
An Introduction to
Duplicate Detection

Synthesis Lectures on Data
Management

Editor
M. Tamer Özsu, University of Waterloo

Synthesis Lectures on Data Management is edited by Tamer Özsu of the University of Waterloo.
The series will publish 50- to 125 page publications on topics pertaining to data management. The
scope will largely follow the purview of premier information and computer science conferences,
such as ACM SIGMOD, VLDB, ICDE, PODS, ICDT, and ACM KDD. Potential topics include,
but they are not limited to the following: query languages, database system architectures,
transaction management, data warehousing, XML and databases, data stream systems, wide scale
data distribution, multimedia data management, data mining, and related subjects.

An Introduction to Duplicate Detection
Felix Naumann and Melanie Herschel
2010

Privacy-Preserving Data Publishing: An Overview
Raymond Chi-Wing Wong and Ada Wai-Chee Fu
2010

Keyword Search in Databases
Jeffrey Xu Yu, Lu Qin, and Lijun Chang
2009

Copyright © 2010 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in
printed reviews, without the prior permission of the publisher.

An Introduction to Duplicate Detection

Felix Naumann and Melanie Herschel

www.morganclaypool.com

ISBN: 9781608452200 paperback
ISBN: 9781608452217 ebook

DOI 10.2200/S00262ED1V01Y201003DTM003

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON DATA MANAGEMENT

Lecture #3
Series Editor: M. Tamer Özsu, University of Waterloo

Series ISSN
Synthesis Lectures on Data Management
Print Electronic2153-5418 2153-5426

An Introduction to
Duplicate Detection

Felix Naumann
Hasso Plattner Institute, Potsdam

Melanie Herschel
University of Tübingen

SYNTHESIS LECTURES ON DATA MANAGEMENT #3

CM& cLaypoolMorgan publishers&

ABSTRACT
With the ever increasing volume of data, data quality problems abound. Multiple, yet different
representations of the same real-world objects in data, duplicates, are one of the most intriguing data
quality problems. The effects of such duplicates are detrimental; for instance, bank customers can
obtain duplicate identities, inventory levels are monitored incorrectly, catalogs are mailed multiple
times to the same household, etc.

Automatically detecting duplicates is difficult: First, duplicate representations are usually
not identical but slightly differ in their values. Second, in principle all pairs of records should be
compared, which is infeasible for large volumes of data. This lecture examines closely the two main
components to overcome these difficulties: (i) Similarity measures are used to automatically identify
duplicates when comparing two records. Well-chosen similarity measures improve the effectiveness
of duplicate detection. (ii) Algorithms are developed to perform on very large volumes of data in
search for duplicates. Well-designed algorithms improve the efficiency of duplicate detection. Finally,
we discuss methods to evaluate the success of duplicate detection.

KEYWORDS
data quality, data cleansing, data cleaning, ETL, similarity measures, entity matching,
object matching, record linkage

vii

Contents

1 Data Cleansing: Introduction and Motivation .1

1.1 Data Quality . 3

1.1.1 Data Quality Dimensions 3

1.1.2 Data Cleansing 4

1.2 Causes for Duplicates . 5

1.2.1 Intra-Source Duplicates 6

1.2.2 Inter-Source Duplicates 7

1.3 Use Cases for Duplicate Detection . 8

1.3.1 Customer Relationship Management 8

1.3.2 Scientific Databases 9

1.3.3 Data Spaces and Linked Open Data 10

1.4 Lecture Overview . 11

2 Problem Definition .13

2.1 Formal Definition . 13

2.2 Complexity Analysis . 16

2.3 Data in Complex Relationships . 18

2.3.1 Data Model 18

2.3.2 Challenges of Data with Complex Relationships 20

3 Similarity Functions .23

3.1 Token-based Similarity .24

3.1.1 Jaccard Coefficient 24

3.1.2 Cosine Similarity Using Token Frequency and Inverse Document
Frequency 26

3.1.3 Similarity Based on Tokenization Using q-grams 29

3.2 Edit-based Similarity . 30

viii CONTENTS

3.2.1 Edit Distance Measures 30

3.2.2 Jaro and Jaro-Winkler Distance 32

3.3 Hybrid Functions .34

3.3.1 Extended Jaccard Similarity 34

3.3.2 Monge-Elkan Measure 35

3.3.3 Soft TF/IDF 36

3.4 Measures for Data with Complex Relationships . 37

3.5 Other Similarity Measures . 39

3.6 Rule-based Record Comparison . 40

3.6.1 Equational Theory 40

3.6.2 Duplicate Profiles 42

4 Duplicate Detection Algorithms . 43

4.1 Pairwise Comparison Algorithms . 43

4.1.1 Blocking 43

4.1.2 Sorted-Neighborhood 45

4.1.3 Comparison 47

4.2 Algorithms for Data with Complex Relationships . 48

4.2.1 Hierarchical Relationships 48

4.2.2 Relationships Forming a Graph 49

4.3 Clustering Algorithms . 52

4.3.1 Clustering Based on the Duplicate Pair Graph 52

4.3.2 Clustering Adjusting to Data & Cluster Characteristics 56

5 Evaluating Detection Success . 61

5.1 Precision and Recall . 61

5.2 Data Sets . 65

5.2.1 Real-World Data Sets 65

5.2.2 Synthetic Data Sets 66

5.2.3 Towards a Duplicate Detection Benchmark 67

6 Conclusion and Outlook . 69

CONTENTS ix
Bibliography . 71

Authors’ Biographies . 77

1

C H A P T E R 1

Data Cleansing: Introduction
and Motivation

With the ever increasing volume of data and the ever improving ability of information systems to
gather data from many, distributed, and heterogeneous sources, data quality problems abound. One
of the most intriguing data quality problems is that of multiple, yet different representations of the
same real-world object in the data. For instance, an individual might be represented multiple times
in a customer database, a single product might be listed many times in an online catalog, and data
about a single type protein might be stored in many different scientific databases.

Such so-called duplicates are difficult to detect, especially in large volumes of data. Simulta-
neously, they decrease the usability of the data, cause unnecessary expenses, customer dissatisfaction,
incorrect performance indicators, and they inhibit comprehension of the data and its value. Note
that duplicates in the context of this lecture are not exact replicas but exhibit slight or even large
differences in the individual data values.Thus, such duplicates are also called fuzzy duplicates. In the
traditional context of database management systems, duplicates are exact copies of records. They are
easy to detect, simply by sorting the data by all columns, and they are thus not topic of this book: We
use the term duplicate to refer to fuzzy duplicates. In Table 1.1, records r1 and r2 are exact duplicates
while r3 is a fuzzy duplicate with either r1 or r2, probably representing the same real-world object.

Table 1.1: Exact duplicate r1 and r2 and fuzzy dupli-
cate r1 and r3

FN LN Phone email

r1 John Doe (407) 356 8888 john@doe.com
r2 John Doe (407) 356 8888 john@doe.com
r3 Jon Doe (407) 356 8887 john@doe.com

Duplicates in databases of organizations have many detrimental effects, for instance:

• Fraudulent bank customers can obtain duplicate identities, thus possibly receiving more credit.

• Inventory levels are monitored incorrectly if duplicate products are not recognized. In such
cases, the same products are restocked in separate orders, and quantity discounts cannot be
gained.

2 1. DATA CLEANSING: INTRODUCTION AND MOTIVATION

• The total revenue of preferred customers is unknown because it is spread over multiple in-
stances. Gold customers are not recognized and are dissatisfied.

• Catalogs are mailed multiple times to the same household. “Householding” is a special case
of person duplicate detection where it is not the same person but persons from the same
household who are recognized.

• Duplicate data causes so much more unnecessary IT expenses, simply due to its volume that
must be maintained and backed up.

Both researchers and developers in industry have tackled this problem for many decades. It was
first examined in 1969 [Fellegi and Sunter, 1969] and has since spawned many research projects and
software products. Methods for duplicate detection are included in almost every data warehouse and
ETL suite and have reached such mundane places as Microsoft Outlook’s contacts-database. In this
lecture, we motivate and formally define the problem of duplicate detection. We examine closely the
two main components towards its solution: (i) Similarity measures are used to automatically identify
duplicates when comparing two records. Well-chosen similarity measures improve the effectiveness
of duplicate detection. (ii) Algorithms are developed to perform on very large volumes of data in
search for duplicates. Well-design algorithms improve the efficiency of duplicate detection. Finally,
we discuss methods to evaluate the success of duplicate detection.

Figure 1.1 shows a typical duplicate detection process. A set of records R is suspected to
contain duplicates. Conceptually, the cross-product of all records is formed, and among those, an
algorithm chooses promising candidate pairs, usually those that have a sufficiently high similarity
at first glance. These record pairs are then input to a similarity measure, which produces a more
sophistically calculated similarity. Finally, similarity thresholds are used to decide whether the pair
is indeed a duplicate or not. In some cases, an automated decision is not possible and human expert
must inspect the pair in question. One of the goals of duplicate detection is to minimize this set of
unsure duplicates without compromising the quality of the overall result.

A slightly different scenario is that of entity search.There, it is not the goal to rid a large dataset
of duplicates but rather to insert new records into a dataset without producing new duplicates. For
instance, customer support specialists solicit name and address of a customer via phone and must be
able to immediately recognize whether this customer is already represented in the database.The two
scenarios are sometimes distinguished as batch duplicate detection vs. duplicate search or as offline
and online duplicate detection. Because of the largely differing requirements, relevant techniques
differ, and the topic of entity search warrants a separate lecture.Thus, it is not covered in this lecture.

An obvious next step after detecting duplicates is to combine or merge them and thus produce
a single, possibly more complete representation of that real-world object. During this step, possible
data conflicts among the multiple representations must somehow be resolved. This second step
is called data fusion and is not covered in this lecture. Instead, we refer to a survey on data fusion
[Bleiholder and Naumann, 2008]. An alternative approach to handle duplicates after their discovery
is to somehow link them, thus representing their duplicate status without actually fusing their data.

1.1. DATA QUALITY 3

Duplicates

Calculate
sim(c1 ,c2)

using similarity
measure

R:
?

Algorithm to
choose candidate

pairs (c1,c2)
among R x R

Apply
similarity
thresholds

measure

Non
duplicates

among R x R

Figure 1.1: A prototypical duplicate detection process

The process of duplicate detection is usually embedded in the more broadly defined process of
data cleansing, which not only removes duplicates but performs various other steps, such as address
normalization or constraint verification, to improve the overall data quality. In the sections of this
chapter, we give an overview of this field of data quality beyond duplicates. We then motivate many
causes for inadvertent duplicate creations. Finally, we present several use cases to display the various
areas in which duplicate detection plays an important role in an overall information management
environment.

1.1 DATA QUALITY
Information and data quality are wide and active research and development areas, both from an
information system and a database perspective. They are used synonymously. Broadly, data quality
is defined by Tayi and Ballou [1998] as “fitness for use”, which is usually broken down into a set of
quality dimensions.An in-depth coverage of the topic is given in the book by Batini and Scannapieco
[2006].Here we briefly cover the main issues of data quality with a particular focus of duplicates.First,
we mention several pertinent quality dimensions and then cover various aspects of data cleansing,
which are usually performed before duplicate detection.

1.1.1 DATA QUALITY DIMENSIONS
In their seminal paper, Wang and Strong [1996] elicit fifteen quality dimensions from ques-
tionnaires given to data consumers in the industry; many other classifications are discussed by
Batini and Scannapieco [2006]. These widely cited dimensions are categorized as intrinsic (believ-
ability, accuracy,objectivity, reputation), contextual (value-added, relevancy, timeliness, completeness,
appropriate amount of data), representational (interpretability, ease of understanding, representa-
tional consistency, concise representation), and accessibility (accessibility, access security). Obviously,
some of the dimensions are highly subjective, and others are not related to duplicates. Duplicate de-

4 1. DATA CLEANSING: INTRODUCTION AND MOTIVATION

tection and the subsequent fusion of duplicates directly improve quality in the dimensions accuracy
and completeness.

Accuracy is the extent to which data are correct, reliable and free of error. It is usually measured
as the number of records with errors compared to the overall number of records. Accuracy is usually
improved because multiple but different representations of the same real-world object usually implies
some conflicting and thus inaccurate data in at least one of the representations – otherwise, the
duplicate would have had identical values and would have been easily recognized.

Completeness is defined by Naumann et al. [2004] as the extent to which data are of sufficient
depth, breadth and scope for the task at hand. Completeness is often sub-divided into intensional
completeness, i.e., the completeness per record, and extensional completeness, i.e., the number or
records compared to the complete domain. In general, intensional completeness can be improved
through duplicate detection because, in many cases, the multiple representations cover data from
different properties; one customer entry might contain a phone number, another entry about the
same individual might contain an email address. The combined data are more complete.

Almost all other dimensions are indirectly improved if duplicates are handled appropriately
by the information management system. For instance, believability is enhanced because users can
assume that a given particular record is the only record about that entity.

1.1.2 DATA CLEANSING
A concrete measure to improve quality of data is to directly modify the data by correcting errors and
inconsistencies. Data cleansing1 is a complex set of tasks that takes as input one or more sets of data
and produces as output a single, clean data set. Data cleansing tasks include look-up checks, format
transformations, currency conversions, constraint verification, deduplication, data fusion, and many
others.

A prominent paradigm for data cleansing is the Extract-Transform-Load (ETL) process,
usually built to populate a data warehouse: The extraction phase is responsible for gathering source
data and placing it into a so-called staging area. The staging area is usually a relational database
system that supports various data cleansing steps. These are performed sequentially or in parallel
in the transformation stage. Finally, the load phase is responsible for loading the extracted and
cleansed data into the data warehouse / data cube. Figure 1.2 shows a prototypical ETL process
with its individual phases and several data cleansing steps. The names of the individual operators
have been chosen to reflect typical labels used in ETL products. In the process, two extractors gather
data from different sources. A cleansing step specific to one source is performed. Next, a funnel step
builds the union of the two sources. A lookup is performed for records with missing zip code data.
The match operator performs duplicate detection; the survive operator performs data fusion. Finally,
a load operator populates the customer dimension of the data warehouse.

Figure 1.2 is a rather simple process; larger organizations often manage hundreds of more
complex ETL processes, which need to be created, maintained, scheduled, and efficiently executed

1Data cleaning and data cleansing are used synonymously in the literature.

1.2. CAUSES FOR DUPLICATES 5

Web
customers

Data cube
with

Funnel Match Survive

Extract
Web

application

Load

ZIP lookup

Store
customers

customer
dimension

Funnel Match Survive

Extract
Business

card capture

Load

Address
verification

Figure 1.2: A prototypical ETL process

[Albrecht and Naumann,2008].ETL engines specialize in efficient,usually parallel execution during
times of low load on the transactional system.

Most cleansing tasks are very efficient because they can be executed in a pipeline; therefore,
each record can be cleansed individually. For instance, conversions of data values from one measure
to another (inch to cm; $ to E) or transforming phone numbers or dates to a standard pattern can
be performed independently of other values in that column. Such steps are often referred to as data
scrubbing.The intrinsic efficiency of data scrubbing operations is not true for duplicate detection. In
principle, each record must be compared to all other records in order to find all duplicates. Chapter 4
describes techniques to avoid this quadratic complexity, but a simple record-by-record approach is
not applicable.

Data cleansing is an important pre-processing step before duplicate detection.The more effort
is expended here and the cleaner the data become, the better duplicate detection can perform. For
instance, a typical standardization is to abbreviate all occurrences of the term “Street” in an address
column to “St.”. Thus, the addresses “20 Main Street” and “20 Main St.” appear as identical strings
after standardization. Without standardization, duplicate detection would have to allow for slight
deviations to still capture the duplicity of the two addresses. However, this allowance of deviation
might already be too loose: “20 Main St.” and “20 Maine St.” could incorrectly be recognized as the
same.

1.2 CAUSES FOR DUPLICATES

One can distinguish two main causes for duplicates in data. First, data about a single entity might
be inadvertently entered multiple times into the same database – we call such duplicates intra-source
duplicates. Second, duplicates appear when integrating multiple data sources, each of which might
have a different representation of a single entity – we call such duplicates inter-source duplicates.

While the causes for duplicates might differ, methods to detect them are largely the same.
What again differs is the treatment of the duplicates once they are discovered: Intra-source duplicates
usually undergo some data fusion process to produce a new and enhanced single representation. Inter-
source duplicates, on the other hand, are usually merely annotated as such. Combining them is then
left to the application that uses the data.

6 1. DATA CLEANSING: INTRODUCTION AND MOTIVATION

1.2.1 INTRA-SOURCE DUPLICATES
Duplicates within a single data source usually appear when data about an entity are entered without
(properly) checking for existing representations of that entity. A typical case is when a customer calls
in a new order. While entering the customer data, the system or the clerk does not recognize that
this customer is already represented in the database. This can happen due to poor online duplicate
detection methods or because of significant changes in the customer data – new last name, new
address, etc. Other sources of error are poor data entry: even if the customer data are unchanged, it
is entered differently. Causes are, for instance,

• inadvertent typos: 1969 vs. 1996, Felix vs. FElix

• misheard words: Mohammed vs. Mohammad

• difficult names: Britney vs. Britny, Spears vs. Speers, or Vaithyanathan.

• lacking spelling abilities: Philadelfia

Apart from actually incorrect errors, other causes of errors and thus of duplicates are different
conventions and data entry formats.This is especially a problem when users, rather than trained data
entry clerks, enter their data themselves, as is the case with many online shopping portals and other
points of registration on the Web. Figure 1.3 shows five conference name tags with members from
the same institute. On the conference registration site, each participant entered his or her own data.
While the names and affiliations are all correct, it is not trivial for a computer to decide whether
their affiliations are all the same.

Figure 1.3: Five different representations of the same conference attendee affiliation

1.2. CAUSES FOR DUPLICATES 7

A typical non-human source of error is the automated scanning of paper documents. Even
though this optical character recognition (OCR) technology is very advanced and considered solved
for non-cursive machine- and handwriting, not all hand-written or printed documents have the
necessary quality. Figure 1.4 shows an example of an incorrect scan.While letters with both addresses
are likely to arrive at the correct, same destination, it would be difficult to trace the letter: A database
search for the correct name and address would probably not produce that shipment.

Figure 1.4: Erroneous character recognition for Jens Bleiholder of the Hasso Plattner Institute

1.2.2 INTER-SOURCE DUPLICATES
The problems mentioned above with respect to data entry are also valid for inter-source duplicates.
When data about a single individual are entered differently in each source, they constitute a duplicate
when the sources are integrated. However, when integrating data sources, there are yet more causes
for duplicates:

Different data entry requirements. Even when entering the same information about a real-world
object, different sources might have different data entry requirements. For instance, one source
might allow abbreviated first names while the other enters the full first name.Titles of a person
might be entered in front of the first or in front of the last name. Numerical values might be
recorded at different precision levels, data might be entered in different languages, etc.All these
are reasons that semantically same information is represented differently.These differences are
difficult to specify, making duplicate detection a challenging problem.

Different data entry times. Different sources might enter data about a real-world object at different
points in time. Thus, data about an object might differ. For instance, the address of a person
can change, temperatures vary, prices fluctuate, etc. Again, these differences lead to different
representations of the same real-world object and must be accounted by similarity measures.

Heterogeneous schemata. In general, different data sources use different schemata to represent
same real-world entities. Schemata can be aligned using schema mapping technology. For
instance, the attributes phone and fon have the same semantics and can be mapped to a
common attribute in the integrated result. However, not all sources cover all attributes. For

8 1. DATA CLEANSING: INTRODUCTION AND MOTIVATION

instance, one source may store the weight of a product, while the other source may not. Such
missing attributes are padded with NULL values in the integrated result. Thus, even when
sources agree on all common attributes, they are not necessarily exact duplicates.

Padding with NULL values (⊥) may lead to subsumed or complemented records. Table 1.2
shows three records from three different sources. Records r1 and r2 subsume r3, and r1 is
complemented by r2.

Table 1.2: Records r1 and r2 subsume r3, and r1 is com-
plemented by r2.
r1 John Doe (407) 356 8888 ⊥
r2 John Doe ⊥ (407) 358 7777
r3 John Doe ⊥ ⊥

Detecting such duplicates does not require a similarity measure and is thus easier than the
general case with contradicting values. We do not cover the efficient detection of subsumed or
complemented records but instead refer the reader to articles by Bleiholder et al. [2010], by
Galindo-Legaria [1994], and by Rao et al. [2004].

1.3 USE CASES FOR DUPLICATE DETECTION
Duplicate detection comes in many guises and for many different applications. Apart from the term
“duplicate detection”, which we use throughout this lecture, the broad problem of detecting multiple
representations of the same real-world objects has been named doubles, mixed and split citation
problem, record linkage, fuzzy/approximate match, object/instance/reference/entity matching, ob-
ject identification, deduplication, object consolidation, entity resolution, entity clustering, identity
uncertainty, reference reconciliation, hardening soft databases, merge/purge, household matching,
householding, and many more. Each mention might have a slightly different application or problem
definition in mind, but each need two basic components – a similarity measure and an algorithm to
explore the data.

We now discuss several typical use cases for duplicate detection, each with a slightly different
problem angle. The classical use case is that of customer relationship management, where duplicates
within a large set of customer data are sought. Detecting duplicates in scientific databases empha-
sizes cleansing of data that is distributed and heterogeneous. Finally, the linked-open-data use case
emphasizes more the unstructured and dynamic nature of data on the Web.

1.3.1 CUSTOMER RELATIONSHIP MANAGEMENT
Large organizations provide many points of contact with their customers:They might have an online
store or information site, they might have walk-in stores, they might provide a phone hotline, they
might have personal sales representatives, they might correspond via mail, etc. Typically, each point

1.3. USE CASES FOR DUPLICATE DETECTION 9

of contact is served by a separate data store. Thus, information about a particular customer might be
stored in many different places inside the organization. In addition, each individual data set might
already contain duplicates.

Figuratively speaking, when organizations communicate with a customer, the left hand does
not know what the right hand is doing. Thus, revenue potential might be lost and customers might
be dissatisfied; it is likely that most readers have experienced having to state the same information
many times over. Managers have recognized the need to centrally integrate all information about
a customer in so-called customer relationship management (CRM) systems. Apart from efficiently
providing up-to-date customer information to the various applications of an organization, CRM
systems must recognize and eliminate duplicates.

The domain of persons and companies is probably the most developed with respect to duplicate
detection. Many specialized similarity measures have been devised specifically with that domain in
mind. For instance, a duplicate detection system might encode a high similarity between the two
dates-of-birth 5/25/71 and 1/1/71 even though they differ significantly: January 1st is a typical
default value if only the year-of-birth of a customer is known. Other person-specific examples
include accentuation-based similarity measures for last names, nickname-based similarity measures
for first names, and specialized similarity measures for streets and zip codes.

1.3.2 SCIENTIFIC DATABASES
Scientific experiments and observations produce vast amounts of data. Prominent examples are the
results of the human genome project or images produced by astronomical observation. Many such
data sources are publicly available and thus very good candidates for integration. Many projects have
arisen with the primary goal of integrating scientific databases of a certain universe of discourse, such
as biological databases [Stein, 2003]. All such projects must solve the task of duplicate detection.
If real-world objects or phenomena are observed and documented multiple times, possibly with
different attributes, it is useful to recognize this and interlink or combine these representations. For
instance, many proteins have been studied numerous times under different conditions. Combining
and aggregating such data might avoid costly experiments [Hao et al., 2005; Trißl et al., 2005].

To this end, researchers have developed specialized similarity measures to cope with the fact
that genomic data has two directly conflicting properties: (i) As it is generated in high-throughput
experiments producing millions of data points in a single run, the data often have a high level of
noise. (ii) Even slight variations in genomic sequences may be important to tell a real duplicate from
a wrong one (think of the same gene in different yet closely related species).

Due to the vast amounts of data, scientific databases are usually not integrated into a large
warehouse,but they are annotated with links to other representations in other databases [Karp,1996].
Thus, the task of a researcher exploring a specific object is eased. In fact, large efforts have been in-
vested to develop systems that allow integrated queries across these multiple sources [Bleiholder et al.,
2004; Shironoshita et al., 2008].

10 1. DATA CLEANSING: INTRODUCTION AND MOTIVATION

1.3.3 DATA SPACES AND LINKED OPEN DATA
Duplicate detection is also relevant in scenarios beyond typical, well-formed data. We illustrate
two use cases from domains with more heterogenous data. The first use case is the prime example
for data spaces [Halevy et al., 2006], namely personal information management [Dittrich et al., 2009;
Dong and Halevy, 2005]. Dataspaces comprise complex, diverse, interrelated data sources and are a
generalization of traditional databases. The second, related use case introduces linked open data as
a new form of publishing data on the (semantic) web. For both use cases, we show why duplicate
detection is a necessary but difficult task.

Personal information management (PIM) can be considered as the management of an inte-
grated view of all our personal data that, for instance, reside on our desktop, our laptop, our PDA,
our MP3 player, etc. In addition to the heterogeneity of devices storing data, PIM also has to deal
with the heterogeneity of data themselves, as relevant data encompass emails, files, address books,
calendar entries, and so on. Clearly, PIM data do not correspond to the uniformly structured data
we consider throughout this lecture2. For instance, a person described in an address book and a
person being tagged on a picture may be duplicates, but it is highly unlikely that they share any
other attributes (assuming we can distinguish attributes) than their name. Clearly, in this type of
application, we need to first identify what data describe what type of object, and what data are se-
mantically equivalent before being able to perform any reasonable comparisons. In data integration,
this preprocessing step to duplicate detection is known as schema matching. For structured data,
various algorithms for schema matching have been proposed [Rahm and Bernstein, 2001].

In PIM, due to the high variability of applications and data these applications store about
objects, candidates of the same type may not share a sufficient number of attributes to decide if
they represent the same real-world object. An extreme example where no common attribute exists
is shown in Figure 1.5: Figure 1.5(a) shows an email whereas Figure 1.5(b) depicts a calendar entry.
The email is addressed to naumann@hpi.uni-potsdam.de and concerns the Synthesis Lecture (see
subject). The calendar describes a meeting that also contains Synthesis Lecture in its title, and the
location refers to Felix’ office at HPI. Both the email and the calendar entry refer to the same person,
i.e., Felix Naumann, but based on the email address and the first name alone, it is very difficult to
come to this conclusion. As a matter of fact, we most definitely cannot detect the duplicate reference
to Felix Naumann by simply comparing person candidates based on their descriptions, assuming
these have been extracted from the available data.

Beyond personal information,more and more data are publicly available on the Web.However,
it is difficult to query or integrate this data. The semantic web community introduces and advocates
the concept of linked open data (LOD) [Bizer et al., 2009b]. By assigning a URI to each object,
referencing these objects with links, using the HTTP protocol, and finally by providing data sets
openly (usually as sets of RDF triples), the hope is to create a large web of data from many sources that
can be queried and browsed easily and efficiently. Indeed, a rapidly growing number of sources, such

2Note that this is generally true for data in data integration scenarios. Here, we chose PIM as a representative because related
challenges are particularly accentuated.

naumann@hpi.uni-potsdam.de

1.4. LECTURE OVERVIEW 11

From: Melanie Herschel <melanie.herschel@uni-tuebingen.de>
Subject: Synthesis Lecture

Date: October 21, 2009 5:26:24 PM GMT+02:00
To: naumann@hpi.uni-potsdam.de

Hi,

I think we are done!

Regards,
Melanie

 PM1

 PM2

1:00 PM Synthesis Lecture Wrap-up
O ce Felix, HPI

(a) Email (b) Calendar entry

Figure 1.5: Personal Information Management (PIM) Data

as DBpedia [Bizer et al., 2009a] or Freebase3, constitute a wealth of easily accessible information.
As of May 2009, the W3C reports over 70 data sets consisting of over 4.7 billion RDF triples, which
are interlinked by around 142 million RDF links4. In many cases, these links represent duplicate
entries. For instance, the entry of the Bank of America in Freebase stores a link to the corresponding
Wikipedia entry.

Linked open data are from many very different domains of public, commercial, and scientific
interest. The data sets are provided by many, often overlapping sources, making duplicate detection
more important than ever. Much of the linking is currently performed manually, but automated
methods can help. Because much of the data are heterogeneously structured and have large textual
parts, similarity measures must be adapted accordingly. In addition, the sheer volume of data makes
it all the more important to use efficient algorithms to find duplicate candidates.

1.4 LECTURE OVERVIEW
The remainder of this lecture is organized as follows: Chapter 2 formally introduces the problem
of duplicate detection and describes its complexity. The following two chapters address the two
specific problems of duplicate detection: Chapter 3 describes similarity measures to decide if two
candidates are in fact duplicates, and Chapter 4 describes algorithms that decide which candidates
to even consider. Finally, Chapter 5 shows how to evaluate the success of duplicate detection and
Chapter 6 concludes the lecture. While this lecture is intended to serve as an overview and primer
for the field of duplicate detection, we refer interested readers to a recent and more comprehensive
literature survey by Elmagarmid et al. [2007].

3http://freebase.com
4http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

http://freebase.com
http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

13

C H A P T E R 2

Problem Definition
As we have seen in Chapter 1, duplicate detection is a problem of highly practical relevance, and there
is a need for efficient and effective algorithms to tackle the problem. Before delving into the details of
such algorithms in the subsequent chapters, we first formally define the problem. More specifically,
we start the discussion by providing a definition of the duplicate detection task in Section 2.1. This
definition focuses on duplicate detection in data stored in a single relation, a focus we maintain
throughout this lecture. We then discuss the complexity of the problem in Section 2.2. Finally,
in Section 2.3, we highlight issues and opportunities that exist when data exhibit more complex
relationships than a single relation.

2.1 FORMAL DEFINITION
Before we define duplicate detection, we summarize important concepts of the relational model and
introduce their notation.

Given a relation R, we denote the schema of the relation as SR = 〈a1, a2, …, an〉. Each ai

corresponds to an attribute. A record stored in a relation R assigns a value to each attribute. We use
two alternative notations for a record r , depending on which notation is better suited in the context it
is used in:The first notation implies the schema and simply lists values, i.e., r = 〈v1, v2, . . . , vn〉;The
second notation explicitly lists attribute-value pairs, that is, r = 〈(a1, v1), (a2, v2), . . . , (an, vn)〉.We
assume that all data we consider for duplicate detection conform to a given schema.

Example 2.1 Figure 2.1 represents a relational table named Movie. The schema of the Movie

relation is 〈MID, T itle, Y ear, Review〉. The Movie relation contains four records, one being
〈m1, BigF ish, 2003, 8.1/10〉.

To properly define duplicate detection, we first have to decide which object representations
are subject to deduplication. For instance, do we search only for duplicates within movies? Or do we

MID Title Year Review
m1 Big Fish 2003 8.1 / 10
m2 Public Enemies 2009 7.4 / 10
m3 Public Enemies 09 ⊥
m4 Big Fisch 2003 7.5 / 10

Figure 2.1: Sample Movie relation

14 2. PROBLEM DEFINITION

search within all movies that were inserted or updated since the last deduplication of the database?
Or do we want to identify duplicates only to those movies that do not have a review score? To specify
the set of records that is subject to duplicate detection, we can simply formulate a query that retrieves
these records. In our relational scenario, a possible SQL query to identify all records that describe
movies that appeared since 2009 is simply

SELECT *
FROM Movie
WHERE Year >= 2009

The result of such a query is a set of records that corresponds to the set of records that need
to be deduplicated. We refer to this set of records as the set of duplicate candidates, or candidates for
short. A candidate has a specific type T that corresponds to the type of object that it represents, for
instance, a movie. We denote the set of all candidates of type T as CT = {c1.c2, . . . , cn}.

The next aspect we have to consider is that not all information included in an object rep-
resentation is relevant for duplicate detection. In the relational context, this means that not every
attribute of a record is relevant. For instance, whereas movie titles are relevant for duplicate detection
as they are very descriptive of movies, the attribute Review is less descriptive of a movie, and hence,
it is not suited to distinguish duplicates to a movie from non-duplicates. This observation leads us
to the general definition of an object description.

Given a candidate c, the object description of c, denoted as OD(c), is a set of attribute-value
pairs that are descriptive of candidate c. That is, OD(c) = 〈(a1, v1), (a2, v2), . . . , (am, vm)〉. For a
given candidate type T , the set of descriptive attributes of any candidate of type T is the same, i.e.,
all corresponding object descriptions contain attribute-value pairs for attributes {a1, a2, . . . , am}. As
a consequence, object descriptions are usually defined on schema level, and we can retrieve object
descriptions by specifying SQL queries that return the desired attributes. As a simple example, we
can retrieve the object description of movie m1 using the SQL query

SELECT Title, Year
FROM Movie
WHERE MID = ‘m1’

Note that in practice, retrieving candidates and their corresponding description are usually combined
into a single query. In our example, the SQL query is the same as the query for object descriptions
shown above, except that the WHERE-clause is removed.

Having defined the input to duplicate detection algorithms, let us now move to the definition
of the output. The ultimate goal of duplicate detection is to partition the set of candidates based on
information provided by their object descriptions. Each partition returned by a duplicate detection
algorithm contains candidates that all represent the same real-world object. Hence, we say that a
partition represents a real-world object as well. The second property of the resulting partitions is

2.1. FORMAL DEFINITION 15

that no two distinct partitions represent the same real-world object. We denote the final result of
duplicate detection of candidates in CT as the partitioning P T .

Example 2.2 Let us assume that our set of candidates includes all movies described in the
Movie relation shown in Figure 2.1. That is, CMovie = {m1, m2, m3, m4}. Assuming that the
object description of a movie consists of Title and Year only, we, for instance, have OD(m1) =
{(T itle, BigF ish), (Y ear, 2003)}. The ideal result of duplicate detection is to identify that both
the movie Big Fish and the Movie Public Enemies are each represented twice in the Movie relation.
That is, ideally, a duplicate detection algorithm outputs P Movie = {{m1, m4}, {m2, m3}}.

In contrast to our example, where duplicate detection results in a perfect classification, per-
forming duplicate detection in practice does not reach the gold standard. Indeed, the similarity
measure may miss some duplicates because their similarity is not high enough. These missed du-
plicates are referred to as false negatives. On the other hand, candidates may also be classified as
duplicates although they are not because, despite a careful choice of descriptions, they still are very
similar. We call this type of classification error false positives. As we discuss in Section 5.1, dupli-
cate detection algorithms are designed to reduce the occurrence of at least one of these error types.
Depending on the application, minimizing false positives may be more, less, or equally important to
minimizing false negatives, so the choice of a proper duplicate detection algorithm and configuration
depends on this characteristic.

The above definition of duplicate detection does not specify any details on algorithm specifics.
As we see in subsequent chapters, numerous algorithms exist for duplicate detection. These have
varying characteristics, and hence their runtime may significantly differ. A specific type of algorithm
widely used throughout the literature and industry are iterative duplicate detection algorithms.

Iterative duplicate detection algorithms are characterized by the fact that they first detect
pairs of duplicates, and they then exploit the transitivity of the is-duplicate-of relationship to obtain
the desired duplicate partitions. Remember that two candidates are duplicates if they represent the
same real-world object. Clearly, if A is duplicate of B, and B is duplicate of C, it is true that A is a
duplicate of C, too.

Duplicate pairs are identified using a similarity measure sim(c, c′) that takes two candidates
as parameters and returns a similarity score.The higher the result returned by the similarity measure,
the more similar candidates are. If the similarity is above a given threshold, indicating that candidates
have exceeded a certain similarity threshold θ , the two candidates are classified as duplicates and
therefore form a duplicate pair. Again, thinking in terms of SQL queries, we may view iterative
duplicate detection as a special type of join that, instead of using equality as join predicate, uses a
similarity measure:

SELECT C1.* ,C2.*
FROM Movie AS C1, Movie AS C2
WHERE sim(C1,C2) > θ

16 2. PROBLEM DEFINITION

To obtain partitions, let us model the set of candidates and duplicate pairs as a graph: a node
represents a candidate and an edge exists between two candidates if they have been classified as
duplicates because their similarity is above the threshold θ . Then, considering that the relationship
“is-duplicate-of ” is transitive, determining the partitions amounts to identifying all connected com-
ponents in the graph. However, this may lead to partitions where two candidates are not similar at
all where, in fact, there are no duplicates of each other. This is due to the fact that the similarity
measure usually does not satisfy the triangle inequality; that is, sim(A, B) + sim(B, C) is not nec-
essarily greater or equal to sim(A, C). As a simple example, let us assume that sim(hook, book) > θ

and sim(book, bosk) > θ . This is reasonable because each string does not differ by more than one
character from the other string. However, it is easy to see that hook and bosk differ by two characters,
yielding a lower similarity. In Section 4.3, we describe strategies to split up connected components
that connect too dissimilar candidates due to long chains of pairwise duplicates in the graph.

2.2 COMPLEXITY ANALYSIS

In this section, we give an intuition of the general complexity of the problem.The complexity analysis
of specific algorithms is part of their description in Chapter 4. For this general intuition, we focus
on the runtime complexity of iterative duplicate detection algorithms.

In the setting of iterative duplicate detection, we perform one similarity comparison for every
possible pair of candidates. Assuming that the similarity measure is symmetric, i.e., sim(c, c′) =
sim(c′, c), this means we have to perform n×(n−1)

2 pairwise comparisons. To illustrate this, consider
Figure 2.2 that shows the space of duplicate candidates for a database of 20 records. Each field ci,j

in the matrix represents a comparison of the two corresponding candidates ri and rj . The diagonal
fields ci,i need not be compared, nor do the fields in the lower part ci,j , i > j . Thus, there remain
20(20−1)

2 = 190 comparisons (as opposed to 400 comparisons for the complete matrix).
Each invocation of the similarity measure adds to the complexity. The exact complexity of

similarity computation depends on the actual similarity measure that is used. However, due to the
fact that it bases its computation on object descriptions and relationship descriptions, both of which
generally have a far smaller cardinality than CT , we can view similarity computation as a constant
factor compared to the number of necessary pairwise comparisons.This yields a complexity of O(n2)

for detecting duplicate pairs. The final step is to obtain partitions that represent duplicates. This
amounts to determining the connected components of a graph whose nodes are all candidates and
where an edge exists between c and c′ if and only if c and c′ have been classified as duplicates. The
connected components of a graph can be determined by a simple breadth-first-search or depth-first-
search in linear time. More specifically, the complexity of this phase is O(n + d), where d is the
number of detected duplicate pairs. It is guaranteed that d ≤ n2 so forming the duplicate partitions
can be performed, in the worst case in O(n2) and in practice, in far less time. As a consequence, the
total runtime complexity of iterative duplicate detection is O(n2) for a given candidate set CT that
contains candidates of type T .

2.2. COMPLEXITY ANALYSIS 17

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20r1 r2 r3 r4 r 5 r6 r7 r8 r9 r 1 r1 r1 r1 r1 r1 r 1 r 1 r 1 r 1 r 2

r1

r2

r3r3

r4

r5

r6r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

r16

r17

r18

r19

r20

Figure 2.2: Matrix of duplicate candidates

Clearly, the quadratic time complexity described above is impractical for efficient duplicate
detection on large databases. For instance, consider a small movie database with one million movie
candidates. This would require approximately 5 × 1011 pairwise comparisons. Assuming a compar-
ison can be done in 0.1 ms, the time for duplicate detection would roughly take one and a half years!
Therefore, approaches to improve runtime have been devised. They all have in common that they
aim at reducing the number of pairwise comparisons. We discuss these algorithms in more detail
in Chapter 4. In practice, the number of comparisons performed can be reduced by up to 99%,
compared to the number of comparisons necessary when using the naive, quadratic algorithm that
compares all candidates with each other.

So far, we have discussed the theoretical runtime complexity that is dominated by the number
of pairwise candidate comparisons. Another dimension to consider is the cost of disk accesses
necessary to read the data from disk and to write the result back to disc. Each algorithm for duplicate
detection devises its own strategy to minimize I/O cost. As we have seen, duplicate detection can be
viewed as a special type of join. In the database literature, approaches to minimize I/O cost of joins
is abundant, and we observe that duplicate detection algorithms use similar ideas to sort-merge-join
or hash join.

18 2. PROBLEM DEFINITION

2.3 DATA IN COMPLEX RELATIONSHIPS
Up to this point, we assumed that all data necessary for duplicate detection, i.e., candidates and their
object descriptions, reside in a relation. However, data with more complex relationships exist: we
may have multiple types of candidates that relate to each other.

Example 2.3 As an example for data in complex relationships, consider Figure 2.3, which extends
Figure 2.1 with two additional relations, namely Actor and StarsIn. We see that two types of objects
are described, i.e., actors and movies, and each tuple in the respective relation describes a single actor
or movie. The StarsIn table does not describe objects by themselves, but rather relates objects to
each other (more precisely, their representations). Note that if we had the entity relationship (ER)
model for our example available, the object types available would correspond to the entities in the
ER model.

AID Firstname Lastname
a1 Marion Cotillard
a2 Johnny Depp
a3 Ewen McGregor
a4 Ewen Mac Gregor

AID MID
a1 m1
a1 m2
a1 m3
a1 m4
a2 m2
a2 m3
a3 m1
a4 m4

MID Title Year Review
m1 Big Fish 2003 8.1 / 10
m2 Public Enemies 2009 7.4 / 10
m3 Public Enemies 09 ⊥
m4 Big Fisch 2003 7.5 / 10

(a) Actor (b) StarsIn (c) Movie

Figure 2.3: Sample relations in a movie domain

In this setting, the general idea for duplicate detection is to exploit relationships between
candidates in order to potentially increase the effectiveness of duplicate detection. That is, when
comparing movie candidates, for instance, we can consider the actors starring in a movie in addition
to a movie’s object description (Title and Year). The PIM use case described in Section 1.3 is one
scenario where duplicate detection benefits from relationships.

In Section 2.3.1, we extend the data model described in Section 2.1 to include multiple
candidate types and their relationships. In Section 2.3.2, we then discuss challenges concerning
similarity measurement that arise in this context, focusing on hierarchical and semi-structured XML
data.

2.3.1 DATA MODEL
In this section, we extend the data model for the input and the output of duplicate detection to the
case where we have more than one candidate type and where candidates relate to each other.

As we have seen, the input to duplicate detection when considering a single candidate type
consists of a set of candidates and candidates are associated with object descriptions.This remains true

2.3. DATA IN COMPLEX RELATIONSHIPS 19

for duplicate detection in data with complex relationships, however, we need to reflect the presence
of multiple candidate types. Therefore, we define the candidate set C = {CT1, CT2, . . . , CTk } to
contain sets of candidates, each of a different type. The definition of an object description is not
affected; however, we point out that an object description needs to be defined for every candidate
type.

Additionally, we need to model the relationships between candidates, so we can use them
later during duplicate classification. In our example, the set of actors that play in a movie is very
descriptive of a movie. Indeed, except for movie sequels, the casts of different movies usually differ
significantly.To describe that other related candidates are relevant to detect duplicates to a candidate,
we introduce the notion of relationship description. Intuitively, a relationship description of a given
candidate contains all candidates that are descriptive of that particular candidate. More formally,
given a candidate c of type T , its relationship description RD(c) = {c1, c2, . . . , cm}. Note that
ci ∈ RD(c) does not necessarily have the same candidate type as cj ∈ RD(c), i �= j , for instance,
a movie may include both actors and awards in its relationship description.

Example 2.4 Considering movies and actors as candidates, we have CMovie = {m1, m2, m3, m4}
and CActor = {a1, a2, a3, a4}, which we summarize in the candidate set C = {CMovie, CActor}.
The relationship description of a movie consists of the actors that star in that particular movie, for
instance, RD(m1) = {a1, a3}.

Similar to object descriptions, relationship descriptions are usually defined on schema level
using appropriate queries. These queries are usually based on domain-knowledge or they can be
extracted from schema information, e.g., foreign keys. As an example, in order to retrieve the rela-
tionship description of m1, we may use the following query:

SELECT A.*
FROM Actor A, StarsIn S, Movie M
WHERE M.MID = ‘m1’ AND M.MID = S.MID AND S.MID = A.AID

Of course, to improve efficiency, the relationship descriptions of all candidates are retrieved us-
ing a single query, again by omitting the predicate M.MID = ‘m1’ that restricts the result to the
relationship description of m1.

Concerning the output of duplicate detection in data with complex relationships, we trivially
extend the output for a single candidate type to multiple candidates types, similar to our extension
of the input candidate sets. More specifically, for every input candidate set CTi , we have an output
partitioning P Ti , which we summarize in the final output P = {P T1, P T2, . . . , P Tk }.

The way algorithms consider relationships to obtain the final partitioning may significantly
differ from one algorithm to the other. For instance, different algorithms exist that specialize on
duplicate detection of candidate types that relate to each other through different kinds of relationships
(e.g., 1:N versus M:N), and their configuration allows to specify how relationships affect the duplicate
detection process (see Section 4.2 for details).

20 2. PROBLEM DEFINITION

(bookType)(bookType)

title [1..1] string

subtitle [0..1] string

author [1..1] simpleAuthor

authors complexAuthor

simpleAuthorsimpleAuthor

complexAuthorcomplexAuthor

author [1..*] simpleAuthor

(a) Sample XML Schema for Book elements

<book>

<title> Title 1 < /title>
<authors>

<author> Author 1< /author>
<author> Author 2< /author>

< /authors>
< /book>

<book>

<title> Data < /title>
<subtitle> Data < /subtitle>
<author> Single Author< /author>

< /book>

(b) Book Instance 1 (c) Book Instance 2

Figure 2.4: Two XML instances complying to the same XML Schema

2.3.2 CHALLENGES OF DATA WITH COMPLEX RELATIONSHIPS
In this section, we describe challenges that arise when detecting duplicates in data with complex
relationships. The general duplicate detection process that compares pairs of candidates still applies
in this context, and the main challenges concern similarity measurement.

To represent data in complex relationships, we resort to an XML representation. XML allows
semi-structured data and, using key and keyref constraints (similar to key and foreign key constraints
in relational data), we can represent the general case where relationships between candidates form
a graph. The fact that we use XML as data representation does not limit the generality of the
discussion of challenges similarity measures have to face; we simply use XML to better convey the
general ideas.

A basic assumption that still applies to duplicate detection algorithms for data with complex
relationships is that the data comply to a predefined schema. However, even if data comply to the
same schema, instances may not be equally structured. As an example, consider the XML Schema
definition represented in Figure 2.4. The two XML elements shown in Figure 2.4 (b) and (c) both
comply to the schema depicted in Figure 2.4(a). However, their structure differs in the following
aspects that represent additional challenges for duplicate detection.

Element optionality. An element can be defined as optional in XML Schema, so an instance may
or may not contain that element. This is, for instance, the case with the subtitle element that
occurs either zero or one time as it needs only exist when the described book has a subtitle. In
the relational case, the structure of data is given, and the only means of specifying that a value
is not further specified is the use of a NULL value. This choice exists in XML in addition to
element optionality.

2.3. DATA IN COMPLEX RELATIONSHIPS 21

Element context. An element may appear in various contexts within an XML hierarchy, or, in
general, in a graph of relationships. The context of an XML element is given by its nesting
in the XML hierarchy, for instance, identified by a path expression from the root element.
The schema essentially specifies where an XML element can occur. As an example, the author

element may be a child of book, in case the book has only one author. Otherwise, an author
appears in a sequence of authors and has the path book/authors/author.

Element cardinality. In a relational schema, one attribute exists exactly once and has exactly one
value. In XML, an element can exist from zero to infinitely many times. In our example, within
a sequence of authors (complexAuthor type), the author element can exist from one to n times
(denoted by *).

The three properties of XML data described above cause additional challenges for duplicate
detection, compared to the purely relational case.

First, element optionality adds another dimension of unknown information to be treated by
the duplicate detection algorithm, or, more specifically, by the similarity measure. The semantics of
an element having a NULL value are not necessarily the same as the semantics of an element not
existing at all. For instance, if book has a subtitle element, but the value is NULL, this may signify
that we actually know that the book has a subtitle, but we do not know the exact value. In contrast,
the fact that a subtitle element is missing (as in Figure 2.4(b)) may indicate that the book simply
has no subtitle. In general, similarity measures need to devise a strategy to deal with the possibly
different semantics of missing elements and NULL values. Clearly, in the relational case where the
schema is given and rigid, there are no alternative ways of representing missing information.

Second, due to the fact that the same XML element type can appear in different contexts (for
instance, author), we can no longer assume, even if the data comply to the same schema, that the
structure of candidates aligns perfectly. To illustrate the problem, assume we consider both books
and authors as candidates. In determining relationship descriptions, we have to search for all the
different contexts authors may appear in. Otherwise, we may miss some related candidates. That
is, the definition of candidates and their descriptions is more complex than in the relational case.
Another issue to consider is again the semantics behind each context. When author is a direct child
of book, the semantics may be that we know that there is exactly one author of that book. On
the contrary, if we observe one author nested under the authors element, the author list may be
longer, but the remaining authors are not known. For instance, assume we compute the similarity
of two books whose descriptions are equal except for the single author allowed by the schema. We
may decide that the similarity score in this case is lower than, for instance, the similarity of two
books being equal except for one author in the sequence of authors both candidates have. Such a
fine distinction is not necessary for data complying to a relational schema. As a consequence, when
processing XML data, we need to be aware of this distinction and decide how to handle the subtle
differences it may cause, notably during similarity computation.

The third property, the element cardinality adds complexity to similarity measurement when
we consider duplicate detection in relational data with relationships between candidate types. In-

22 2. PROBLEM DEFINITION

deed, it is true that zero or more candidates of the same type may occur in the relationship de-
scription of a given candidate. When computing the similarity of two candidates based on their
relationship description, different possibilities to align the candidates in the relationship descrip-
tions exist. As an example, assume that a book has a further annotation element that includes tags
that people added to a book. These annotations are part of a relationship description. Now, as-
sume RD(Book1) = {goat, oat} and RD(book2) = {boat, moat}1. Based on similarity between
candidates within relationship descriptions, it is unclear whether goat matches boat or moat and
whether oat matches boat or moat . Note that when considering object descriptions in relational
data, candidates of the same type all have the same schema. In this case, each attribute occurs exactly
once, so a 1:1 matching between the attribute-value pairs of two candidates is sufficient to compare
their object descriptions. In XML, elements being part of the object description may occur zero or
more times, so the more complex comparison that requires to identify a best match applies to object
descriptions as well.

In this section, we discussed challenges in computing similarities between candidates in sce-
narios where data includes complex relationships. In Section 3.4, we discuss similarity measures that
have explicitly been defined for XML that (partially) address the above issues and in Section 4.2.2,
we describe algorithms that consider relationships.

1We slightly abuse notation here and use the unique object description value of an annotation to represent an annotation candidate
within a relationship description

23

C H A P T E R 3

Similarity Functions
In Chapter 2, we provided a formal definition of general duplicate detection and formalized a special
case of duplicate detection, namely iterative duplicate detection.We have seen that iterative duplicate
detection uses a similarity measure to classify a candidate pair as duplicate or non-duplicate. More
specifically, given a similarity threshold θ , we classify two candidates c and c′ using a similarity
measure sim by

classify(c, c′) =
{

c and c′ are duplicates if sim(c, c′) > θ

c and c′ are non-duplicates otherwise

In practice, more than two classes may be used, for instance, a third class for “possible dupli-
cates” is often used.

In this chapter, we discuss various similarity measures that have been used for duplicate de-
tection throughout the literature. In fact, we discuss both similarity measures and distance measures.
When using a similarity measure sim(·), the intuition is that the higher the similarity of two candi-
dates, the more likely it is that they are duplicates. A distance measure, which we denote as dist (·)
measures exactly the opposite of similarity: The larger the distance between two candidates, the less
likely it is that they are duplicates. Clearly, when using a distance measure, thresholded classification
of duplicates needs to be adapted. Formally,

classify(c, c′) =
{

c and c′ are duplicates if dist (c, c′) ≤ θ

c and c′ are non-duplicates otherwise

In the case of normalized similarity measures that return a similarity between zero and one,
a corresponding distance score can be computed as dist (c, c′) = 1 − sim(c, c′).

In our discussion, we distinguish different classes of measures. In Section 3.1, we discuss
token-based measures that take as input a pair of sets of tokens. Edit-based measures, covered in
Section 3.2, on the other hand, take as input a pair of strings. Token-based and edit-based measures
can be combined into hybrid measures, which we discuss in Section 3.3. All these measures only
consider object descriptions, and in Section 3.4, we describe several similarity measures that exploit
information from relationship descriptions as well. The discussion on similarity measures ends in
Section 3.5 with a brief description of further similarity measures.We then discuss another technique,
orthogonal to similarity measures, to classify pairs of candidates as duplicates or non-duplicates.The
essence of the technique is to define domain-specific rules (see Section 3.6).

24 3. SIMILARITY FUNCTIONS

3.1 TOKEN-BASED SIMILARITY
Token-based similarity measures compare two strings by first dividing them into a set of tokens
using a tokenization function, which we denote as tokenize(·). Intuitively, tokens correspond to
substrings of the original string. As a simple example, assume the tokenization function splits a
string into tokens based on whitespace characters. Then, the string Sean Connery results in the set
of tokens {Sean, Connery}. As we will show throughout our discussion, the main advantage of
token-based similarity measures is that the similarity is less sensitive to word swaps compared to
similarity measures that consider a string as a whole (notably edit-based measures). That is, the
comparison of Sean Connery and Connery Sean will yield a maximum similarity score because both
strings contain the exact same tokens. On the other hand, typographical errors within tokens are
penalized, for instance, the similarity of Sean Connery and Shawn Conery will be zero.

We discuss three token-based measures in this section: The basic Jaccard coefficient can be
used to compute the similarity as discussed in Section 3.1.1. We then present a more sophisticated
similarity measure that introduces weights of tokens in Section 3.1.2. In defining these two measures,
we assume that tokens do not overlap, that is, each character of the original string exists in exactly one
token. In Section 3.1.3, we discuss how q-grams, which are considered overlapping tokens, are used
for similarity measurement. The main advantage of using overlapping tokens is that the similarity
is affected less by typographical errors than when using non-overlapping tokens.

3.1.1 JACCARD COEFFICIENT
The Jaccard coefficient is a similarity measure that, in its most general form, compares two sets P

and Q with the following formula:

Jaccard(P, Q) = |P ∩ Q|
|P ∪ Q| (3.1)

Essentially, the Jaccard coefficient measures the fraction of the data that is shared between P

and Q, compared to all data available in the union of these two sets.
In the context of duplicate detection, the question is what are the sets P and Q? Throughout

the duplicate detection literature, we observe two basic uses of the Jaccard coefficient: tokens are
either obtained from strings [Monge and Elkan, 1996], or they correspond to complete descrip-
tions [Bilenko et al., 2003]. The first variant is useful to identify similar pairs of descriptions in
hybrid similarity measures (see Section 3.3) whereas the second variant computes the similarity of
candidates.

String comparison based on the Jaccard coefficient. Given a tokenization function tokenize(s)

that tokenizes a string s into a set of string tokens {s1, s2, . . . , sn}, we compute the Jaccard
coefficient of two strings s1 and s2 as

StringJaccard(s1, s2) = |tokenize(s1) ∩ tokenize(s2)|
|tokenize(s1) ∪ tokenize(s2)| (3.2)

3.1. TOKEN-BASED SIMILARITY 25

Candidate comparison based on the Jaccard coefficient. Given two candidates, we have seen in
Section 2.1 that these are compared based on their respective object description. The Jaccard
coefficient of two candidates c1 and c2 is given by

DescriptionJaccard(c, c′) = |OD(c1) ∩ OD(c2)|
|OD(c1) ∪ OD(c2)| (3.3)

Example 3.1 Consider a scenario where Person is a candidate type. One way to represent the name
of a person in a database is to store the complete name in one attribute, e.g., the Name attribute.
Hence,Person candidates have a description attribute Name.Now,consider two candidates where the
Name descriptions have values Thomas Sean Connery and Sir Sean Connery, respectively. Assuming
a tokenization function that separates a string into tokens based on whitespace, we obtain

tokenize(Thomas Sean Connery) = {Thomas, Sean, Connery}
tokenize(Sir Sean Connery) = {Sir, Sean, Connery}

We observe that among these two token sets, there are only four distinct tokens, and both Sean
and Connery appear in both sets. Consequently, applying the Jaccard coefficient to these two strings
results in

StringJaccard(Thomas Sean Connery, Sir Sean Connery) = 2

4

To illustrate candidate comparison based on the Jaccard coefficient, let us now assume that
a person’s name is split into several attributes in the Person relation, i.e., title, first name, middle
name, and last name. Keeping the same example, we now have

OD(c1) = {(f irstname,Thomas), (middlename, Sean), (lastname, Connery)}
OD(c2) = {(tit le, Sir), (middlename, Sean), (lastname, Connery)}

In these two sets, we observe that the middlename and the lastname description are equal in OD(c1)

and OD(c2) and in total, we have four distinct descriptions. As a result, again

DescriptionJaccard(c1, c2) = 2

4

Based on this simple example, we point out several deficiencies of the Jaccard similarity.
First, we observe that the fact that one name is simply missing a title value penalizes the similarity
significantly. Intuitively, such a title (or the lack thereof) should have less impact on similarity
than the last name or first name, for instance. In the next section, we discuss the cosine similarity
measure that addresses this issue. A second drawback of Jaccard similarity is that it is very sensitive to

26 3. SIMILARITY FUNCTIONS

typographical errors in single tokens. For instance, Shean Conery and Sean Connery have a similarity
of zero. In Section 3.1.3, we show how token-based similarity measures can be adapted to penalize
typographical errors less. As a final remark, note that if Sean would have been put in the firstname
attribute (which is likely to be the case, e.g., when a Web-form requires a first name but no middle
name), DescriptionJaccard would yield a result of 1

5 , unless we specify that middlename and firstname

shall be considered equal. None of the similarity measures described in this chapter can explicitly
cope with this problem, and it is often assumed that such information is used when initializing
descriptions in order to avoid the problem.

An advantage of the Jaccard coefficient is that it is not sensitive to word swaps. Indeed, the
score of two names John Smith and Smith John would correspond to the score of exactly equal strings
because the Jaccard coefficient considers only whether a token exists in a string, not at which position.

3.1.2 COSINE SIMILARITY USING TOKEN FREQUENCY AND INVERSE
DOCUMENT FREQUENCY

The cosine similarity is a similarity measure often used in information retrieval. In general, given two
n-dimensional vectors V and W , the cosine similarity computes the cosine of the angle α between
these two vectors as

CosineSimilarity(V , W) = cos(α) = V · W
||V ||· ||W || (3.4)

where ||V || is the length of the vector V = [a, b, c, . . .] computed as
√

a2 + b2 + c2 + In
duplicate detection, the vectors V and W can represent either tokens in a string or descriptions of a
candidate. Note that we made the same distinction in the discussion of the Jaccard coefficient. From
now on, we illustrate only the case where tokens arise from tokenizing string values, but readers
should keep in mind that this is not the only possible use of the token-based measures we discuss.

Assuming we tokenize two strings s1 and s2 using a tokenization function tokenize(·), the
question arises how we build the two vectors V and W from the tokens. We discuss the solution
in two steps: first, we discuss the dimensionality d of these two vectors before we focus on what
numbers are filled in these vectors.

Essentially, the d dimensions of these vectors correspond to all d distinct tokens that appear
in any string in a given finite domain, denoted as D. In our scenario, we assume that s1 and s2

originate from the same relational attribute, say a. In this case, D corresponds to all distinct tokens
in all values of a. For large databases, this number of tokens may be large, so the vectors V and W

have high dimensionality d in practice.
At this point of the discussion, we know how large the vectors V and W are. Let us now

discuss what data these vectors contain. For this, we first consider the term vector T of D, which, of
course, is d-dimensional as well. This term vector contains a weight for each of the d distinct tokens
in D.This weight reflects how relevant a token is in D, relative to other tokens.To weigh tokens, the
token frequency-inverse document frequency (tf-idf) is commonly used both in information retrieval

3.1. TOKEN-BASED SIMILARITY 27

and duplicate detection. To define the tf-idf score, we first need to define its individual components,
namely tf and idf.

Essentially, the term frequency measures how often a token occurs in a given string value.
Intuitively, the term frequency reflects the relevance of a token within a string value: the more often
a token occurs, the more relevant it is in the context of the string value. As an example, consider a
Web-page about the International Space Station ISS. The token ISS is likely to appear frequently
on this web page, definitely more frequently than on a web-page about the Airbus 380. This results
in a high term frequency of ISS on the ISS Web-page and a low term frequency of ISS on the Airbus
Web-page. Assuming that a token t appears in the value v of an object description of a candidate c

such that (a, v) ∈ OD(c), we denote its term frequency as tft,c.
The intuition behind the inverse document frequency is that it assigns higher weights to

tokens that occur less frequently in the scope of all candidate descriptions. This is useful as it assigns
low weights to common tokens in a domain, e.g., in a database listing insurance companies, the token
Insurance is likely to occur very frequently across object descriptions and the idf thus assigns it a lower
weight than to more distinguishing tokens such as Liberty or Prudential. Formally, we compute the
inverse document frequency of a token t occurring in the object description of a candidate c as

idft,c = n

|{c|(a, v) ∈ OD(c)} ∧ t ∈ tokenize(v)| (3.5)

The tf-idf score combines both the term frequency and the inverse document frequency into
a single score, using the following formula:

tf-idft,c = log
(
tft,c + 1

) × log
(

idft,c
)

(3.6)

As a reminder, n is the total number of candidates.
We compute the tf-idf score for every token ti ∈ D and set the i-th value in the term vector

T to this score. Finally, to create vectors V and W , we simply set the i-th value in V and W to the
i-th weight in T if the strings that V and W represent actually contain the i-th token, and to zero
otherwise. We can now compute the cosine similarity as described by Equation 3.4.

Example 3.2 Figure 3.1 shows ten US insurance companies, which we consider as candidates
whose type we denote as T = IC.We provide candidate identifiers in Figure 3.1 for future reference.
These are not part of an insurance company’s description that consists only of the company name.
We observe that any token occurs at most once in a value of attribute Name, so the token frequency
tfInsurance,ci

is either 0 or 1 for a given candidate ci . We further observe that among the ten candidates,
six contain the token Insurance so idfInsurance,ci

= 10
6 . Based on these values, we obtain, for instance,

tf -idfInsurance,c4 = log(1 + 1) × log
(

10
6

)
≈ 0.07. Similarly, we obtain tf-idfFarmers,c4

≈ 0.30 and
tf-idfLiberty,c7

= 0.30.
We now can compute the cosine similarity between the two strings s1 = Farmers Insurance

and s2 = Liberty Insurance. Based on the tokens that s1 and s2 contain, we obtain the following
vectors V and W as depicted in Figure 3.2, assuming the order of strings in Q shown.

28 3. SIMILARITY FUNCTIONS

CID Name
c1 Allstate
c2 American Automobile Association
c3 American National Insurance Company
c4 Farmers Insurance
c5 GEICO
c6 John Hancock Insurance
c7 Liberty Insurance
c8 Mutual of America Life Insurance
c9 Safeway Insurance Group

c10 Westfield

Figure 3.1: Sample table listing insurance compa-
nies

Q V W
Allstate 0 0
America 0 0
Automobile 0 0
Association 0 0
National 0 0
Insurance 0.07 0.07
Company 0 0
Farmers 0.30 0
GEICO 0 0
John 0 0
Hancock 0 0
Liberty 0 0.30
… 0 0

Figure 3.2: Example on computing the
cosine similarity between Farmers Insur-
ance and Liberty Insurance

Using Equation 3.6, we finally obtain CosineSimilarity(V , W) = 0.072√
0.072+0.302

2 ≈ 0.05. We

observe that the similarity score is extremely low, although, at first sight, the strings overlap in half
their tokens. However, the token they overlap in is Insurance, which has a very low weight because it
appears in a large fraction of the candidates. As a consequence, the similarity score is low, too. Note
that in this example, the Jaccard similarity yields a similarity of 0.33.

From the example above, we see that the cosine similarity better reflects the distinguishing
power of tokens, compared to the Jaccard similarity due to different weights assigned to tokens.
These weights can be computed using tf-idf, but we could use any other weight function as well, for
instance, a function specifically designed for a particular domain. Note that it is also possible to use
the weight function in combination with other similarity measure than the cosine similarity.

We further point out that it is often the case that, like in our example, attribute values used
as descriptions contain a token at most once, yielding sparse vectors when using tf-idf as weight
function. However, it is easy to see that the vectors can easily be compressed to include only the
positions where at least one of the two vectors has a non-zero value, which actually corresponds to
a vector containing only tokens of tokenize(s1) ∪ tokenize(s2).

Besides the advantage that the relevance of tokens is better reflected using cosine similarity
with tf-idf weights, the cosine similarity is also not sensitive to word swaps. A drawback of the cosine
similarity as described in this section is the fact that it cannot cope with typographical errors. Two
means to overcome this problem are the use of q-grams, discussed next, and the definition of the
softTFIDF, which we discuss in Section 3.3.3.

3.1. TOKEN-BASED SIMILARITY 29

3.1.3 SIMILARITY BASED ON TOKENIZATION USING q-GRAMS
In q-gram based similarity measures, tokens are not determined based on special characters such as
whitespace or punctuation. Instead, a string is divided into smaller tokens of size q.These tokens are
referred to as q-grams or n-grams. Another difference to tokens we discussed previously is that these
tokens overlap, i.e., one character in a string appears in several tokens (actually, exactly q tokens).
To generate q-grams of size q, we slide a window of size q over the string to be tokenized and
each sequence of characters within the window is a token. To obtain q tokens with the first and last
characters of a string, we introduce a special character not in the initial alphabet and pad the string
with this character.

Example 3.3 Generating q-grams. Consider strings s1 = Henri Waternoose and s2 = Henry
Waternose. We generate 3-grams (also called trigrams) for the two strings that result in the sets of
3-grams below. Note that we use underscore (_) to represent a whitespace and the padding characters
at the beginning and the end of a string are denoted as #.

q-grams of s1 = {##H, #He, Hen, enr, nri, ri_, i_W, _Wa, Wat, ate, ter, ern, rno, noo, oos, ose, se#, e##}
q-grams of s2 = {##H, #He, Hen, enr, nry, ry_, y_W, _Wa, Wat, ate, ter, ern, rno, nos, ose, se#, e##}

Given two sets of q-grams, it is possible to consider these tokens to compute the token-based
similarity measures described in Sections 3.1.1 and 3.1.2, which, as the following example illustrates
results in a similarity score that is less sensitive to typographical errors than the previously described
measures.

Example 3.4 q-gram based token similarity computation. Let us reuse the two strings s1 and s2

and their corresponding sets of q-grams described in Example 3.3. We observe that the two token
sets overlap in 13 q-grams, and we have a total of 22 distinct q-grams. Using the Jaccard similarity
(see Section 3.1.1), we obtain StringJaccard(s1, s2) = 13

22 = 0.59. Using the cosine similarity with
tf-idf weights, we obtain

CosineSimilarity(V , W) = 1.042 × 13√
1.042 × 13 + 1.342 × 5 × √

1.042 × 13 + 1.342 × 4
≈ 0.64

where V and W are the q-gram sets of s1 and s2, respectively.

30 3. SIMILARITY FUNCTIONS

3.2 EDIT-BASED SIMILARITY
Let us now focus on a second family of similarity measures, so called edit-based similarity measures.
In contrast to token-based measures, strings are considered as a whole and are not divided into sets
of tokens. However, to account for errors, such as typographical errors, word swaps and so on, edit-
based similarities allow different edit operations to transform one string into the other, e.g., insertion
of characters, character swaps, deletion of characters, or replacement of characters.

3.2.1 EDIT DISTANCE MEASURES
In general, the edit distance between two strings s1 and s2 is the minimum cost of transforming
s1 into s2 using a specified set of edit operations with associated cost functions. The cost of the
transformation than simply is the sum of the costs of the individual edit operations. In this section,
we limit the discussion to a simple variant of the edit distance that is known as the Levenshtein
distance and we show how to compute it using a dynamic programming algorithm.Readers interested
in more details on the subject are invited to read the overview article on approximate string matching
by Navarro [2001].

Given two strings s1 and s2, the Levenshtein distance LevDist(s1, s2) is equal to the minimum
number of character insertions, deletions, and replacements necessary to transform s1 into s2.

Example 3.5 Levenshtein distance. As an example, consider the two strings s1 = Sean and s2

= Shawn. The Levenshtein distance of these two strings is 2, as we need to (i) replace the e in s1 by
an h and (ii) insert a w to s1 to transform s1 into s2. Obviously, there are infinitely many possibilities
to transform s1 into s2, e.g., we may delete all characters of s1 and subsequently insert all characters
of s2. However, the number of edit operations in this case would be 9, which is not minimal.

A popular algorithm to compute the Levenshtein distance is based on dynamic programming.
It starts by initializing a (|s1| + 1) × (|s2| + 1) matrix M, where |s| denotes the length of a string s.
Once initialized, we fill the matrix M with values computed using the equations below. We denote
the value in the i-th column and j-th row of M as Mi,j , with 0 ≤ i ≤ |s1| and 0 ≤ j ≤ |s2|. The
i-th character in a string s1 is denoted as s1,i .

Mi,0 = i (3.7)
M0,j = j (3.8)

Mi,j =
{

Mi−1,j−1 if s1,i = s2,j

1 + min
(
Mi−1,j ,Mi,j−1,Mi−1,j−1

)
otherwise

(3.9)

Computation proceeds from the top left of the matrix to the bottom right. Once all values in the
matrix have been computed, the result of the algorithm that corresponds to the Levenshtein distance
can be retrieved from M|s1|,|s2|.

Example 3.6 Computing the Levenshtein distance using dynamic programming. Consider
again the two strings s1 = Sean and s2 = Shawn. Figure 3.3(a) shows the matrix M after we

3.2. EDIT-BASED SIMILARITY 31

S h a w n
0 1 2 3 4 5

S 1
e 2
a 3
n 4

S h a w n
0 1 2 3 4 5

S 1 0 1 2 3 4
e 2
a 3
n 4

S h a w n
0 1 2 3 4 5

S 1 0 1 2 3 4
e 2 1 1 2 3 4
a 3 2 2 1 2 3
n 4 3 3 2 2 2

(a) State after initializing (b) State after applying (c) Final state with edit distance
first row and first column Equation 3.9 to second row stored in bottom right corner

Figure 3.3: Computing the edit distance using a dynamic programming approach

initialized the matrix and computed the values of the first row and first column. Let us now focus on
Figure 3.3(b), which shows the state of the algorithm after processing the second row in the matrix.
At M1,1 we see that the first characters of s1 and s2 match, so we look at position M0,0 to determine
the value we should fill in (first line of Equation 3.9). All remaining fields in this row are filled using
the second line of Equation 3.9 because none of the other characters in s2 match the first character,
i.e., S of s1. It is worth pointing out that the first line of Equation 3.9 essentially represents a diagonal
lookup of a value, whereas the second line looks up and left of the current position, determines the
minimum of all three fields, and adds one to this minimum cost. The final result of the algorithm
corresponds to Figure 3.3(c)1. According to this matrix, LevDist(Sean, Shawn) = 2.

As mentioned at the beginning of this section, the Levenshtein distance is a special case of
an edit distance as it uses unit weight and three basic edit operators (insert, delete, and replace
character). Although widely used in practice for duplicate detection, the Levenshtein distance is
not a suitable similarity measure when whole segments of a string differ, e.g., when one string is a
prefix of the second string (Prof. John Doe vs. John Doe) or when strings use abbreviations (Peter J
Miller vs. Peter John Miller). These problems are primarily due to the fact that all edit operations
have equal weight and that each character is considered individually. Further edit distance measures
have been proposed to cope with these problems, including the Smith-Waterman distance and the
use of affine gaps. We do not discuss these measures in detail (they all use concepts and algorithms
similar to those used to compute the Levenshtein distance) but highlight their effect on the final
distance score.

Intuitively, the Smith-Waterman distance allows to identify the longest common subexpres-
sion between two strings [Smith and Waterman, 2001]. For instance, it determines that the longest
common subexpression between s1 = Prof. John Doe and s2 = John Doe is the string John Doe. Based
on this output of the Smith-Waterman distance, we can now argue that this common subexpression
actually corresponds to s2, which is simply missing a prefix compared to s1. Conceptually, we divide
the strings into a prefix, a common subexpression, and a suffix and can assign lower weights to the

1It is possible to determine the actual operations to transform s1 into s2 with minimum cost; however, this is not pertinent to
duplicate detection, and we thus omit the discussion.

32 3. SIMILARITY FUNCTIONS

insertion or deletion of blocks of size l (a block corresponds to a prefix or suffix) than to the insertion
of l individual characters. Hence, using the Smith-Waterman distance, the existence of a prefix or a
suffix is less penalized than in the Levenshtein distance.

The Smith-Waterman distance divides the original strings into a prefix, a common subexpres-
sion, and a suffix. This, however, is not sufficient to lower the penalty of gaps within the string, e.g.,
due to abbreviations,missing words, etc.Essentially, it does not reflect the case where several common
subexpressions, divided by non-matching character sequences exist.This problem is addressed by the
affine gap distance [Waterman et al., 1976]: It allows edit operations, notably insertion and deletion
of complete blocks within a string and assigns these block insertions and deletions less weight than to
the insertion or deletion of the individual characters in a block. As an example, let s1 = Peter J Miller
and s2 = Peter John Miller. We see two common subexpressions, i.e., Peter J and _Miller, and one
block of characters that needs to be inserted in order to transform s1 into s2, i.e., ohn.The cost of this
block can be computed as the cost of opening a block o plus the cost e of extending the block by one
character. Hence, the cost of inserting this block is, for instance, o + 2e = 1 + 2 × 0.1 = 1.2, given
o = 1 and e = 0.1. This cost is lower than the cost of inserting three characters in the Levenshtein
distance (the cost would be 3 using unit weights for character insertion). Consequently, the affine
gap distance gives the possibility to penalize less the non-matching blocks of characters within a
string, which is beneficial when comparing strings that contain abbreviations or that are missing
some tokens.

3.2.2 JARO AND JARO-WINKLER DISTANCE
In this section, we discuss two similarity measures that account for mismatches in two strings by
allowing character transpositions, an edit operation we have not seen so far. Also, their computation
is not based on dynamic programming.

The Jaro similarity [Jaro, 1989] essentially compares two strings s1 and s2 by first identifying
characters “common” to both strings. Two characters are said to be common to s1 and s2 if they are
equal and if their positions within the two strings, denoted as i and j , respectively, do not differ by
more than half of the length of the shorter string. Formally, |i − j | ≤ 0.5 × min(|s1|, |s2|). Once all
common characters have been identified, both s1 and s2 are traversed sequentially, and we determine
the number t of transpositions of common characters where a transposition occurs when the i-th
common character of s1 is not equal to the i-th common character of s2. Given the set σ of common
characters and the number of transpositions t , the Jaro similarity is computed as

JaroSim = 1

3
×

(|σ |
|s1| + |σ |

|s2| + |σ | − 0.5t

|σ |
)

Example 3.7 Let s1 = Prof. John Doe and s2 = Dr. John Doe. Thus, |s1| = 14 and |s2| = 12.
The maximum distance between two common characters then is 0.5 × min(12, 14) = 6. The set
of common characters is σ = {r, ., _, J, o, h, n, _, D, o, e}, where _ denotes a space character. We

3.2. EDIT-BASED SIMILARITY 33

P r o f . _ J o h n _ D o e

D r . _ J o h n _ D o e

Figure 3.4: Matching characters between Prof. John Doe and Dr. John Doe used by the Jaro distance

illustrate the common characters in Figure 3.4.We see that none of the matching lines crosses another
matching line, which indicates that none of the common characters yields to a transposition, so we
have t = 0. The final Jaro distance thus is

JaroSim(s1, s2) = 1

3
×

(
11

12
+ 11

14
+ 11 − 0

11

)
≈ 0.9

The Jaro similarity generally performs well for strings with slight spelling variations. However,
due to the restriction that common characters have to occur in a certain distance from each other,
the Jaro distance does not cope well with longer strings separating common characters. As a simple
example, consider s1 = Professor John Doe and s2 = John Doe. We can identify only two common
characters, as illustrated in Figure 3.5. This yields a low similarity score of 0.45 although s1 is the
same as s2 except for a (long) prefix. The same exercise can be repeated for the case where one string
is equal to the other except for an additional suffix.

P r o f e s s o r _ J o h n _ D o e

J o h n _ D o e

Figure 3.5: Matching characters between Professor John Doe and John Doe used by the Jaro distance

In the domain of person names, which is a widely studied domain with highly specialized
measures, it is true that the problem described above mostly occurs for names with a common prefix
but where one name has an additional suffix (e.g., Peter J vs. Peter John stored as a first name). An
extension of the Jaro similarity, called the Jaro-Winkler similarity [Winkler and Thiboudeau, 1991],
considers this special case. Given two strings s1 and s2 with a common prefix ρ, the Jaro-Winkler
similarity is computed as

JaroWinklerSim(s1, s2) = JaroSim(s1, s2) + |ρ| × f × (1 − JaroSim(s1, s2))

where f is a constant scaling factor for how much the similarity is corrected upwards based on the
common prefix ρ.

Example 3.8 Let s1 = Peter and s2 = Peter Jonathan.These two strings have 5 common characters
that correspond to the common prefix ρ = Peter. Clearly, there are no permutations of characters

34 3. SIMILARITY FUNCTIONS

in σ so t = 0. It follows that JaroSim(s1, s2) = 0.78. Assuming a scaling factor f = 0.1 the Jaro-
Winkler similarity is equal to

JaroWinklerSim(s1, s2) = 0.78 + 5 × 0.1 × (1 − 0.78) = 0.89

3.3 HYBRID FUNCTIONS
In Section 3.1, we discussed token-based similarity measures that divide the data used for com-
parisons into sets of tokens, which are then compared based on equal tokens. We further discussed
similarity measures that keep data as a whole in the form of a string and that compute the similarity
of strings based on string edit operations that account for differences in the compared strings.

In this section, we discuss similarity measures that combine both tokenization and string simi-
larity in computing a final similarity score.We refer to these algorithms as hybrid similarity functions.
The measure covered in Section 3.3.1 extends Jaccard similarity to also include similar tokens in
the set of overlapping descriptive data. The second hybrid measure, discussed in Section 3.3.2, is
the Monge-Elkan measure. Finally, Section 3.3.3 covers an extension of the cosine similarity using
tf -idf for weight computation.

3.3.1 EXTENDED JACCARD SIMILARITY
We first describe two extensions to the Jaccard similarity that have been proposed throughout the
literature [Ananthakrishna et al., 2002; Weis and Naumann, 2005]. The first extension accounts for
similar tokens and the second extension introduces weight functions.

Let s1 and s2 be two strings that can be divided into sets of tokens by a tokenization function,
denoted as tokenize(·). In the original definition of the Jaccard similarity (see Section 3.1.1), only
equal tokens are part of the intersection of the token sets of s1 and s2. The idea behind the first
extension of the Jaccard similarity is to also include similar tokens in the intersection to allow for
small errors, e.g., typographical errors between shared tokens.

Formally, let TokenSim(t1, t2) be a string similarity measure that compares two tokens t1 ∈
tokenize(s1) and t2 ∈ tokenize(s2). Any of the string similarity measures discussed in Section 3.2 can
be applied here. We define the set of shared similar tokens between s1 and s2 as

Shared(s1, s2) = {(ti , tj)|ti ∈ tokenize(s1) ∧ tj ∈ tokenize(s2) : TokenSim(ti , tj) > θstring}
where θstring is a secondary similarity threshold. Similarly, we define the tokens unique to s1 as

Unique(s1) = {ti |ti ∈ tokenize(s1) ∧ (ti , tj) /∈ Shared(s1, s2)}
Analogously, the tokens unique to s2 are defined by

Unique(s2) = {tj |tj ∈ tokenize(s2) ∧ (ti , tj) /∈ Shared(s1, s2)}

3.3. HYBRID FUNCTIONS 35

A second extension of the Jaccard similarity that is commonly used in combination with
the previous one is to introduce a weight function w for matching and non-matching tokens. For
instance, token pairs in Shared may get a weight that corresponds to their similarity. An aggregation
function A then aggregates the individual weight.

Using the two extensions above, the hybrid Jaccard similarity is defined as

HybridJaccard =
A(ti ,tj)∈Shared(s1,s2)w(ti, tj)

A(ti ,tj)∈Shared(s1,s2)w(ti, tj) + A(ti)∈Unique(s1)w(ti) + A(tj)∈Unique(s2)w(tj)

Note that instead of a secondary string similarity measure, we may also use a string dis-
tance measure to identify similar tokens. In this case, we simply replace TokenSim(ti , tj) > θstring

by TokenDist(ti , tj) ≤ θstring. As a final remark, it is also possible to use different weight functions
for Shared(s1, s2), Unique(s1), and Unique(s2). For instance, if token similarity is used as weight
function for Shared(s1, s2), we have to use another function for both Unique sets, because we simply
have no similarity scores within these sets.

Example 3.9 Hybrid Jaccard similarity Let s1 = Henri Waternoose and s2 = Henry Peter Water-
nose. Using any of the token-based similarity measures we discussed, the similarity is zero assuming
tokenization based on whitespaces. Indeed, the two strings do not share any equal token. Using the
hybrid Jaccard similarity measure, we obtain

Shared(s1, s2) = {(Henri, Henry), (Waternoose, Waternose)}
when using the Levenshtein distance and θstring = 1 to determine similar tokens. It follows that
Unique(s1) = ∅ and Unique(s2) = {Peter}. Let us further assume that we use unit weights for Unique

sets, whereas the weight of similar tokens (ti , tj) is given by 1 − LevDist (ti ,tj)

max(|ti |,|tj |) . The aggregation
function A simply sums up individual weights. Based on these assumptions, the result of the hybrid
Jaccard similarity is

HybridJaccard(s1, s2) = 0.8 + 0.9

0.8 + 0.9 + 0 + 1
= 0.63

3.3.2 MONGE-ELKAN MEASURE
Let us now discuss the Monge-Elkan similarity measure [Monge and Elkan, 1996]. Intuitively, it
first tokenizes two strings s1 and s2 and matches every token ti from s1 to the token tj in s2 that
has the maximum similarity to ti , i.e., where TokenSim(ti , tj)is maximal. These maximum similarity
scores obtained for every token of s1 are then summed up, and the sum is normalized by the number
of tokens in s1. Formally, the Monge-Elkan distance is defined by

36 3. SIMILARITY FUNCTIONS

MongeElkanSim(s1, s2) = 1

|tokenize(s1)|
|tokenize(s1)|∑

i=1

|tokenize(s2)|
max
j=1

TokenSim(ti , tj)

Example 3.10 Let us compare two strings s1 = Henri Waternoose and s2 = Henry Peter Waternose.
The token of s2 with maximum similarity to Henri is obviously Henry, and the most similar string
to Waternoose is Waternose. Let us assume that the two maximum similarity scores equal 0.8 and 0.9,
respectively. Then, we obtain

MongeElkanSim(s1, s2) = 0.8 + 0.9

2
= 0.85

3.3.3 SOFT TF/IDF
The final hybrid similarity measure we discuss extends the cosine similarity based on tf-idf in the
same spirit as the extension of Jaccard: similar strings, as determined by a secondary string similarity
measure further increase the similarity. Again, let TokenSim(t1, t2) be a secondary string similarity
function used to compare tokens. Let Close(θstring, s1, s2) be the set of tokens ti ∈ tokenize(s1) such
that there is some tj ∈ tokenize(s2) where TokenSim(ti , tj) > θstring. That is,

Close(θstring, s1, s2) = {ti |ti ∈ tokenize(s1) ∧ ∃tj ∈ tokenize(s2) : TokenSim(ti , tj) > θstring}
Note that opposed to the definition of Shared(s1, s2) that we use to compute extended Jaccard
similarity, Close(θstring, s1, s2) only includes tokens from string s1 and not from s2. Tokens from
s2 similar to tokens from s1 included in Close are considered using the following equation that
determines the most similar token tj ∈ tokenize(s2) to any ti ∈ Close(θstring, s1, s2):

maxsim(ti , tj) = max
tj ∈tokenize(s2)

TokenSim(ti , tj)

Then, the hybrid version of the cosine similarity measure, called softTFIDF is defined as

SoftTFIDF(s1, s2) =
∑

ti∈Close(θsim,s1,s2)

(
tf-idfti
||V || ×

tf-idftj
||W || × maxSim(ti , tj)

)

where V and W are the vector representations of s1 and s2 containing tf-idf scores described in
Section 3.1.2.

Example 3.11 SoftTF/IDF. Let us illustrate softTFIDF reusing the strings s1 = Henri Waternoose
and s2 = Henry Peter Waternose. As an example, assume that the vector representations of these two

3.4. MEASURES FOR DATA WITH COMPLEX RELATIONSHIPS 37

strings, respectively, are

V = {0.6, 0.6, 0, 0, 0}
W = {0, 0, 0.5, 0.3, 0.6}

We determine Close(θstring, s1, s2) = {Henri, Waternoose} because for both of these tokens, a
similar token exists in s2. Then, the hybrid cosine similarity is

softTFIDF(s1, s2) = 0.6√
0.62 + 0.62

× 0.5√
0.52 + 0.32 + 0.62

× 0.8

+ 0.6√
0.62 + 0.62

× 0.6√
0.52 + 0.32 + 0.62

× 0.9

≈ 0.79

The main difference between the Monge-Elkan similarity and softTFIDF is that the Monge-
Elkan similarity assumes all tokens to have equal weight whereas softTFIDF uses tf-idf scores to
reflect the distinguishing power of a token in a token weight. Another, more subtle difference is that
the SoftTFIDF only considers similarities between tokens that are above a given threshold θ . Such a
threshold is not present in the Monge-Elkan similarity where any token in s1 is matched to a token
in s2, no matter how low the similarity between these two tokens may be.

To summarize, all hybrid measures combine the benefits of both token-based and edit-based
measures for duplicate classification: edit-based measures account for errors within tokens whereas
token-based measures account for errors related to missing tokens and token swaps.

3.4 MEASURES FOR DATA WITH COMPLEX
RELATIONSHIPS

All measures discussed so far consider only the object description of candidates. As we have seen
in Section 2.3, it is possible to further consider relationships between candidates. In this section,
we provide an overview of similarity measures devised specifically for duplicate detection in semi-
structured data, most notably, for XML data. More similarity measures that consider relationship
descriptions of candidates exist, but these usually are extensions of token-based similarity measures
that consider related candidates similarly to tokens [Weis, 2008].

The discussion of Section 2.3.2 shows that challenges for similarity measures arise when
dealing with semi-structured XML data. As a reminder, these challenges arise due to element op-
tionality, element context, and varying element cardinality.Throughout the literature, three similarity
measures have explicitly been defined for XML.

The structure-aware XML distance measure [Milano et al., 2006] computes the distance
between two XML elements based on their substructure, that is, the substructure stands in as a

38 3. SIMILARITY FUNCTIONS

description of the candidate that corresponds to the root XML element.To compare two candidates,
an overlay between their two subtrees is computed. Informally, an overlay computes a weighted 1:1
matching between the two subtrees, so that nodes or leaves are matched only if they have the same
path from the root.That is, it is not possible to match the same XML elements in different contexts.
The weight assigned to a match is based on a distance measure, e.g., edit distance for string values in
leaves. Several possible overlays may exist, and the goal is to determine an overlay with minimal cost
(sum of match weights) and such that the overlay is not a proper substructure of any other possible
overlay. Once such an overlay has been determined, the distance between the two candidates is
simply the cost of the overlay. We observe that the different semantics of both element optionality
and element context are not distinguished, but element cardinality is not a problem.

The approach presented by Leitão et al. [2007] constructs a Bayesian network, taking two
XML elements as input, each rooted in the candidate element and having a subtree that corresponds
to the description. Nodes in the Bayesian network represent duplicate probabilities of (i) a set of
simple XML elements, (ii) a set of complex XML elements, (iii) a pair of complex elements, or
(iv) a pair of simple elements2. The algorithm that constructs the Bayesian network assumes that
each XML element occurs in exactly one context. Probabilities are propagated from the leaves of
the Bayesian network (that correspond to probabilities of pairs of simple elements) to the root and
can be interpreted as similarities. As nodes either represent pairs or sets of elements, the different
semantics of a missing element vs. a NULL value cannot be captured because the lack of an element
results in the probability node not being created at all.

The DogmatiX similarity measure [Weis and Naumann,2005] is aware of the three challenges
described in Section 2.3.2 that arise when devising a similarity measure for XML data. However,
DogmatiX does not distinguish between the different semantics that both element optionality and
element context allow. On the other hand, DogmatiX distinguishes between XML element types
and real-world types so that all candidates of the same type are treated as such, even though they
may occur in a different context. Essentially, to compute the DogmatiX similarity, we form pairs
of descriptions (there is no distinction between object description and relationship description) and
divide them into two sets: similar description pairs and singleton descriptions. A similar description
pair is defined as a pair of descriptions whose pairwise string similarity, for instance, computed
based on the string edit distance, is above a given threshold. Any description that is not part of
any similar description pair is a singleton description. The set of singleton descriptions is further
pruned to account for the fact that some descriptions cannot have a similar partner due to different
cardinalities of elements of that type. Both similar and singleton descriptions are weighted based on
a variation of the inverse document frequency.The overall similarity is the ratio of the sum of weights
of all similar description pairs over the sum of weights of all descriptions (similar or singleton).

In summary, we observe that all similarity measures proposed for XML duplicate detection
cope with varying element cardinality, whereas only DogmatiX explicitly considers the problem

2A simple XML element is an XML element that nests only a text node. Complex XML elements, on the other hand, nest only
XML elements and no text node.

3.5. OTHER SIMILARITY MEASURES 39

of element context when generating descriptions. None of the similarity measures distinguishes
between possibly different semantics caused by alternative representations of missing data or by
different element contexts when computing a similarity score. It remains an open research issue to
define measures that make these distinctions and to investigate how these distinctions affect the
quality of duplicate detection. Besides specialized similarity measures for XML, we also point out
algorithms that improve efficiency by pruning comparisons by exploiting properties of hierarchically
structured data in Section 4.2.1.

3.5 OTHER SIMILARITY MEASURES

The measures discussed so far are the most widely used for duplicate detection. However, none of
these measures are applicable to all conceivable scenarios. As we have seen, some of the measures
specialize on short strings with few typographical errors whereas others have been devised to be
insensitive to word swaps. In this section, we summarize similarity measures for three further special
cases, i.e., phonetic similarity, numeric similarity, and structural similarity.

Phonetic similarity. Whereas previously discussed measures focus on string similarity, phonetic
similarity focuses on the sounds of spoken words, which may be very similar despite large
spelling differences.For instance, the two strings Czech and cheque are not very similar; however,
they are barely distinguishable phonetically. Therefore, they have a large phonetic similarity.

Soundex is a very common phonetic coding scheme, and the idea behind the computation of
phonetic similarity is to first transform strings (or tokens) into their phonetic representation
and to then apply the similarity measures on strings or tokens on the soundex representa-
tion [Bourne and Ford, 1961].

Numeric similarity. None of the discussed measures are of much use when comparing numerical
data. Typically, numbers are simply considered as strings, which yields unsatisfactory results,
for instance, when comparing 1999 and 2000. A solution is to measure the difference of two
numbers compared, e.g., by computing |1999 − 2000|. However, in different domains, the
difference in numbers has different meanings. For instance, when measuring differences on
a microscopic scale, a difference of 1 mm is a large difference, whereas on a macroscopic
scale 1 mm is almost nothing. A possible way to “normalize” such a difference is to take the
distribution of values in the domain into account.

Structural similarity. As a final remark, we point out that none of the similarity measures discussed
so far considers the structure of the data; they all focus on content. However, considering the
structure may also be relevant, e.g., when comparing trees that correspond to XML data.
The most widely known structural similarity measure is the tree edit distance and variations
thereof [Shasha et al., 1994]. Essentially, the tree edit distance is an edit-based distance mea-
sure (such as the Levenshtein distance), but instead of allowing edit operations on characters of

40 3. SIMILARITY FUNCTIONS

a string, it considers edit operations on nodes of a tree structure. Due to its high computational
complexity, it is rarely used for duplicate detection.

3.6 RULE-BASED RECORD COMPARISON
Up to this point, we have discussed similarity measures and distance measures that compute a real-
valued score. This score is then input to a duplicate classifier as described at the beginning of this
chapter (see p. 23). As a reminder, if the similarity score, as returned by a similarity measure, is above a
given threshold θ , the compared pair of candidates is classified as a duplicate and as a non-duplicate,
otherwise.

In this section, we discuss a complementary method to similarity measures for classifying
candidate pairs as duplicates or non-duplicates: Rule-based record comparison approaches build
rules on attributes (or combinations of attributes) to make a classification. These rules may use
similarity measures for attribute comparisons. An example of such a rule for two Person candidates
c1 and c2 is:

first name of c1 is similar to first name of c2

∧ last name of c1 equals last name of c2

⇒ c1 and c2 are duplicates

We note that in contrast to similarity measures that apply to any string data from any domain,
rule-based approaches make use of domain knowledge and are thus domain-specific approaches
to duplicate classification. We discuss two variants of rule-based record comparisons, namely an
approach that builds on equational theory [Hernández and Stolfo, 1998], and profile-based com-
parisons [Doan et al., 2003; Weis et al., 2008].

3.6.1 EQUATIONAL THEORY
In this section, we describe an approach that compares two candidates c1 and c2 using implications
of the form

P ⇒ c1 ≡ c2

where P is a complex predicate over attributes in the candidates’ object descriptions, i.e., in OD(c1) ∪
OD(c2), and the equivalence relationship between c1 and c2 signifies that these candidates are
considered duplicates. A set of such rules composes a domain-specific equational theory that allows
to classify candidates based on a set of rules.

Let us consider the predicate P more closely: P is a boolean expression that can be written
in conjunctive normal form, i.e., as a conjunction of (disjunctions of) terms:

P = (term1,1 ∨ term1,2, ∨ . . .) ∧ (term2,1 ∨ term2,2 ∨ . . .) ∧ . . . ∧ (termn,1 ∨ termn,2 ∨ . . .)

Zooming in on the actual terms, the equational theory allows virtually any comparison be-
tween attribute values. However, to make sensible comparisons, these comparisons apply to common

3.6. RULE-BASED RECORD COMPARISON 41

attributes of c1 and c2. Indeed, it would not make much sense to use gender information for com-
parison if only c1 (and not c2) contained gender information. We introduce an example that clarifies
the concept of an equational theory.

Example 3.12 Equational theory. Consider a person database PersDB1 that contains the records
depicted in Figure 3.6(a) and a second person database PersDB2 represented in Figure 3.6(b). We
observe that not all information is represented in both databases. Indeed, whereas name and social

security number (ssn) are represented in both sources (albeit using different representations in the
case of person names), age is present only in PersDB1 and salary is stored only in PersDB2.

ssn fname mname lname age
123 Peter John Miller 46
345 Jane Smith 33
678 John Jack Doe 9

ssn name salary
123 Peter Miller 80k
345 Jane B. Smith 60k
679 Jack John Doe 100k

(a) PersDB1 (b) PersDB2

Figure 3.6: Two sample Person databases

To identify duplicate persons among PersDB1 and PersDB2, suppose we use the following
three rules to compare two candidate persons c1 and c2:

c1.ssn = c2.ssn ∧ concat(c1.f name, c1.mname, c1.lname) ≈ c2.name ⇒ c1 ≡ c2

c1.ssn = c2.ssn ∧ substr(c1.lname, c2.name) ∧ substr(c1.f name, c2.name) ⇒ c1 ≡ c2

substr(c1.f name, c2.name) ∧ substr(c1.mname, c2.name) ∧ substr(c1.lname, c2.name) ⇒ c1 ≡ c2

We observe that terms may use complex comparison functions: for instance, in the first rule, we first
concatenate the three name components of c1 and then compare the concatenated result to the name
of c2, using similarity (≈) as comparison operator. This operator indicates that the two strings being
compared need to be similar, which is, for instance, determined using one of the previously defined
similarity measures. In the remaining two rules, substr(l, r) denotes that the string l is a substring
of r .

Let us now compare all persons in PersDB1 with all persons in PersDB2. We observe that
when comparing both records with ssn = 123, Rule 1 is not satisfied because PersDB2 is missing
the middle name. However, the second rule identifies these two representations to be duplicates
because the social security numbers are equal and the first name and the last name in PersDB1 occur
in the corresponding name field in PersDB2. Finally, Rule 3 fails to identify the duplicate again,
because PersDB2 does not contain the middle name of Peter Miller. Applying these rules, we find
two more duplicates: Rule 2 classifies both tuples with ssn = 345 as duplicates and Rule 3 determines
the tuples with ssn = 678 and ssn = 679 to be duplicates.

42 3. SIMILARITY FUNCTIONS

3.6.2 DUPLICATE PROFILES
In the equational theory discussed in Section 3.6.1 rules are used exclusively to classify duplicates.
If none of the rules qualifies two candidates as duplicates, they are implicitly classified as non-
duplicates. Let us refer to the rules of equational theory as positive rules. In addition to these rules, it
is possible to add so called negative rules to the equational theory [Weis et al., 2008]. These classify
pairs of candidates as non-duplicates and have the form:

P ⇒ c1 �≡ c2

where P is again a complex predicate as described in Section 3.6.1.

Example 3.13 Negative rule. Reusing the sample tables of Figure 3.6, a possible negative rule is

c1.ssn �= c2.ssn ⇒ c1 �≡ c2

This rule excludes candidates c1 and c2 being duplicates if their social security numbers do not
match.

We can combine positive and negative rules as a sequence of classifiers to form a duplicate
profile, such that pairs not classified by classifier i are input to the subsequent classifier i + 1. It is
interesting to note that the order of rules in a profile that mixes positive and negative rules affects
the final output, in contrast to equational theory where the output is always the same no matter the
order of the rules. As a simple example, assume we had applied the negative rule of Example 3.13
before Rule 3 of Example 3.12. Then, the pair of Persons with respective ssn of 678 and 679 would
be classified as non-duplicates and they would not be passed on to the classifier using Rule 3, so they
are not classified as duplicates.

Both positive rules and negative rules only use information that is present in both candidates.
In the case where both c1 and c2 contribute additional, non-shared information, it is possible to
further refine a duplicate profile based on this information [Doan et al., 2003]. Intuitively, the idea
is to make a plausibility check of a duplicate classification to possibly revoke a previous classification
based on the combined information of c1 and c2. This plausibility check can be done using hard
constraints similar to the negative rules that revoke a preliminary duplicate classification. A second
possibility is to further use soft constraints that do not decide by themselves, but rather output their
confidence in a pair being a duplicate. The individual confidence scores are finally combined to yield
a final classification result.

43

C H A P T E R 4

Duplicate Detection Algorithms
As presented in Chapter 2, the problem of duplicate detection needs two components for its solution.
After reviewing similarity measures to decide upon duplicity of candidate pairs we now turn to the
second component – algorithms that decide which candidates to compare.

With Figures 2.2 we had motivated the quadratic search space as a matrix of candidate pairs.
The goal of the algorithms presented in Section 4.1 is to reduce the number of comparisons while
not compromising the quality of the result. If not all candidates are compared, there is the danger of
missing some duplicates. Chapter 5 elaborates on this tradeoff. In Section 4.2, we discuss algorithms
that are suited for data with complex relationships. Those algorithms have in common that they
detect pairs of duplicates and form duplicate partitions by simply computing the transitive closure
based on pairwise classification results. In Section 4.3, we discuss more sophisticated clustering
algorithms to obtain duplicate partitions.

4.1 PAIRWISE COMPARISON ALGORITHMS

To avoid a prohibitively expensive comparison of all pairs of records, a common technique is to
carefully partition the records into smaller subsets. If we can assume that duplicate records appear
only within the same partition, it is sufficient to compare all record-pairs within each partition.
Two competing approaches are often cited: Blocking methods strictly partition records into disjoint
subsets, for instance, using zip codes as partitioning key. Windowing methods, in particular the
Sorted-Neighborhood method, sort the data according to some key, such as zip code, and then
slide a window of fixed size across the sorted data and compare pairs only within the window. Both
methods can be enhanced by running multiple partitioning/windowing passes over the data.

4.1.1 BLOCKING
Blocking methods pursue the simple idea of partitioning the set of records into disjoint partitions
(blocks) and then comparing all pairs of records only within each block [Ananthakrishna et al., 2002;
Baxter et al., 2003; Bilenko et al., 2006].Thus, the overall number of comparisons is greatly reduced.
Given n records and b partitions, the average size of each partition is n

b
. In each partition each record

pair must be compared, which yields a total number of pairwise comparisons of

b ·
n
b
(n
b

− 1)

2
= n(n

b
− 1)

2
= 1

2

(
n2

b
− n

)

44 4. DUPLICATE DETECTION ALGORITHMS

assuming all partitions are of equal size.Table 4.1 (see page 48) gives an overview of the computational
complexity of the different methods compared to the exhaustive approach of comparing all pairs of
records.

Figure 4.1 repeats the matrix from Figure 2.2 (p. 17). Assume that records 1 – 20 are sorted
by the partitioning key, both horizontally and vertically. The candidate pairs after partitioning are
shaded. Clearly, there are much fewer candidates than before, namely only 47 compared to the
complete matrix with 190 pairs.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20r1 r2 r3 r4 r5 r6 r7 r8 r9 r1 r1 r1 r1 r1 r1 r1 r1 r1 r1 r2

r1

r2

r3r3

r4

r5

r6r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

r16

r17

r18

r19

r20

Figure 4.1: Matrix of duplicate candidates with blocking algorithm.

An important decision for the blocking method is the choice of a good partitioning predicate,
which determines the number and size of the partitions. They should be chosen in a manner that
potential duplicates appear in the same partition. For example, for CRM applications a typical
partitioning is by zip code or by the first few digits of zip codes. The underlying assumption is that
duplicates have the same zip code, i.e., there is no typo in the zip code and the customer has not
moved from one zip code to another. If two duplicate records have the same zip code, they appear
in the same partition and thus can be recognized as duplicates. Other partitionings might be by last
name or some fixed-sized prefix of them, by street name, by employer, etc. In general, partitions of
roughly the same and predictable size are preferable. For instance, partitioning by the first letter of

4.1. PAIRWISE COMPARISON ALGORITHMS 45

the last name yields several very small partitions (q, x, …) and some very large partitions (m, s, …).
Especially comparing all pairs in these large partitions can make the problem infeasible.

To drop the assumption that duplicates have the same partitioning key, a multi-pass method
can be employed. That is, the blocking algorithm is run multiple times, each time with a different
partitioning key. The chance that a duplicate pair does not appear together in at least one of the
partitions is very low. It would have to contain errors in every attribute that is used for partitioning.

After the multiple runs, the transitive closure is formed over all detected duplicates because
duplicity is inherently a transitive relation, and thus more correct duplicate pairs can be reported.
Even within a single run, the transitive closure returns duplicates that were missed by the similarity
measure: With an edit distance threshold of 1, Maine St. is close to Main St., which, in turn, is close
to Moin St.. Thus, even though all three strings might appear within the same block, only two pairs
are recognized as duplicates, and the third pair is discovered only through transitivity.

4.1.2 SORTED-NEIGHBORHOOD
Windowing methods, such as the Sorted-Neighborhood method, are slightly more elaborate than
blocking methods. Hernández and Stolfo [1995, 1998] describe the Sorted-Neighborhood Method
(SNM), which is divided into three phases. In the first phase, a sorting key is assigned to each record.
The key does not have to be unique and can be generated by concatenating characters (or substrings
of values) from different attributes. It is useful to carefully select values based on the probability of
errors. For instance, it is more likely to err in a vowel than in a consonant, and it is less likely to err
in the first letter of a name. Thus, a key for a customer record could be defined as:

first 3 constants of last name | first letter of last name | first 2 digits of zip code

In the second phase, all records are sorted according to that key. As in the blocking method,
the assumption is that duplicates have similar keys and are thus close to each other after sorting.The
first two phases are comparable to the selection of a partitioning predicate and the actual partitioning
in the blocking method.

The final, third phase of SNM slides a window of fixed size w across the sorted list of records.
All pairs of records that appear in the same window are compared.Thus,when sliding the window,one
record moves out of the window and a new record enters it. Only this new record must be compared
with the remaining w − 1 records.The size of the window represents the trade-off between efficiency
and effectiveness; larger windows yield longer runtimes but detect more duplicates. In experiments,
window sizes between 10 and 30 have been reported to be effective. Figure 4.2 shows the candidate
pair matrix with those pairs shaded that are compared by SNM with a windows size of 4. Again,
the number of comparisons is reduced from 190 to 54.

The sorting key should be chosen distinct enough so that the number of records with the same
key is not greater than the window size. Otherwise, not all records with the same key are compared
and duplicates may be overlooked. A more distinct key enable a more fine-tuned sorting. Also, the
first few characters of the key are obviously more important than the last few. Thus, one should
choose attributes that are likely to contain few errors for the first characters of the sorting key.

46 4. DUPLICATE DETECTION ALGORITHMS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20r1 r2 r3 r4 r5 r6 r7 r8 r9 r1 r1 r1 r1 r1 r 1 r 1 r 1 r1 r 1 r 2

r1

r2

r3r3

r4

r5

r6r6

r7

r8

r9

r10

r11

r12

r13

r14

r15

r16

r17

r18

r19

r20

Figure 4.2: Matrix of duplicate candidates with the Sorted-Neighborhood algorithm.

As opposed to the blocking method, SNM requires a transitive closure step not only due to the
nature of the similarity measure but also because duplicates appear in different partitions/windows:
Figure 4.3 shows a situation where two duplicate pairs are found within different windows and only
the transitive closure produces the complete set of duplicate pairs. Records r3, r3’, and r3” are all
duplicates, but r3 and r3” never appear within the same window of size 4. Only the transitive closure
using their mutual duplicity with r3’ reveals that they too are duplicates.

r1 r2 r3 r4 r5 r3‘ r7 r3‘‘ r9 r10 r11 r12 r13 r14 r15

Figure 4.3: Transitive closure for SNM even after a single pass.

As for the blocking method, there is a chance that the sorting characters contain errors. To
avoid mis-sorts, multi-pass variants of SNM produce multiple keys and perform the sorting and
windowing multiple times. As with the blocking method, the transitive closure is finally calculated.
The Multipass Sorted-Neighborhood method is summarized here:

1. Choose set of keys K .

4.1. PAIRWISE COMPARISON ALGORITHMS 47

2. For each key k ∈ K :

(a) Sort records according to k.

(b) Slide window over records comparing all pairs within a window.

3. Determine transitive closure

The implementation of SNM is usually done with the help of a DBMS: Using a surrogate key
for the records, key creation generates a temporary table with the surrogate key column along with
one column for each sorting key. In each pass, this temporary table, is sorted by the corresponding
sorting key column and joined with the main table to fetch the records to be compared. Thus, it
can be expected that each run needs only three read-passes over the data – one to create the keys, a
second for sorting the temporary table and a third pass to join and compare the records within the
window.

Compared to the exhaustive method, the number of comparisons is greatly reduced, namely to
w · n. If w < log n, the comparisons are dominated by the sorting phase, which requires O(n log n)

comparisons. As opposed to the blocking method, the number of comparisons is accurately pre-
dictable.

Research has produced many variants of SNM: Monge and Elkan [1997] adopt the general
SNM approach, but propose both a domain-independent similarity measure and the union-find
data structure to efficiently manage candidate pairs and detected duplicate groups. It defines a
representative of each already detected duplicate group. Records are first compared only to that
representative, and thus many comparisons are avoided. Only if similarity to the representative is
high enough, does a more complete comparison with all member of the duplicate group commence.
An SNM variant for nested XML data is presented by Puhlmann et al. [2006] and described among
other algorithms for non-relational data in Section 4.2.1.

4.1.3 COMPARISON
Blocking and Sorted-Neighborhood have much in common. Both aim at reducing the number
of comparisons by making intelligent guesses as to which pairs of records have a chance of being
duplicates. Both rely on some intrinsic ordering of the data and the assumption that records that
are close to each other with respect to that order have a higher chance of being duplicates than
other pairs of records.Their closeness is maybe best characterized by the work of Yan et al. [2007] in
which they present an “adaptive sorted neighborhood” method, which in fact (and inadvertently?)
turns out to be a blocking method. A deeper comparison and a generalization of both methods is
presented by Draisbach and Naumann [2009]. Table 4.1 shows the computational complexities of
the different methods and compares them to the full enumeration of all pairs of records.

Finally, it has been noted that a more effective way of reducing the search space is to prune
entire records, not just pairs. If it can be easily shown for a particular record that its similarity to all
other records is below the threshold, all candidate pairs that involve this record can be eliminated.
However, checking this condition is not trivial and only applicable in few occasions.

48 4. DUPLICATE DETECTION ALGORITHMS

Table 4.1: Complexity analysis with number of partitions b, window size w and
number of records n (from Draisbach and Naumann [2009])

Blocking Windowing Full enum.
Number of comparisons 1

2 (n2

b
− n) (w − 1)(n − w

2) n2−n
2

Key generation O(n) O(n) n/a
Sorting O(n log n) O(n log n) n/a

Detection O(n2/b) O(wn) O(n2)

Overall O(n (n/b + log n)) O(n(w + log n)) O(n2)

4.2 ALGORITHMS FOR DATA WITH COMPLEX
RELATIONSHIPS

In the previous section, we discussed algorithms that efficiently determine duplicate pairs.They have
in common that they classify a pair of candidates as duplicate or non-duplicate solely by using the
object description of the two candidates. That is, pairs of candidates are compared and classified
independently of other candidates. In Section 2.3, we discussed that for comparisons, we can use
relationship descriptions in addition to object descriptions during comparisons.

In this section, we describe algorithms that consider relationships. In Section 4.2.1, we discuss
algorithms specialized to hierarchical relationships, including XML data.These algorithms not only
use relationship descriptions to potentially improve the effectiveness of duplicate detection, but
they also prune pairwise comparisons based on relationships. In Section 4.2.2, we then show how
relationships between candidates that result in a graph structure potentially improve effectiveness.

4.2.1 HIERARCHICAL RELATIONSHIPS
All algorithms that exploit hierarchical relationships have in common that they assume that a given
candidate type can occur at exactly one level of the hierarchy (although several candidate types may
appear on the same level), i.e., all addresses of a customer appear in the same position in a hierarchy,
but at that same level, there may also be other data, such as phone numbers.

One possibility to exploit the hierarchical structure is to traverse the tree in a top-down
fashion [Ananthakrishna et al., 2002; Weis and Naumann, 2004]. That is, candidates at the top-
most level l1 are compared before we proceed to level l2 and so on.To prune comparisons, algorithms
proceeding in top-down order assume that the parent-child relationships reflect 1:N relationships
of the real world. For instance, assume that cities are nested under countries. This nesting reflects
a 1:N relationship of the real world, as a city is usually not split over several countries, whereas a
country in general has more than one city. Based on the 1:N relationship assumption, it is true that
two candidates on level li+1 may only be duplicates if their parents on level li are duplicates (or are
the same parent). Indeed, it does not make sense to compare cities from different countries. As a
consequence, when traversing the data in a top-down fashion, we can prune comparisons based on
duplicate classifications previously performed on ancestors.

4.2. ALGORITHMS FOR DATA WITH COMPLEX RELATIONSHIPS 49

The SXNM algorithm [Puhlmann et al., 2006] does not assume a 1:N relationship between
parent and child elements, and, therefore, does not apply the same pruning principle. Instead, it
traverses the hierarchy from bottom to top to, for instance,also detect duplicate authors that are nested
under non-duplicate books.Comparisons are pruned using an extension of the Sorted Neighborhood
method. When proceeding from level li to li−1, SXNM uses the knowledge of duplicates in children,
which are part of the relationship description of candidates on level li−1 to compute similarity, for
instance, using one of the specialized XML similarity measures presented in Section 3.4.

4.2.2 RELATIONSHIPS FORMING A GRAPH
As the algorithms on hierarchical data show, relationship descriptions allow us to propagate compar-
ison results from one pairwise comparison to another, related comparison. Indeed, in the top-down
traversal, the fact that two candidates are not duplicates is propagated to the child candidates,whereas
in SXNM, children similarities are propagated to the parent level.

In the general case, relationships between candidates can form a graph. Therefore, we refer to
algorithms performing duplicate detection on such relationship graphs as graph algorithms. In this
section, we discuss a general framework for graph algorithms [Weis, 2008] that applies to several
algorithms proposed in the literature [Bhattacharya and Getoor, 2007; Dong et al., 2005].

To better illustrate the concepts underlying graph algorithms, we use the following example.

Example 4.1 Relationship graph. Assume we have candidates of type author, paper, and venue.
Relationship descriptions translate the following relationships:

• The set of papers appearing in a venue is descriptive of that venue.

• The set of authors of a paper is descriptive of a paper.

In Figure 4.4(a), we show data for two papers with the associated author and venue information.
This data may have been extracted from two services that use different representations of authors
and venues. We added labels to uniquely identify publications, authors, and venues. Note that a3 is
recognized as shared author between both publications because the author name is exactly equal. A
sample graph that illustrates how the candidates of Figure 4.4(a) relate to each other based on their
relationship descriptions is depicted in Figure 4.4(b). In this graph, an edge points from candidate
c1 to candidate c2 if c2 is part of the relationship description of c1.

In the above example, the relationship description of a candidate of a given type T consists
of neighboring candidates in the relationship graph that may help identify duplicates of a candidate
of type T . For instance, the relationship description of candidates of type venue consists of papers
appearing in that venue. If papers are detected to be duplicates or if they are very similar, then the
likelihood increases that their respective venues are duplicates as well. As discussed in Section 2.3.1,
defining relationship descriptions requires domain-knowledge, and we assume that a domain expert

50 4. DUPLICATE DETECTION ALGORITHMS

Information extracted for a publication P1
p1: Duplicate record detection: A survey
a1: A.K. Elmagarmid
a2: P.G. Ipeirotis
a3: V.S. Verykios
v1: Transactions on knowledge and data engineering

Information extracted for a publication P2
p2: Duplicate Record Detection
a4: Elmagarmid
a3: P.G. Ipeirotis
a5: Verykios
v1: TKDE

v1

p1 p2

v2

a1 a2 a3 a4 a5

(a) Sample data (b) Sample relationship graph

Figure 4.4: Relationships between candidates of type publication (p), author (a), & venue (v)

was able to define dependencies at schema level. That is, the dependency is defined by knowledge
of the form “venue candidates depend on paper candidates that are published in that venue”.

Based on relationship descriptions defined at schema level, we can determine relationships at
instance level to obtain a relationship graph similar to the graph depicted in Figure 4.4(b). Based
on this graph, graph algorithms for duplicate detection then generally start with an iterative process
that compares (all) pairs of candidates.This iterative phase can be divided into three individual steps,
namely the retrieval step, the classification step, and the update step. Before we formally describe
the process, we illustrate the general idea by continuing our example from the publications domain.

Example 4.2 Iterative phase of graph algorithms. Given all candidates depicted in Figure 4.4,
we need to classify the following candidate pairs as duplicates or non-duplicates:

(v1, v2), (p1, p2), (a1, a2), (a1, a3), (a1, a4), (a1, a5),

(a2, a3), (a2, a4), (a2, a5), (a3, a4), (a3, a5), (a4, a5)

As candidates depend on related candidates in their relationship description, pairs of candidates
depend on pairs of related candidates. For instance, the candidate pair that consists of venues v1

and v2 depends on the comparison results of candidate pair (p1, p2). Let the pairs be processed in
the order listed above. Then, when (v1, v2) are compared, we do not have enough evidence that the
two venue candidates are duplicates – the strings Transactions on knowledge and data engineering and
TKDE are quite different. However, once authors and papers have been classified as duplicates, we
have enough evidence to classify the venues as duplicates too. So, as we compare paper candidates,
we propagate their similarities and duplicate classifications to venues and we need to compare venues
again.

An interesting fact of all graph algorithms for duplicate detection is that they may compare a
pair of candidates more than once,based on additional knowledge gained during related comparisons.

4.2. ALGORITHMS FOR DATA WITH COMPLEX RELATIONSHIPS 51

This propagation of similarities or duplicate classifications allows to detect hard cases where object
descriptions alone do not suffice to detect duplicates. For instance, no similarity measure based on
object descriptions alone is capable of identifying that the venue TKDE is the same as Transactions
on knowledge and data engineering. However, comparing a pair more than once may compromise
efficiency. Therefore, different algorithms devise different heuristics to reduce the number of pair-
wise comparisons by choosing a “smart” comparison order. For instance, if we change the order of
comparisons described in Example 4.2 to

(a1, a2), (a1, a3), (a1, a4), (a1, a5), (a2, a3), (a2, a4),

(a2, a5), (a3, a4), (a3, a5), (a4, a5), (p1, p2), (v1, v2)

we can verify that no comparison needs to be performed more than once, even though we propagate
similarities. To avoid re-comparisons, the order may need to be updated before the next pair is
compared, so we essentially maintain a priority queue that needs to be updated every time information
is propagated.

Let us now define the general process of pairwise comparisons in graph algorithms more
formally. The input to the iterative phase of graph algorithms is a relationship graph and an initial
priority queue PQ that contains all candidate pairs we want to compare.The order of PQ is defined
by an algorithm-specific heuristic that aims at avoiding re-comparisons of candidate pairs.

Step 1: Retrieval. Retrieve the first pair in PQ as determined by the heuristic used for ordering.

Step 2: Classification. The retrieved pair of candidates (c, c′) is classified using a similarity measure
that takes into account both the candidates’ object-descriptions and relationship-descriptions,
i.e., it uses OD(c), OD(c′), RD(c), and RD(c′). Appropriate similarity measures are, for
instance, adaptations of one of the comparison techniques discussed in Chapter 3. Two classi-
fication results are possible: either c and c′ are duplicates,or they are classified as non-duplicates.
We may decide to propagate these classification results to dependent candidate pairs (d, d ′)
whose relationship descriptions RD(d) and RD(d ′) contain c and c′, respectively. Essentially,
this means that we propagate the information “c is a (non-) duplicate of c′” to the parents of c

and c′ in our graph representation. Alternatively, we may also propagate the information “The
similarity between c and c′ equals X” and make the actual classification of c and c′ later.

Step 3: Update. When a similarity or a duplicate classification needs to be propagated after the
comparison of (c, c′), we identify all dependent pairs (d, d ′) of candidates from PQ where
c ∈ RD(d) and c′ ∈ RD(d ′). For each such pair, we update any information that is affected by
the propagated information (e.g., the overlap between relationship descriptions). Depending
on the implementation, the priority queue order is updated to reflect the propagation. In any
case, if the pair (d, d ′) has been classified previously and is therefore no longer present in
PQ, we need to add it back to PQ. Overall, the update phase simply updates all necessary
information used by the next retrieval and classification steps.

52 4. DUPLICATE DETECTION ALGORITHMS

The complexity of the algorithm isO(n4) in the worst case,wheren is the number of candidates
of a same type. However, the worst case is highly unlikely in practice because it assumes (i) all n

candidates to be compared (without any application of blocking or another pruning technique
discussed in Section 4.1), (ii) all pairs of candidates are in fact duplicates, (iii) all pairs of candidates
depend on all other pairs, and (iv) the comparison order identifying a duplicate at the last position in
PQ so that all previous candidates need to be added back. On average, the complexity is in O(n2),
the same as for non-graph algorithms, so, in general, exploiting relationships between candidates is
worth re-comparisons when the goal of the application is high effectiveness.

4.3 CLUSTERING ALGORITHMS
So far, we have discussed algorithms that iteratively detect pairs of duplicates using a similarity-
based duplicate classifier (see Chapter 3). As we have seen in Section 4.1, the number of pairwise
comparisons can effectively be reduced to a fraction of all possible pairs,yielding satisfactory efficiency
while maintaining high effectiveness in terms of pairwise classifications.

However, duplicate pairs are not the final result of duplicate detection. Indeed, the goal is to
partition a set of candidates C (of a given type T) into sets of candidates where each set represents
a different real-world object and all candidates within such a set are different representations of
the same real-world object (Section 2.1). In this section, we discuss two alternatives on how such
duplicate clusters can be obtained. The first alternative uses the pairwise classification results ob-
tained by a pairwise algorithm to form duplicate clusters. This alternative is commonly used as a
post-processing of pairwise algorithms. The second alternative more seamlessly integrates both the
pairwise comparisons and clustering and adjusts to data and cluster characteristics.

4.3.1 CLUSTERING BASED ON THE DUPLICATE PAIR GRAPH
The result of pairwise algorithms can be represented as a graph where nodes represent candidates
and edges between candidates exist if the pairwise algorithm considers them to be duplicates (based
on a pairwise classification). Edges may also have a weight, that either corresponds to a similarity or
a distance score. We refer to such a graph as the duplicate pair graph.

Example 4.3 Let us consider the relational data described in Figure 4.5(a). It shows an ex-
cerpt of a media database that stores music tracks together with an artist. We also include
an id attribute for future reference. Obviously, the correct duplicate clusters are {1, 2}, {3, 4},
and {9, 10, 11}. Using a similarity-based duplicate classification, we might detect duplicate
pairs {1, 2}, {3, 4}, {3, 5}, {5, 6}, {6, 7}, {5, 8}, {9, 10}, {9, 11}, {10, 11}, {9, 12}, {10, 12}. The cor-
responding duplicate pair graph is depicted in Figure 4.5(b), where edges are labeled with their
weight corresponding to the pairwise similarity score of the two connected candidates.

Based on the duplicate pair graph, the goal now is to determine sets of candidates that
actually represent the same real-world object. We describe two directions that have been used in the

4.3. CLUSTERING ALGORITHMS 53

id artist track
1 Tori Amos Beekeeper
2 Amos, Tori Beekeeper
3 Beethoven Symphony Nr. 5
4 Ludwig van Beethoven 5th Symphony
5 Beethoven Symphony Nr. 1
6 Beethoven Symphony Nr. 2
7 Beethoven Symphony Nr. 3
8 Schubert Symphony Nr. 1
9 AC DC Are you ready
10 AC/DC Are you ready
11 AC/DC Are U ready
12 Bob Dylan Are you Ready
13 Michael Jackson Thriller

1

2

3

4

5

6 7

8

9

1011 12

13

0.9 0.8

0.7 0.9

0.9

0.7

0.9

0.9

0.8 0.7

0.8

(a) Sample data in a media database (b) Example for a duplicate pair graph

Figure 4.5: Graph representation of the result of pairwise duplicate detection

literature, namely (i) partitioning based on connected components [Hernández and Stolfo, 1995]
and (ii) partitioning based on centers [Hassanzadeh et al., 2009].

Partitioning based on connected components is based on the observation that the relationship
“is-duplicate-of ” is transitive. Indeed, if we say that the track candidate 3 is a duplicate of both
candidate 5 and candidate 4, the semantics of a duplicate relationship, that dictate that duplicates
represent the same real-world object, requires candidates 4 and 5 to be duplicates as well. We
introduce an edge between two candidates into the duplicate pair graph if and only if he two
candidates are duplicates.Then,we can easily determine clusters of duplicates based on the transitivity
of the is-duplicate-of relation by computing the transitive closure over the graph in order to partition
it into its connected components.

Example 4.4 Consider the duplicate pair graph of Figure 4.5(b). It has four connected components
that, using the partitioning method just described, produces four duplicate clusters highlighted in
Figure 4.6(a). If we now regard the actual data (Figure 4.5(a)), we see that through long chains
of pairwise duplicates, we end up, for instance, with candidates 4 and 8 being duplicates, although
their respective object descriptions {(artist, Ludwig van Beethoven), (track, 5th Symphony)} and
{(artist, Schubert), (track, Symphony Nr. 1)} barely have anything in common!

The example above illustrates the major drawback of simply computing duplicate clusters as
the set of connected components in the duplicate pair graph. To remedy this problem, one solution
is to simply revoke duplicate classifications to obtain more (but smaller) connected components.
One such edge removal strategy is to recursively remove the edge with the lowest similarity until
a satisfactory result is obtained. A satisfactory result may be that we do not have transitivity paths

54 4. DUPLICATE DETECTION ALGORITHMS

1

2

3

4

5

6 7

8

9

1011 12

13

0.9 0.8

0.7 0.9

0.9

0.7

0.9

0.9

0.8 0.7

0.8

Cluster 1 Cluster 2

Cluster 3 Cluster 4

1

2

3

4

5

6 7

8

9

1011 12

13

0.9 0.8

0.9

0.9

0.9

0.9

Cluster 1 Cluster 2.1

Cluster 3.1 Cluster 4Cluster 3.2

Cluster 2.2

Cluster 2.3

(a) connected components (b) edge removal

Figure 4.6: Clusters using connected components (a) and edge removal (b)

longer than a certain number of steps, or that the lowest similarity between any two candidates
should not fall under a given threshold.

Example 4.5 Consider Cluster 3 of Figure 4.6(a). Edge weights represent similarities, and because
we observe that the similarity between candidate 11 and candidate 12 is too low, we decide that we
need to remove edges until these two candidates fall into separate components. We remove edges in
increasing order of their similarity. The lowest similarity is 0.7 and the corresponding edge connects
candidates 9 and 12. Because candidates 11 and 12 are still transitively connected, we continue to
remove edges with next lowest similarity, e.g., 0.8. After this step, candidates 11 and 12 are no longer
in the same component, so we stop removing edges from Cluster 3, which is now divided into two
separate components. We apply the same procedure on Cluster 2 in order to separate components
for candidates 4 and 8. The final result is depicted in Figure 4.6(b).

Another method to divide connected components into smaller partitions, which correspond
to duplicate clusters, is to determine centers within a connected component and to require that a
candidate is part of the cluster of the closest center. To compute centers, we sort the edges of the
duplicate pair graph in descending order of their similarity. The algorithm then scans the sorted set
of edges and each time a candidate c first occurs in a scanned candidate pair (that corresponds to
the source and target candidates of an edge), it is assigned as the center of a duplicate cluster. All
edges subsequently scanned and that connect candidate c to another candidate c′ are then part of

4.3. CLUSTERING ALGORITHMS 55

the cluster centered around c so that c′ is part of the cluster centered in c. Once c′ is assigned a
cluster, it is never considered again.

Example 4.6 Consider again Cluster 3 of Figure 4.6(a). When sorting edges in ascending order of
their similarity, the first similarity score to be considered in the subsequent scan is 0.9. Assume that
edge (11, 10) happens to be scanned first, and that we decide that candidate 11 is the new center.
Then 10 is obviously part of the cluster centered at 11. The next edge to be considered is (10, 9).
Candidate 10 is already part of a cluster, so we just leave it there. Candidate 9, on the other hand,
occurs for the first time, so it is set to be the center of the next cluster. The next edge we scan is
(11,9). Both candidates it connects are already part of a cluster. Next, edge (10, 12) is processed,
yielding the next center, i.e., candidate 12. We note that all candidates are now part of a cluster
with a center, so we can stop the computation. Figure 4.7(a) shows the final result of processing
all connected components of Figure 4.6(a) using the center approach. We observe that the initial
Cluster 2 is now split into three separate clusters (2.1, 2.2, and 2.3). The same is true for Cluster 3
that is now divided into clusters 3.1, 3.2, and 3.3.

1

2

3

4

5

6 7

8

9

1011 12

13

0.9 0.8

0.7 0.9

0.9

0.7

0.9

0.9

0.8 0.7

0.8

Cluster 1

Cluster 2.1

Cluster 3.2 Cluster 4Cluster 3.3

Cluster 3.1

Cluster 2.2Cluster 2.3

1

2

3

4

5

6 7

8

9

1011 12

13

0.9 0.8

0.7 0.9

0.9

0.7

0.9

0.9

0.8 0.7

0.8

Cluster 1 Cluster 2

Cluster 4Cluster 3

(a) center (b) merge-center

Figure 4.7: Clusters using center (a) and merge-center (b)

In the example above, we observe that the order of edges with equal similarities and the
candidate selected as a center when processing a pair potentially affects the selection of center nodes
as well as the final partitioning. Indeed, when processing the first pair (10, 11) of Cluster 3, had we
chosen candidate 10 as the center instead of candidate 11, the final result would have been equal to
the initial Cluster 3. An extension of the simple center-based algorithm just described that attenuates
these effects is to merge two clusters whenever the center of one cluster is similar to the center of the
other cluster. A possible final result of this variant, called merge-center, is depicted in Figure 4.7(b).

56 4. DUPLICATE DETECTION ALGORITHMS

In this section, we discussed several algorithms that determine duplicate clusters based on
a previously computed duplicate pair graph. These methods can be used as a post-processing step
after pairwise duplicate classification.Which of these algorithms is best suited highly depends on the
application domain, the distribution of duplicates, and how “dirty” these duplicates are. One reason
for this is that these approaches are solely based on global thresholds and parameters, and they do not
adjust to changing characteristics of the data or the initial clusters formed by pairwise classifications.
For instance, using the merge-center algorithm, we see that both Cluster 2 and Cluster 3 remain
connected, although the shape of the clusters significantly differs: In Cluster 3, the shortest path
from any node to the other is at most 2, whereas in Cluster 2, it varies between 1 and 4. In the
next section, we describe an algorithm that integrates both pairwise comparisons and clustering but
adjusts to local characteristics of data and clusters to potentially better partition the set of candidates
into duplicate clusters.

4.3.2 CLUSTERING ADJUSTING TO DATA & CLUSTER CHARACTERISTICS
The algorithm we present in this section determines duplicate clusters based on the observation
that duplicates of a same object usually have a small distance to each other, and they have only a
small number of other candidates within a small distance [Chaudhuri et al., 2005]. To capture these
properties, the criteria of compact set and sparse neighborhood are introduced.

We illustrate these two concepts in Figure 4.8. Intuitively, these concepts define two growth
spheres: in the inner sphere, which corresponds to the compact set, we find only candidates that
are all mutually closest to each other; in second sphere, we find very few candidates that are close
to candidates in the inner sphere, thereby forming a sparse neighborhood. Note that the closeness
to a candidate is defined by a radius of p times the minimal distance of a candidate to its closest
candidate.

We can interpret the radius of each sphere as a threshold that separates duplicates from non-
duplicates. However, in contrast to algorithms performing pairwise classifications that use a single
fixed threshold, we can have different thresholds for each cluster! This makes the algorithm more
robust to the chains of pairwise matches that yield two very dissimilar candidates as duplicates as
we observed in Section 4.3.1.

Before we describe the algorithm that determines duplicate clusters based on the compact
set and sparse neighborhood properties, we need to define these two concepts more precisely and
require some notation. Let us first define a compact set, denoted as CS. Essentially, a set of candidates
is a compact set iff for every candidate c ∈ CS, the distance dist (c, c′) between c and any other
candidate c′ ∈ CS is less than the distance dist (c, c′′) between c and any other candidate not part
of the compact set. For a candidate c, we define nn(c) as the distance between c and its nearest
neighbor within a compact set. The neighborhood N(c) is then defined by a distance of p × nn(c).
The neighborhood growth ng(c) is the number of candidates in the neighborhood N(c) of candidate
c. Then, let α be an aggregation function and k > 0 be a constant. Intuitively, k is a threshold that

4.3. CLUSTERING ALGORITHMS 57

c1

c2 c3

c4

c5 compact

set

0.1 0.1

0.15

p nn(c1) = 0.1 p

Neighborhood

N(c1), ng(c1) = 5

Figure 4.8: Compact set and sparse neighborhood of a candidate c1

prevents a sparse neighborhood from including too many candidates. We say that a set of records
is a sparse neighborhood, denoted as SN(α, k), if (i) |SN(α, k)| = 1 or (ii) the aggregated value of
neighborhood growths of all candidates within SN(α, k) is less than k.

The clustering algorithm based on these two concepts determines clusters of duplicate candi-
dates such that all clusters satisfy these two properties. It is defined for candidates that correspond
to records of a relational table. Formally, given a set of candidates C, a distance function dist , an
aggregation function α, a positive constant k, and an integer constant I , the goal is to partition C into
a minimum number of groups such that each group is a compact set with sparse neighborhood and
each group contains at most I candidates. The restriction of the size of a group allows for efficient
computation (see discussion on complexity), but more importantly, it avoids the creation of very
large groups that encompass two candidates c and c′ that are not actual duplicates although c′ is
among the I most similar candidates to c (and vice versa). Alternatively, we may also use a similarity
threshold to define the minimum similarity that has to exist between any two candidates in a group.
In the following, we only consider the first variant where the cardinality of a group is limited by I .
The problem is solved in a two-phase algorithm, which we briefly describe next.

Phase 1: Nearest-neighbor list computation. The goal of this phase is to determine, for each can-
didate c, the set of nearest neighbors of c as well as its neighborhood growth. For each candi-
date c, we thus determine a triple 〈cid, nnList, ng〉, where cid uniquely identifies candidate
c, nnList is a set of nearest neighbors of c, and ng is the neighborhood growth of c. The
nearest-neighbor list of c consists of the I closest candidates to c.

The fact that candidates originate from records stored in a relational database allows the use
of indices to process queries of the form: given any candidate (record) c, fetch its nearest
neighbors. If no indices are available, nested loops join methods are used in this phase.

58 4. DUPLICATE DETECTION ALGORITHMS

Phase 2: Partitioning phase. The second phase uses the output of Phase 1 to partition the original
set of candidates into a minimum number of groups that correspond to compact sets with
sparse neighborhoods. The resulting partitions thus correspond to the final result of duplicate
detection. The final result is obtained in two steps, namely the construction step of compact
sets and the partitioning step.

Step 1: Compact pair construction. First, we determine if the neighbor sets of varying sizes
between 1 and I of two candidates c and c′ are equal. Therefore, we compare two can-
didates c and c′ and compute the boolean values 〈CS1, CS2, . . . , CSI 〉 together with
the neighborhood growths ng(c) and ng(c′). Essentially, CSi signifies that the i closest
neighbor sets of c and c′ are equal. The implementation of this step is based on issuing
a SQL query over the output relation of the first phase. This query performs a self-join
over the result of Phase 1 and outputs only pairs of candidates (c, c′) where the cid of c

is smaller than the cid of c′ and where c is in nnList of c′ and vice versa.

Step 2: Partitioning. Based on the pairs of candidates with equal neighbor sets determined
in the previous step, we now determine sets of candidates with neighbor sets that satisfy
both the compact set and sparse neighborhood criteria. To achieve this, a query is issued
that sorts the results of Step 1 by the cid values of both candidates. Then, each group
identified by the cid of c is processed as follows: if c is not already part of another group,
we determine the largest subset of the current group such that the aggregate values of
the sparse neighborhood of the group is less than the threshold k.

Example 4.7 We illustrate how we may obtain the compact set with sparse neighborhood in
Figure 4.9. The result of the first phase is illustrated in Figure 4.9(a), where nnList is sorted in
increasing order of the distance of a candidate in nnList to the candidate c identified by cid. In
this example, we use I = 4, that is, we want to identify compact sets of at most three candidates.
Each candidate in the result of Phase 1 is then joined with each other candidate if there exists a
compact set of size 3 at most. Such sets are identified by at least one value CSi being equal to 1. The
result of this join, which corresponds to the result of Phase 2, Step 1 is shown in Figure 4.9(b). In a
final step, we divide this results into two groups, identified by the value of cid1, i.e., the first group
corresponds to the first two records in Figure 4.9(b), and the second group corresponds to the third
record. We process each group separately: when processing the first group, we place c1, c2, and c3

into a compact set, supposing that the aggregated value of neighborhood growths is below k.

Without appropriate indices, Phase 1 requires a nested loops join, so its complexity is O(n2),
given that n is the size of the candidate set. In Phase 2, we build pairs of candidates and compute
compact sets of at most I candidates. That is, every candidate is joined with at most I − 1 other
candidates, so the complexity is O(n), assuming I << n. The size of the output of the first step of
Phase 1 is N < I × n. The cost of the second step of Phase 2 is dominated by the cost of sorting

4.3. CLUSTERING ALGORITHMS 59

cid nnList ng

c1 {c1, c2, c3} 3
c2 {c2, c1, c3} 3
c3 {c3, c1, c2} 3
c4 {c4, c3, c1} 3
c5 {c5, c2, c1} 3

(cid1, cid2) {CS1, CS2, . . . , CSI } (ng1, ng2)

(c1, c2) {0, 1, 1} (3, 3)

(c1, c3) {0, 0, 1} (3, 3)

(c2, c3) {0, 0, 1} (3, 3)

(a) Result of Phase 1 (b) Result of Phase 2, Step 1

Figure 4.9: Clustering based on compact sets with sparse neighborhoods

the output of Step 1, i.e., the cost of Phase 2, Step 1 is O(N log N). We have seen that N is O(n)

so the final cost without indices is

O(n2) + O(n) + O(n log n) = O(n2)

Using appropriate indices, the complexity may be further reduced to O(n), making this algorithm
scalable to large volumes of input data.

61

C H A P T E R 5

Evaluating Detection Success
Measuring the success of duplicate detection is an important but difficult task, usually because of
the lack of a gold standard for the data set at hand. Difficulties that prevent a benchmark data set
are privacy and confidentiality concerns regarding the data. In this section, we first describe standard
measures for success, in particular precision and recall. We then proceed to discuss existing data sets
and data generators.

5.1 PRECISION AND RECALL

When detecting duplicates there are two possible types of errors (sometimes referred to as Type I
and Type II errors): Candidate pairs that are declared to be duplicate in fact may not be duplicates.
We call such errors “false positives”. On the other hand, there may be candidate pairs that were not
declared to be duplicates while in fact they are. We call such errors “false negatives”. In addition,
we can distinguish “true positives” – pairs that are correctly declared to be duplicates – and “true
negatives” – pairs that are correctly recognized as not being duplicates. In typical scenarios, we expect
the latter category to contain the vast majority of candidate pairs.

Figure 5.1 shows these four categories. Among all pairs of records, some are true duplicates
and some are declared to be duplicates. It is the goal of duplicate detection algorithms to maximize
the intersection between the two. In the following, we assume that we indeed know the cardinalities
of the four sets. We discuss, in Section 5.2, the difficulty of obtaining them.

From the cardinalities of the four different sets, one can calculate different success measures
for duplicate detection. The most prominent measures are precision and recall, which are originally
defined for information retrieval problems where they reflect the relevance of the document set
retrieved by a query.The ultimate goal is to find only relevant documents and all relevant documents.
Intuitively, this corresponds to correctness and completeness of an algorithm. Precision and recall
describe how far from that goal a particular solution lies.

For duplicate detection, precision measures the ratio of correctly identified duplicates com-
pared to all declared duplicates, and recall measures the ratio of correctly identified duplicates com-
pared to all true duplicates:

precision = |true-positives|
|true-positives| + |false-positives| = |true-positives|

|declared duplicates|
recall = |true-positives|

|true-positives| + |false-negatives| = |true-positives|
|true duplicates|

62 5. EVALUATING DETECTION SUCCESS

All record pairs

True duplicates
False negatives

True positives

False positives

Declared duplicates

True negativesg

Figure 5.1: Error types in duplicate detection

To understand precision and recall, it is useful to devise algorithms that optimize each measure.
To optimize precision, an algorithm can “play safe” and return very few (or no) duplicates.Thus, false
positives are avoided leading to high precision. On the downside, this approach minimizes recall
because of the high number of false negatives. To maximize recall, an algorithm could declare all n2

candidate pairs to be duplicates; among them are certainly all true duplicates, but precision suffers
immensely.

To find a tradeoff between precision and recall, the F-measure is often used. It is the harmonic
mean of precision and recall:

F-measure = 2 × recall × precision
recall + precision

To understand why the harmonic mean as opposed to the arithmetic mean is the measure
of choice, regard Figure 5.2. The left side visualizes on the z-axis the arithmetic mean of the x-
and y-axes. Notice the flat surface. The right side of the figure shows the harmonic mean with its
distinct curvature. To achieve good F-measure values, both precision and recall must be high. With
the typical tradeoff between precision and recall, both must have the same value to maximize the
harmonic mean; it does not pay off to achieve especially high values in either. Of course, there are
situations in which either precision or recall are of particular importance. For instance, credit-rating
agencies must be particularly diligent when detecting customer duplicates, and thus a high precision
is of utmost importance, even at the risk of a lower recall [Weis et al., 2008]. The F-measure can
also be defined in a weighted fashion [Manning et al., 2008].

To display evaluation results, two types of diagrams are common: the recall-precision diagram
and the recall-precision-F-measure diagram. The former plots precision values for increasing recall

5.1. PRECISION AND RECALL 63

Figure 5.2: Visualization of arithmetic mean (left) and harmonic mean (=F-measure) (right)

– an arbitrarily chosen diagram is shown in Figure 5.3. It can be generated by descendingly sorting
all detected pairs by their similarity, ignoring any thresholds, and then analyzing their correctness
by decreasing similarity. A typical observation is that precision starts out high, i.e., the most similar
pairs are indeed duplicates. For well-chosen similarity measures precision drops sharply at some
point. The similarity threshold should be placed at that point.

Figure 5.3: A typical recall-precision diagram (based on Weis et al. [2008])

Another way to choose appropriate similarity thresholds is the recall-precision-F-measure
diagram. It plots the three measures against increasing (or decreasing) thresholds. The threshold
with the highest F-measure can then be chosen for future runs with new data. Figure 5.4 shows such
a diagram. Note that precision, recall, and F-measure always meet at the highest F-measure.

In the previous paragraphs, we have examined the tradeoff between precision and recall, which
is mainly governed by the similarity threshold. Another tradeoff is the efficiency of the algorithm,
i.e., its overall runtime. If a longer runtime is acceptable, more candidate pairs can be compared,

64 5. EVALUATING DETECTION SUCCESS

From Creating probabilistic databases from duplicated data
Oktie Hassanzadeh · Renée J. Miller (VLDBJ)

Figure 5.4: A typical recall-precision-F-measure diagram (based on Hassanzadeh and Miller [2009])

and thus a higher recall can be achieved. Also, a possibly more elaborate similarity measure can be
employed, which increases precision, again at the cost of efficiency. These trade offs are shown in
Figure 5.5.

Precision

RecallEfficiency

Figure 5.5: Tradeoffs between precision, recall and efficiency

Measuring the efficiency and scalability of duplicate detection is obviously also important;
however, since we assume duplicate detection as an offline batch job, it is often not the primary
focus of duplicate detection methods. In practice, runtimes of up to a day are usually acceptable
for CRM databases with millions of customers. Runtime is measured in the usual way with system
timestamps and can be predicted by sampling of smaller data sets. For the online search problem

5.2. DATA SETS 65

of duplicate detection, again runtime is measured in the usual way. Typically, runtimes must remain
under a second and throughput must be sufficiently high.

Duplicate detection is highly parallelizable. In many algorithms, in particular, the pair-wise
algorithms of Section 4.1, the decision about a candidate pair is independent of other candidate
pairs.Thus, there is a high potential for parallelization, for instance, using the map/reduce paradigm.
However, there is not yet much research on this dimension of the problem [Kim and Lee, 2007].

5.2 DATA SETS
All measures mentioned in the previous section assume a known gold-standard, i.e., perfect knowl-
edge of all duplicates in the given data set. In particular, they assume to be able to verify whether a
candidate pair is indeed a duplicate (to measure precision), and they assume to know the number of
duplicates hidden in the data (to measure recall). In many situations, in particular those where not
many duplicates are to be expected, it is possible to manually verify declared duplicates. However, to
verify that indeed all duplicates have been detected, theoretically, a manual inspection of all O(n2)

candidate pairs is necessary. For only 10,000 customers, which is the typical number of customers a
doctor, car dealership, etc. may have, almost 50 million pairs would have to be inspected manually.

Thus, gold standards are hard to come by. Two alternatives present themselves. First, real-
world data sets upon which duplicate detection has previously been executed can provide a baseline,
upon which to improve. Second, real-world synthetic data sets can be supplemented with artificially
created duplicates.

5.2.1 REAL-WORLD DATA SETS
Real-world data are very valuable to evaluate duplicate detection methods. It is difficult to simulate
the types of errors and their distribution as they occur during data entry.On the other hand,real-world
data sets in the CRM or product domain are rarely made public due to confidentiality constraints.
What is more, customer data by definition include individual-related data and cannot be published
even if the data owner would be willing to do so.

A popular data set, used to evaluate duplicate detection in several approaches
[Bilenko and Mooney, 2003a; Dong et al., 2005; Singla and Domingos, 2005], is the CORA Ci-
tation Matching data set (http://www.cs.umass.edu/˜mccallum/code-data.html). It lists
groups of differently represented references to the same paper. However, this data set is quite small
with only 189 unique papers and an average of 9.9 different representations for each.

Another data set, provided by the authors of this lecture and comprises 9,763 records with
audio CD information, such as artist, title, and tracks, which were selected randomly from freeDB
[Leitão et al., 2007]. In an arduous manual process, involving distributed manual checking and
cross-checking of all candidate pairs, a list of 298 true duplicates was detected (http://www.hpi.
uni-potsdam.de/naumann/projekte/repeatability/datasets).

Other popular real-world data sets include the DBLP data set on papers (http://
dblp.uni-trier.de/xml/) and the IMDB data set on Movies (http://www.imdb.com/

http://www.cs.umass.edu/~mccallum/code-data.html
http://www.hpi.uni-potsdam.de/ naumann/projekte/repeatability/datasets
http://www.hpi.uni-potsdam.de/ naumann/projekte/repeatability/datasets
http://www.hpi.uni-potsdam.de/ naumann/projekte/repeatability/datasets
http://dblp.uni-trier.de/xml/
http://dblp.uni-trier.de/xml/

66 5. EVALUATING DETECTION SUCCESS

interfaces). A repository of other available data sets (both for relational and XML data) and other
valuable resources on duplicate detection is the RIDDLE repository (http://www.cs.utexas.
edu/users/ml/riddle/). However, most data sets require some further processing before they
can be used for experiments. For example, the CORA data set includes annotations for duplicate
publications but not for authors or venues. When extracting data from IMDB, different sampling
techniques (and possibly different error introduction techniques) result in data sets with different
characteristics.

Because the gold standard is known for only few of these data sets, researchers have either
contaminated the data by inserting duplicates through some automated method (see next section
on synthetic data sets), or evaluated only precision. To overcome the problem of determining recall,
sampling the data suggests itself; it is certainly easier to examine all pairs of a smaller data set.
However, as sampling reduces the number of records, the expected number of duplicates is reduced
quadratically: A random 1% sample is expected to contain only 0.01% of the duplicates. For example,
from 10,000 original records with 100 (unknown) duplicates, the sample contains 100 records, but
only 0.01 duplicate – i.e., probably none.

5.2.2 SYNTHETIC DATA SETS
Synthetic data sets come in two flavors: Contaminated real-world data or generated dirty data.
Artificially contaminating a data set provides the knowledge of all duplicates (the gold standard),
assuming the data set was clean from the outset. The challenge is to determine how to create
duplicates, how many to create (percentage of affected original records, only pairs, or larger size of
duplicate groups, etc.), and where to place them within the data set. The following types of data
contamination to duplicate records are useful:

• Exact duplicates. No change is made to the duplicated object.

• Missing values. Remove a subset of the attribute values, replacing them by NULL values.

• Contradictory values. Change a subset of the values by replacing them with contradictory
values, including for example typographical errors, synonyms, abbreviations, or incomplete
values. The possibilities here are vast, including swapping of characters, insertion and deletion
of random characters, changing capitalization, etc.

To contaminate non-relational data,other types of duplication are possible, such as changing structure
or falsifying key references. A tool to generate dirty XML data can be found at http://www.hpi.
uni-potsdam.de/naumann/projekte/dirtyxml. When contaminating data, even clean data,
there is the problem that two duplicated records with different original records might become very
similar, possible more similar than to their original records. Such inadvertent duplicates are not
recognized as such during the contamination and are thus not part of the gold-standard for that
dataset. Note though, that the same problem occurs with real-world data:Two records might be very
similar and yet not be duplicates.

http://www.imdb.com/interfaces
http://www.cs.utexas.edu/users/ml/riddle/
http://www.cs.utexas.edu/users/ml/riddle/
http://www.hpi.uni-potsdam.de/naumann/projekte/dirtyxml
http://www.hpi.uni-potsdam.de/naumann/projekte/dirtyxml

5.2. DATA SETS 67

In the absence of real-world data, or when it is forbidden to publish, or when characteristics
of data should be varied, it is useful to employ so called data generators. These usually create data
by randomly combining values of existing term lists. These lists contain first names, last names,
cities, street names, products, etc. One such generator for CRM data is the UIS Database Gener-
ator (http://www.cs.utexas.edu/users/ml/riddle/data/dbgen.tar.gz). Others are pre-
sented in the SOG project [Talburt et al., 2009] and the ToxGene project [Barbosa et al., 2002]. If
frequency distributions are known, these can be used when picking terms for records. For instance, a
data generator may generate more addresses in New York City than in Washington D.C. After gen-
erating data, it can be contaminated as described above. Again, there is the problem that seemingly
duplicates are generated, but they are not recognized as such.

5.2.3 TOWARDS A DUPLICATE DETECTION BENCHMARK
As numerous approaches exist both for increasing efficiency and effectiveness, it is essential to provide
some common ground to compare these algorithms with each other. Despite at least a few common
data sets, the state-of-the-art does not allow representative comparisons between algorithms yet, for
the following main reasons [Weis et al., 2006]:

• Lack of algorithm documentation. Many duplicate detection algorithms are described in
scientific papers only, and often a 12 page publication cannot cover all details and aspects of an
approach. When it comes to re-implementing an existing method, the information provided
in a paper is often insufficient.

• Different testing environments. When own results are compared to results reported in a
paper, the different testing environments may falsify the comparison.

• Lack of common dataset. Freely available and simultaneously interesting datasets for duplicate
detection are rare. Even more seldom are datasets with true duplicates already marked. As a
consequence, even if same or similar datasets were used, the results expressed as precision,
recall and runtime measure are not comparable: Two approaches might not agree in what is a
correctly detected duplicate and how many duplicates are in fact hidden in the dataset.

• Obscure methodology. Comparing results to published results is further problematic because
many approaches “fudge” the original data to meet their needs. In papers,we may read sentences
like “We further cleaned [a commonly used data set] up by correcting some labels,” or “We
used the technique [X]” without mentioning how X’s tunable parameters are set. In such cases,
the methodology is not reproducible, an essential property if we want to compare approaches.

A benchmark for duplicate detection should alleviate the above problems as follows
[Weis et al., 2006]:

• Standardized data. By applying different duplicate detection approaches on the same data,
comparing efficiency or effectiveness of different approaches is easy.

http://www.cs.utexas.edu/users/ml/riddle/data/dbgen.tar.gz
http://www.cs.utexas.edu/users/ml/riddle/data/dbgen.tar.gz
http://www.cs.utexas.edu/users/ml/riddle/data/dbgen.tar.gz

68 5. EVALUATING DETECTION SUCCESS

• Clearly defined operations and metrics. The problem of lacking documentation about algo-
rithms and experimental methodology is alleviated by defining operations that an algorithm
may perform, as well as some clearly defined metrics to evaluate the results of these operations.

• Central processing. We envision that the benchmark is executed on a central server to which
a duplicate detection algorithm can be submitted, which in turn is executed on the server.This
way, the testing environment is guaranteed to be the same across different approaches.

While these goals have not been reached, there are at least some efforts in this direction. The
authors of this lecture propose a duplicate detection benchmark with suggestions for data and its
contamination, concrete benchmark tasks (the workload), and metrics to fairly evaluate the results
[Weis et al., 2006]. Another, similar proposal is by Neiling et al. [2003]. More complex scenarios,
e.g., XML duplicate detection or relationship-based duplicate detection, cannot be evaluated using
this framework. Finally, Bilenko and Mooney [2003b] present a study on evaluation and training-
set construction for adaptive duplicate detection, which is a necessary step towards a benchmark
supporting adaptive duplicate detection methods.

69

C H A P T E R 6

Conclusion and Outlook
We conclude this lecture by reiterating the relevance and interestingness but also the difficulty and
complexity of the problem of duplicate detection. Duplicates appear in many data sets, from cus-
tomer records and business transactions to scientific databases and Wikipedia entries. The problem
definition – finding multiple representations of the same real world object – is concise, crisp, and
clear, but it is comprised of two very difficult problems: Finding an adequate similarity measure to
decide upon duplicity and finding an efficient algorithm to detect as many duplicates as possible.
This lecture charted the basic state of the art for both problems, suggested use cases, and presented
evaluation methods.

Addressing the first problem, that is, finding adequate measures to decide upon the duplicity
of records, we discussed several similarity measures and thresholds that allow to decide whether two
records are duplicates or not. We distinguished between token-based measures, edit-based measures,
and hybrid measures. We have seen that token-based measures are suited in the presence of word
swaps or missing words, for instance, in the domain of person names where a middle name might
be missing in one record and a first name and last name are swapped. On the other hand, edit-
based measures cope well with typographical errors within words. Hybrid measures combine the
best of both token-based and edit-based measures. In addition to similarity measures, we saw that
domain-knowledge can be used to define rules to identify duplicates and non-duplicates.

A topic not covered in this lecture is the use of machine learning with the goal of tuning sim-
ilarity measures, thresholds, or weights used to distinguish between duplicates and non-duplicates
(Bilenko and Mooney [2003a]; Sarawagi and Bhamidipaty [2002]). Such algorithms are very attrac-
tive because they leverage the effort of manual parameter tuning. Using adequate learning models,
these approaches outperform the similarity measures discussed in this lecture in terms of the quality
of duplicate detection. However, these methods are rarely used in practice because their results are
difficult to comprehend and trace and because of the second major problem of duplicate detection,
i.e., efficiency.

To improve runtime, numerous algorithms have been proposed.The most widely used class of
algorithms is the class of pairwise comparison algorithms.These algorithms compare pairs of records
using a suited similarity measure, and their efficiency is improved by saving pairwise comparisons
using blocking techniques or the Sorted-Neighborhood method. A class of algorithms that has re-
cently emerged is the class of algorithms that exploit relationships between objects.These algorithms
are designed to improve on the quality of the result, but the price to pay is again lower efficiency.
Although some approaches explicitly address efficiency in a specialized context, it remains an open
issue to design efficient and scalable algorithms for data with complex relationships. Finally, we

70 6. CONCLUSION AND OUTLOOK

discussed clustering algorithms. One class of clustering algorithms takes duplicate pairs as input in
order to produce sets of records that all represent the same real-world object. A disadvantage of these
algorithms is that they require several configuration parameters to be set upfront, and they do not
adapt to actual data or cluster characteristics. Therefore, we outlined another clustering algorithm,
which adapts to these characteristics.

All algorithms discussed in this lecture compare records to classify them as duplicates. When-
ever records have been classified as such, the decision is final and no algorithm considers to revoke
these decisions at any point. However, as new data becomes available, new evidence that records are
in fact not duplicates may become available, just as non-duplicate records are re-compared when new
evidence that they may be duplicates becomes available. An interesting new research direction is to
explore how “negative” evidence can be propagated to revoke duplicate decisions and how algorithms
that revoke both duplicate decisions and non-duplicate decisions behave. Another line of research is
to extend duplicate detection beyond the traditional CRM scenarios. Simple extensions include du-
plicate detection among companies and products. Detecting duplicate transactions is more difficult
due to the intrinsic similarity of many transactions and to the high data volume. Detecting duplicates
in streaming data, among text data (near-duplicate web-pages or news articles, plagiarism), among
invoices, images, etc. are further and yet mostly unexplored avenues of research.

To conclude, we see that even today, after fifty years of research and development, duplicate
detection remains an active field of research and a profitable business case with many companies
building software for data cleansing and duplicate detection.

71

Bibliography

Alexander Albrecht and Felix Naumann. Managing ETL processes. In Proc. Int. Workshop on New
Trends in Information Integration, pages 12–15, 2008. 5

Rohit Ananthakrishna, Surajit Chaudhuri, and Venkatesh Ganti. Eliminating fuzzy duplicates
in data warehouses. In Proc. 28th Int. Conf. on Very Large Data Bases, pages 586–597, 2002.
DOI: 10.1016/B978-155860869-6/50058-5 34, 43, 48

Denilson Barbosa, Alberto O. Mendelzon, John Keenleyside, and Kelly A. Lyons. ToXgene: a
template-based data generator for XML. In Proc. ACM SIGMOD Int. Conf. on Management of
Data, page 616, 2002. DOI: 10.1145/564691.564769 67

Carlo Batini and Monica Scannapieco. Data Quality: Concepts, Methods and Techniques. Springer,
2006. 3

Rohan Baxter, Peter Christen, and Tim Churches. A comparison of fast blocking methods for record
linkage. In Proc. Int. Workshop on Data Cleaning, Record Linkage, and Object Consolidation, pages
25–27, 2003. 43

Indrajit Bhattacharya and Lise Getoor. Collective entity resolution in relational data. ACM Trans.
Knowl. Discov. Data, 1(1):Paper 5, 2007. DOI: 10.1145/1217299.1217304 49

Mikhail Bilenko and Raymond J. Mooney. Adaptive duplicate detection using learnable string
similarity measures. In Proc. 9th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, pages 39–48, 2003a. DOI: 10.1145/956750.956759 65, 69

Mikhail Bilenko and Raymond J. Mooney. On evaluation and training-set construction for duplicate
detection. In Proc. Int. Workshop on Data Cleaning, Record Linkage, and Object Consolidation, pages
7–12, 2003b. 68

Mikhail Bilenko, Raymond J. Mooney, William W. Cohen, Pradeep D. Ravikumar, and Stephen E.
Fienberg. Adaptive name matching in information integration. IEEE Intelligent Systems, 18(5):
16–23, 2003. DOI: 10.1109/MIS.2003.1234765 24

Mikhail Bilenko, Beena Kamath, and Raymond J. Mooney. Adaptive blocking: Learning to
scale up record linkage. In Proc. 2006 IEEE Int. Conf. on Data Mining, pages 87–96, 2006.
DOI: 10.1109/ICDM.2006.13 43

http://dx.doi.org/10.1016/B978-155860869-6/50058-5
http://dx.doi.org/10.1145/564691.564769
http://dx.doi.org/10.1145/1217299.1217304
http://dx.doi.org/10.1145/956750.956759
http://dx.doi.org/10.1109/MIS.2003.1234765
http://dx.doi.org/10.1109/ICDM.2006.13

72 6. CONCLUSION AND OUTLOOK

C. Bizer, J. Lehmann, S. A. Georgi Kobilarov, C. Becker, R. Cyganiak, and S. Hellmann. Db-
pedia – a crystallization point for the web of data. J. Web Semantics, 7(3):154–165, 2009a.
DOI: 10.1016/j.websem.2009.07.002 11

Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data – the story so far. J. Semantic Web
and Information Systems, 5(3):1–22, 2009b. 10

Jens Bleiholder and Felix Naumann. Data fusion. ACM Comput. Surv., 41(1):Paper 1, 2008.
DOI: 10.1145/1456650.1456651 2

Jens Bleiholder, Zoé Lacroix, Hyma Murthy, Felix Naumann, Louiqa Raschid, and Maria-Esther
Vidal. BioFast: Challenges in exploring linked life science sources. ACM SIGMOD Rec., 33(2):
72–77, 2004. DOI: 10.1145/1024694.1024706 9

Jens Bleiholder, Sascha Szott, Melanie Herschel, Frank Kaufer, and Felix Naumann. Subsumption
and complementation as data fusion operators. In Advances in Database Technology, Proc. 13th Int.
Conf. on Extending Database Technology, 2010. 8

Charles P. Bourne and Donald F. Ford. A study of methods for systematically abbreviating english
words and names. J. ACM, 8(4):538–552, 1961. DOI: 10.1145/321088.321094 39

Surajit Chaudhuri,Venkatesh Ganti, and Rajeev Motwani. Robust identification of fuzzy duplicates.
In Proc. 21st Int. Conf. on Data Engineering, Tokyo, Japan, 2005. DOI: 10.1109/ICDE.2005.125
56

Jens Dittrich, Marcos Antonio Vaz Salles, and Lukas Blunschi. imemex: From search to information
integration and back. Q. Bull. IEEE TC on Data Eng., 32(2):28–35, 2009. 10

AnHai Doan,Ying Lu,Yoonkyong Lee, and Jiawei Han. Profile-based object matching for informa-
tion integration. IEEE Intelligent Systems, 18(5):54–59, 2003. DOI: 10.1109/MIS.2003.1234770
40, 42

Xin Dong and Alon Y. Halevy. A platform for personal information management and integration.
In Proc. 2nd Biennial Conf. on Innovative Data Systems Research, pages 119–130, 2005. 10

Xin Dong, Alon Halevy, and Jayant Madhavan. Reference reconciliation in complex informa-
tion spaces. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 85–96, 2005.
DOI: 10.1145/1066157.1066168 49, 65

Uwe Draisbach and Felix Naumann. A comparison and generalization of blocking and windowing
algorithms for duplicate detection. In Proc. Int. Workshop on Quality in Databases, pages 51–56,
2009. 47, 48

Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Duplicate
record detection: A survey. IEEE Trans. Knowl. and Data Eng., 19(1):1–16, 2007.
DOI: 10.1109/TKDE.2007.250581 11

http://dx.doi.org/10.1016/j.websem.2009.07.002
http://dx.doi.org/10.1145/1456650.1456651
http://dx.doi.org/10.1145/1024694.1024706
http://dx.doi.org/10.1145/321088.321094
http://dx.doi.org/10.1109/ICDE.2005.125
http://dx.doi.org/10.1109/MIS.2003.1234770
http://dx.doi.org/10.1145/1066157.1066168
http://dx.doi.org/10.1109/TKDE.2007.250581

73

Ivan Fellegi and Alan Sunter. A theory of record linkage. J. American Statistical Association, 64(328):
183–1210, 1969. DOI: 10.2307/2286061 2

César A. Galindo-Legaria. Outerjoins as disjunctions. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 348–358, 1994. DOI: 10.1145/191843.191908 8

Alon Y. Halevy, Michael J. Franklin, and David Maier. Principles of dataspace systems. In Proc.
25th ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pages 1–9, 2006.
DOI: 10.1145/1142351.1142352 10

Pei Hao, Wei-Zhong He, Yin Huang, Liang-Xiao Ma, Ying Xu, Hong Xi, Chuan Wang,
Bo-Shu Liu, Jin-Miao Wang, Yi-Xue Li, and Yang Zhong. MPSS: an integrated
database system for surveying a set of proteins. Bioinformatics, 21(9):2142 – 2143, 2005.
DOI: 10.1093/bioinformatics/bti306 9

Oktie Hassanzadeh and Renée J. Miller. Creating probabilistic databases from duplicated data.
VLDB J., 18(5):1141–1166, 2009. DOI: 10.1007/s00778-009-0161-2 64

Oktie Hassanzadeh, Fei Chiang, Renée J. Miller, and Hyun Chul Lee. Framework for evaluating
clustering algorithms in duplicate detection. Proc. 35th Int. Conf. on Very Large Data Bases, 2(1):
1282–1293, 2009. 53

Mauricio A. Hernández and Salvatore J. Stolfo. The merge/purge problem for large
databases. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 127–138, 1995.
DOI: 10.1145/568271.223807 45, 53

Mauricio A. Hernández and Salvatore J. Stolfo. Real-world data is dirty: Data cleansing
and the merge/purge problem. Data Mining and Knowledge Discovery, 2(1):9–37, 1998.
DOI: 10.1023/A:1009761603038 40, 45

Matthew A. Jaro. Advances in record linking methodology as applied to matching the 1985 census of
tampa florida. J. American Statistical Association, 84(406):414–420, 1989. DOI: 10.2307/2289924
32

Peter D. Karp. A strategy for database interoperation. J. Computational Biology, 2(4):573–583, 1996.
DOI: 10.1089/cmb.1995.2.573 9

Hung-sik Kim and Dongwon Lee. Parallel linkage. In Proc. Int. Conf. on Information and Knowledge
Management, pages 283–292, 2007. DOI: 10.1145/1321440.1321482 65

Luís Leitão, Pável Calado, and Melanie Weis. Structure-based inference of XML similarity for
fuzzy duplicate detection. In Proc. Int. Conf. on Information and Knowledge Management, pages
293–302, 2007. DOI: 10.1145/1321440.1321483 38, 65

http://dx.doi.org/10.2307/2286061
http://dx.doi.org/10.1145/191843.191908
http://dx.doi.org/10.1145/1142351.1142352
http://dx.doi.org/10.1093/bioinformatics/bti306
http://dx.doi.org/10.1007/s00778-009-0161-2
http://dx.doi.org/10.1145/568271.223807
http://dx.doi.org/10.1023/A:1009761603038
http://dx.doi.org/10.2307/2289924
http://dx.doi.org/10.1089/cmb.1995.2.573
http://dx.doi.org/10.1145/1321440.1321482
http://dx.doi.org/10.1145/1321440.1321483

74 6. CONCLUSION AND OUTLOOK

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to Information
Retrieval. Cambridge University Press, 2008. 62

Diego Milano, Monica Scannapieco, and Tiziana Catarci. Structure aware XML object identifica-
tion. In Proc. Int. Workshop on Clean Databases, page Paper 1, 2006. 37

Alvaro E. Monge and Charles P. Elkan. The field matching problem: Algorithms and applications.
In Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining, pages 267–270, 1996. 24, 35

Alvaro E. Monge and Charles P. Elkan. An efficient domain-independent algorithm for detecting
approximately duplicate database records. In Proc. ACM SIGMOD Workshop on Research Issues in
Data Mining and Knowledge Discovery, pages 23—29, 1997. 47

Felix Naumann, Johann-Christoph Freytag, and Ulf Leser. Completeness of integrated information
sources. Inf. Syst., 29(7):583–615, 2004. DOI: 10.1016/j.is.2003.12.005 4

Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput. Surv., 33(1):31–88,
2001. DOI: 10.1145/375360.375365 30

Mattis Neiling, Steffen Jurk, Hans-J. Lenz, and Felix Naumann. Object identification quality. In
Proc. Int. Workshop on Data Quality in Cooperative Information Systsems, 2003. 68

Sven Puhlmann, Melanie Weis, and Felix Naumann. XML duplicate detection using sorted neigbor-
hoods. In Advances in Database Technology, Proc. 10th Int. Conf. on Extending Database Technology,
pages 773–791, 2006. DOI: 10.1007/11687238_46 47, 49

Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema matching.
VLDB J., 10(4):334–350, 2001. DOI: 10.1007/s007780100057 10

Jun Rao, Hamid Pirahesh, and Calisto Zuzarte. Canonical abstraction for outerjoin optimiza-
tion. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 671–682, 2004.
DOI: 10.1145/1007568.1007643 8

Sunita Sarawagi and Anuradha Bhamidipaty. Interactive deduplication using active learning. In
Proc. 8th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pages 269–278,
2002. DOI: 10.1145/775047.775087 69

Dennis Shasha, Jason Tsong-Li Wang, Kaizhong Zhang, and Shih Frank Y. Exact and approximate
algorithms for unordered tree matching. IEEE Trans. Systems, Man, and Cybernetics, 24(4):668–
678, 1994. DOI: 10.1109/21.286387 39

E. Patrick Shironoshita, Ray M. Bradley, Yves R. Jean-Mary, Thomas J. Taylor, Michael T.
Ryan, and Mansur R. Kabuka. Semantic representation and querying of caBIG data ser-
vices. In Proc. Int. Workshop on Data Integration for the Life Sciences, pages 108–115, 2008.
DOI: 10.1007/978-3-540-69828-9_10 9

http://dx.doi.org/10.1016/j.is.2003.12.005
http://dx.doi.org/10.1145/375360.375365
http://dx.doi.org/10.1007/11687238_46
http://dx.doi.org/10.1007/s007780100057
http://dx.doi.org/10.1145/1007568.1007643
http://dx.doi.org/10.1145/775047.775087
http://dx.doi.org/10.1109/21.286387
http://dx.doi.org/10.1007/978-3-540-69828-9_10

75

Parag Singla and Pedro Domingos. Object identification with attribute-mediated dependences. In
Principles of Data Mining and Knowledge Discovery, 9th European Conf., pages 297–308, 2005.
DOI: 10.1007/11564126_31 65

Temple F. Smith and Michael S. Waterman. Identification of common molecular subsequences. J.
Molecular Biology, 147(1):195–197, 2001. DOI: 10.1016/0022-2836(81)90087-5 31

Lincoln D. Stein. Integrating biological databases. Nature Reviews Genetics, 4(5):337 – 345, 2003.
DOI: 10.1038/nrg1065 9

John Talburt, Yinle Zhou, and Savitha Shivaiah. SOG: A synthetic occupancy generator to support
entity resolution instruction and research. In Proc. Int. Conf. on Information Quality, 2009. 67

Giri Kumar Tayi and Donald P. Ballou. Examining data quality. Commun. ACM, 41(2):54–57, 1998.
DOI: 10.1145/269012.269021 3

Silke Trißl, Kristian Rother, Heiko Müller, Thomas Steinke, Ina Koch, Robert Preissner, Cornelius
Frömmel, and Ulf Leser. Columba: an integrated database of proteins, structures, and annotations.
BMC Bioinformatics, 6:Paper 81, 2005. DOI: 10.1186/1471-2105-6-81 9

Richard Y. Wang and Diane M. Strong. Beyond accuracy: What data quality means to data con-
sumers. J. Manage. Information Syst., 12(4):5–34, 1996. 3

Michael S. Waterman, Temple F. Smith, and W. A. Beyer. Some biological sequence metrics. Adv.
Mathematics, 20(3):367–387, 1976. DOI: 10.1016/0001-8708(76)90202-4 32

Melanie Weis. Duplicate Detection in XML Data. WiKu-Verlag fuer Wissenschaft und Kultur, 2008.
37, 49

Melanie Weis and Felix Naumann. Detecting duplicate objects in XML documents. In
Proc. Int. Workshop on Information Quality for Information Systems, pages 10–19, 2004.
DOI: 10.1145/1012453.1012456 48

Melanie Weis and Felix Naumann. DogmatiX tracks down duplicates in XML. In Proc. ACM SIG-
MOD Int. Conf. on Management of Data, pages 431–442, 2005. DOI: 10.1145/1066157.1066207
34, 38

Melanie Weis, Felix Naumann, and Franziska Brosy. A duplicate detection benchmark for XML
(and relational) data. In Proc. Int. Workshop on Information Quality for Information Systems, 2006.
67, 68

Melanie Weis, Felix Naumann, Ulrich Jehle, Jens Lufter, and Holger Schuster. Industry-scale
duplicate detection. Proc. 34th Int. Conf. on Very Large Data Bases, 1(2):1253–1264, 2008.
DOI: http://doi.acm.org/10.1145/1454159.1454165 40, 42, 62, 63

http://dx.doi.org/10.1007/11564126_31
http://dx.doi.org/10.1016/0022-2836(81)90087-5
http://dx.doi.org/10.1038/nrg1065
http://dx.doi.org/10.1145/269012.269021
http://dx.doi.org/10.1186/1471-2105-6-81
http://dx.doi.org/10.1016/0001-8708(76)90202-4
http://dx.doi.org/10.1145/1012453.1012456
http://dx.doi.org/10.1145/1066157.1066207
http://doi.acm.org/10.1145/1454159.1454165

76 6. CONCLUSION AND OUTLOOK

William E. Winkler and Yves Thiboudeau. An application of the Felligi Sunter model of record
linkage to the 1990 US decennial census. Technical report, US Bureau of the Census, 1991. 33

Su Yan, Dongwon Lee, Min-Yen Kan, and C. Lee Giles. Adaptive sorted neighborhood methods
for efficient record linkage. In Proc. ACM/IEEE Joint Conf. on Digital Libraries, pages 185–194,
2007. DOI: 10.1145/1255175.1255213 47

http://dx.doi.org/10.1145/1255175.1255213

77

Authors’ Biographies

FELIX NAUMANN
Felix Naumann studied mathematics, economy, and computer sciences at the University of Tech-
nology in Berlin. After receiving his diploma in 1997 he joined the graduate school “Distributed
Information Systems” at Humboldt University of Berlin.He completed his Ph.D. thesis on “Quality-
driven Query Answering” in 2000. In 2001 and 2002 he worked at the IBM Almaden Research
Center on topics around data integration. From 2003–2006 he was assistant professor for informa-
tion integration at the Humboldt University of Berlin. Since 2006 he holds the chair for information
systems at the Hasso Plattner Institute at the University of Potsdam in Germany. Felix Naumann
has published numerous articles in the data quality and data cleansing area, has given tutorials and
invited talks on the topic, and has chaired and organized workshops and conferences on data quality.

MELANIE HERSCHEL
Melanie Herschel finished her studies of information technology at the University of Cooperative
Education in Stuttgart in 2003. She then joined the data integration group at the Humboldt Uni-
versity of Berlin (2003–2006), and continued her research on data cleansing and data integration at
the Hasso Plattner Institute at the University of Potsdam in Germany (2006–2008). She completed
her Ph.D. thesis on “Duplicate Detection in XML Data” in 2007. In 2008, she worked at the IBM
Almaden Research Center, concentrating her research on data provenance. Since 2009, she pursues
research on data provenance and query analysis at the database systems group at the University of
Tübingen in Germany. Besides her publications and invited talks on duplicate detection and data
cleansing, Melanie Herschel has also been a member of several program committees and has chaired
and organized a workshop on data quality.

	Data Cleansing: Introduction and Motivation
	Data Quality
	Data Quality Dimensions
	Data Cleansing

	Causes for Duplicates
	Intra-Source Duplicates
	Inter-Source Duplicates

	Use Cases for Duplicate Detection
	Customer Relationship Management
	Scientific Databases
	Data Spaces and Linked Open Data

	Lecture Overview

	Problem Definition
	Formal Definition
	Complexity Analysis
	Data in Complex Relationships
	Data Model
	Challenges of Data with Complex Relationships

	Similarity Functions
	Token-based Similarity
	Jaccard Coefficient
	Cosine Similarity Using Token Frequency and Inverse Document Frequency
	Similarity Based on Tokenization Using q-grams

	Edit-based Similarity
	Edit Distance Measures
	Jaro and Jaro-Winkler Distance

	Hybrid Functions
	Extended Jaccard Similarity
	Monge-Elkan Measure
	Soft TF/IDF

	Measures for Data with Complex Relationships
	Other Similarity Measures
	Rule-based Record Comparison
	Equational Theory
	Duplicate Profiles

	Duplicate Detection Algorithms
	Pairwise Comparison Algorithms
	Blocking
	Sorted-Neighborhood
	Comparison

	Algorithms for Data with Complex Relationships
	Hierarchical Relationships
	Relationships Forming a Graph

	Clustering Algorithms
	Clustering Based on the Duplicate Pair Graph
	Clustering Adjusting to Data & Cluster Characteristics

	Evaluating Detection Success
	Precision and Recall
	Data Sets
	Real-World Data Sets
	Synthetic Data Sets
	Towards a Duplicate Detection Benchmark

	Conclusion and Outlook
	Bibliography
	Authors' Biographies

