmIns="http://www._xml-cml _.org/schema/cml2/core'>
<substanceList id=""sl1">
<amount units="'g'">4.0</amount>
<substance 1d="'sl1'></substance>
</substanceList>
<crystal>
<stm:scalar title="a'"">12.34</stm:scalar>
<stm:scalar title=""gamma"™ units="'degrees'>100</stm:scalar>
<symmetry id=""'ssl1" spaceGroup="P21/c"/>
</crystal>
<atomArray>
<atom id="al" elementType=""C">
<atomParity atomRefs4="al a2 a3 a4"'>-1.0</atomParity>
<electron i1d="el"></electron>
</atom>
<atom id="a2" elementType="C"/>
</atomArray>
</molecule>
</cml>

18 of 44

Smart Markup Creates Explicit Text Objects

How much you can do with information depends on the extent and
explicitness of its internal structure or "markup”

Markup transforms a flat stream or blob of text into a set of objects or
elements that can be manipulated by other applications

HTML is rich or smart compared with some text formats like EDI, RTF, or
ASCII

And all of these syntaxes are poor or dumb compared with a content-
oriented data model, such as those possible with XML, SGML, or a
database

19 of 44

Elements and Containers

<BookTitle>Moby Dick</BookTitle>
<BookAuthor>Melville</BookAuthor>
<BookPublicationYear>1851</BookPublicationYear>
<BookCategory>Fiction</BookCategory>

<Book>
<Title>Moby Dick</Title>
<Author>Melville</Author>
<PublicationYear>1851</PublicationYear>
<Category>Fiction</Category>

</Book>

Elements are the building blocks in XML documents

They define the hierarchy or logical "containers" by enclosing content with
both a begin and end tag; the hierarchy provides context for understanding

the child elements

20 of 44

Attributes

Elements may also one or more attributes (a name - value pair) associated
only with their start tag and the values must always be quoted with matching
or"

« <PurchaseOrder number="12" >purchase order content </PurchaseOrder>

« The order of attributes is not significant

Elements with attributes but no content are said to be "empty" and have a
different tag syntax

« <Portrait image="bob.gif"/>

21 of 44

Elements {and,or,vs} Attributes

Whether to use elements or attributes to contain information is often
debated

Elements and attributes differ in what they can contain and this often guides
which you should use

Elements can contain other elements while attributes can contain only
strings or lists of strings

So elements must be used for any complex components but can be used for
simple or primitive ones as well; attributes can only be used for "atomic"
items of data

Elements carry the content that would generally appear in any presentation
or rendering of the XML instance; attributes carry "strong" metadata or
information that is useful in interpreting or presenting the element content

22 of 44

Elements {and,or,vs} Attributes [2]

Attributes are the only way to specify default values and can be constrained
to a predefined set of enumerated values

Attributes are also the most sensible way to encode Boolean values
Attributes are inconvenient for long text, large values, or binary entities

If information is primarily encoded as attributes the XML instance can be
significantly smaller

"Best practice" is contentious but many people use almost all elements and
very few attributes, leaving the latter for just the "purest" metadata

23 0f 44

Elements {and,or,vs} Attributes [3]

<Book>
<Title>Moby Dick</Title>
<Author>Melville</Author>
<PublicationYear>1851</PublicationYear>
<Category>Fiction</Category>

</Book>

<Book title="Moby Dick"™ author="Melville™ publicationYear="1851" category="Fiction"/>

<Book title="Moby Dick"™ author="Melville™ category="Fiction™ publicationYear="1851"/>

<Book title="Moby Dick™ author="Melville"™ publicationYear="1851" Ffiction="True"/>

24 of 44

Elements {and,or,vs} Attributes [4]

<Book>
<Title>Moby Dick</Title>
<Author>Melville</Author>
<PublicationYear>1851</PublicationYear>
<Categories>
<Category>Fiction<Category>
<Category>Whales<Category>
</Categories>
</Book>

This is legal but not as useful

<Book title="Moby Dick"
author="Melville"
publicationYear="1851"
category="Fiction Whales" />

25 of 44

Elements {and,or,vs} Attributes [5]

<Book>
<Title>Moby Dick</Title>
<Author>Melville</Author>
<PublicationYear>1851</PublicationYear>
<Categories>
<Category>Fiction<Category>
<Category>Whales<Category>
</Categories>
</Book>

But this is illegal

<Book title="Moby Dick"
author="Melville"
publicationYear="1851"
category="Fiction"
category="Whales" />

26 of 44

Document Types

Any definition of "document" allows for a notion of different types or classes
or categories of documents

This idea can be very intuitive and very informal, or we can be more precise
and define a MODEL OF A DOCUMENT TYPE as the rules or constraints
that distinguish one type from another

This expression of the model is CONCEPTUAL and is independent of the
syntax and technology in which document instances are ultimately
implemented

But most of the time the model is ultimately implemented in some specific
syntax like XML

27 of 44

Models of Document Types

A model of a document type captures the distinctions between documents
that make a difference

Similar types of content occur in many document models and there is often
overlap in information and structural patterns

Models of document types can be very specific ("purchase order for
industrial chemicals when buyer and seller are in different countries") or very
abstract ("fill-in-the-blank legal form for contract")

28 of 44

Model of a "Book™ Document Type

Book

7
)
"]\
0.1 0.1
Fomardl _ X
H
‘ n 1 n..1
= 1 1. 0.1 :

Preface I] el
introduction G’hap{ﬂr m.pﬂndx FE———

29 of 44

(Finally) How XML Implements Models of
Document Types

XML gives the idea of document type a more physical, formal foundation

XML has syntactic mechanisms that capture the conceptual distinctions
between document types in terms of:

« ELEMENTS (the "tags") and ATTRIBUTES used to encode their content
« Rules that govern how elements and attributes are organized

« Possible values for elements and attributes

These are the VOCABULARY and the GRAMMAR of the language defined
by the document type

30 of 44

Using XML to Encode Document Type Models

Encoding a conceptual information model in XML means choosing elements
or attributes as the containers for information, adding information about data
types, applying naming rules, creating structures to organize repeated
content components, and so on

If you've done a careful document analysis and design, the encoding stage
is relatively simple and straight-forward and can even be automated in some
cases

31 of44

XML Schemas

The formal description of a document model in XML is called its schema
XML schemas (lower case "s" for now) attempt to encode the conceptual
model in terms of the syntactic constructs of elements and attributes

« What elements are allowed (the vocabulary)

« Where the are allowed — sequence, choice, occurrence and co-occurrence (the
grammar)

« What values they can take (datatypes) — string, integer, decimal, etc.

32 0f 44

Why We Need Schemas

If you can represent these rules that define a document type in a form that is
"computable” or "processable” then:

« It can guide the creation of valid document instances in editors like XML Spy or
Oxygen, or when information is exported from a database or other application

« It can be a model for application programming in the development of Web forms
or other GUIs or can be a template for objects in other programming
environments

« [t can communicate the model to others who need to create or receive document
instances

330f44

XML Schema Languages

XML has several schema languages that differ in how completely that can
encode a document type's conceptual model

The most common of these are Document Type Definitions (DTDs) and XML
Schemas (XSD)

No schema language is perfect; there is always some compromise between:
« Expressiveness — the range of models that can be described
« Functionality — the set of features used to define a model

« Usability — the ease with which a model can be defined

« Reusability — how readily a model or parts of models can be included in another
one

« ...and a range of other "ilities"

34 of 44

XSD Schema for "Book™ Document Type

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmins:xs="http://mww.w3.0rg/2001/XMLSchema">
<xs:element name="Book">

<xs:.complexType>
=X5.s5equence>=
<xs:element ref="Foreword" maxOccurs="1" minOccurs="0"/>
<xs:element ref="Preface” maxOccurs="1" minOccurs="0"/>
<xs:element ref="Introduction” maxQccurs="1" minOccurs="0"/>
<xs:element ref="Chapter” maxOccurs="unbounded"/>
<xs:element ref="Appendix" maxOccurs="1" minOccurs="0"/>
<xs:element ref="Bibliography" maxOccurs="1" minOccurs="0"/>
<xs:element ref="Index" maxOccurs="1" minOccurs="0"/>
</xs:seguence>
</xs:complexType=>
<fxs:element>

350f44

Why Transform?

You have information that is too "smart" for the web or end users to handle
(for example, a database that will be queried, a complex information model
for which simpler views are needed for some users)

You need to RE-PURPOSE information — extracting and / or formatting the
same piece of information is many different ways, producing a different
document type targeted for a different user or purpose

You have to support a variety of output devices that have different
capabilities— often called RE-PACKAGING or TAILORING

You need to conform to a structural or formatting standard that is different
from your company or organization's information model

Your "web service" needs to convert an "inbound" non-XML document to
XML, or convert XML to a non-XML format for the "outbound" document

36 of 44

Technical Example of Re-purposing — Product
Database / Catalog

The XML instance: product-db.xml
The target HTML instance viewed as an internal database: product-db.htm

The target HTML instance viewed as a catalog for external customers:
product-catalog.htm

The XSLT transformation for the database: product _db.xsl

The XSLT transformation for the catalog: product_catalog.xsl

37 0f 44

XML Instance

1=Products xminsxsi="httpfwww w3 org/2001/ZMLSchema-instance” xsi-noMamespa
Coursesilecturessoml|_examples\product_db xsd">»
v =Product=

<Mame=Harmonica</Mame=
<PartMumber=A-1</PartMumber:=
<Inventory=1000</Inventory=
<Cost=10.00=/Cost=
<WholesalePrice=15_00<\WholesalePrice=
<RetailPrice=19.95=/RetailPrice=
=/Product=

r <Product=

<MName>=Boomerang=/Mame=
<PartMumber=A-2=</PartMumber:=
<Inventory=50</Inventory=
<Cost=20</Cost=
<WholesalePrice=30<"WholesalePrice:
<RetailPrice=59 95</RetailPrice=
=/Product=

+ <Product=

<MName=Diamond Ring</Mame>=
<PartMumber=B-1</PartMNumber=
<Inventory=6</Inventony=
<Cost=1000=/Cost=
<WholesalePrice=1600="\¥holesalePrice>
<RetailPrice=2995</RetailPrice=
</Product=

38 0f 44

Internal Database View

NAME || i || IVENTORY | | Soc | | prieg || PRICE.
Harmonica | A-1 100 10.00 | 15.00 19.95
Boomerang A-2 50 20 30 59.95
IR)fna:md B-1 6 1000 1600 2995
Ei‘:a” C-9 0 23000 | 40000 75000

39 0f 44

External Catalog View

40 of 44

YOUR

PRODUCT ORDERING

- DISCOUNTED
NAME PRICE NUMBEER
Harmonica $ 1995 A-1
Boomerang $ 59.95 A-2
Diamond
Ring $ 2995 B-1

The XSL Transform - Creating the Product
Table

=<xsl-stylesheet xmins:xs|="http:/fwww w3 org/1999/XSLTransform” version="1.0"=
<Transform from instances of "products dtd” to HTML —=
=<xsl-template match=""=

<html=

<head:>

| <title>Product Database</title>

</head=

<body>

<h1>Product Catalog (External View)=/h1=
<table border="1" cellpadding="10" cellspacing="10" width="40%" summary="product database">
<tbody=
<tr=

<td=PRODUCT NAME=/td=

<td=YOUR DISCOUNTED PRICE</td>|

<td=0RDERING NUMBER</td>
<ftre
<l— anly list products that are available to sell —=
<xslapply-templates select="//Product[lnventory I=07"/=>
<ftbody>

<ftable>
</body=
<fhtml=
<fwsltemplate>

41 of 44

The XSL Transform - Only the Available
Products

vyl template match="Froduct[lnventory I=07"=

 <xslfor-each select="."=

TR

.| <l External view doesn't reveal inventory or cost details —»
- <td»<xslvalue-of select="MName"/=<itd>

<td=<xsltext>3% </xsltext><xslvalue-of select="RetallPrice"/=></td>
<td=<xslvalue-of select="PatMumber"/=</td>
<ftr=

- <fxsl-for-each>
- <fxsltemplate=

42 of 44

The Architecture of XML Transformation

A particular transformation may apply to more than one document — it might
be used to enforce standards for all instances of a document type

<?xml-transform type="text/xsl" href="standard_style for_this_doctype.xsl"?>

A given document instance may have different transforms applied to it in
different contexts (like for different audiences, output devices, etc)

<?xml-transform type="text/xsl" href="transform_for_smartphone.xs|"?>
<?xml-transform type="text/xsl" href="transform_for_verbose mode.xsl"?>

A transformation may turn one XML file into one or more output files (like the
XML source file for each lecture being transformed into a set of linked HTML
slides)

43 of 44

44 of 44

