Structure between data points

David Bamman Info 202: Information Organization and Retrieval

October 12, 2016

Perspectives

- Semantic
- Lexical
- Structural
- Architectural
- Implementational

Structural perspective

- Focuses on the patterns that emerge among individual relationships
- Network analysis, social network analysis

Questions about individuals

- Who are the most popular individuals in a network?
- Which individuals have the most influence?
- Who bridges different subgroups of users?
- If one is trying to disrupt a network, who should be removed?
- Are there different types of social actors that can be identified by unique network patterns?

Questions about overall structure

- How interconnected are a group of social actors?
- What is the distribution of individual network properties or social roles? For example, are there only a small percentage of "hubs" with a majority of "isolates"?
- Are there subgroups of highly connected users?
- What network properties or motifs (i.e., recurring network patterns) are related to social outcomes of interest?

Questions about flow

- How do the structures of social relationship vary over time?
- How does the importance of specific individuals, social roles, or clusters change over time?
- How does information spread through a network (e.g., Twitter)? How can information propagation be catalyzed or minimized?
- How does the use of new technologies spread through social networks? Who influences adoption of technology the most?

Nodes

- People
- Web pages
- Servers
- Articles

Edges

Undirected

Directed

Metrics for individuals

What's important?	Measure
Number of friends	Degree centrality
Number or importance of friends	Eigenvector, Katz centrality; PageRank
Distance from others	Closeness centrality
Middleman	Betweenness centrality

Adjacency Matrix

Ц Ц

Adjacency Matrix

ы. Ц

	l	2	3	4	5
			-		
2			Ι		Ι
3	I	I		I	I
4			I		
5					

$$A_{3,1} = 1$$

Degree (centrality)

Ц Ц

Degree (centrality)

$$\mathsf{Degree(3)} = \sum_{i=1}^{5} \mathsf{A}_{3,i}$$

$$= A_{3,1} + A_{3,2} + A_{3,3} + A_{3,4} + A_{3,5}$$

		2	3	4	5
2					Ι
3	Ι			I	Ι
4			Ι		
5		I	I		

 $Degree(i) = \sum A_{i,j}$ i

		2	3	4	5	Degree
2			Ι		Ι	2
3	Ι	Ι		Ι	Ι	4
4			Ι			
5			Ι			2

(Directed) Adjacency Matrix

Under what circumstances is degree important?

Centrality

 Eigenvector centrality centrality(i) = $\sum_{i} [A_{i,j} \times centrality(j)]$ Katz centrality $centrality(i) = \alpha \times \sum_{i} \left[\mathsf{A}_{i,j} \times centrality(j) \right] + \beta$ PageRank $centrality(i) = \alpha \times \sum_{i} \left[\mathsf{A}_{i,j} \times \frac{centrality(j)}{outdegree(j)} \right] + \beta$

Geodesic path

Shortest path between two nodes

Betweenness centrality

 $betweenness(i) = \sum_{s,t} I\{i \text{ is on the path from s to t}\}$

Summary: centrality

What's important?	Measure
Number of friends	Degree centrality
Number or importance of friends	Eigenvector, Katz centrality; PageRank
Distance from others	Closeness centrality
Middleman	Betweenness centrality

Summary statistics

- Density
- Clustering coefficient
- Degree distribution
- Assortativity

Density

How interconnected is the network?

Fraction of edges to total possible edges

$$\frac{2E}{N(N-1)}$$

E = number of edges in network N = number of nodes in network

Clustering coefficient

 Probability that two randomly selected friends of A will be friends with each other

$$\frac{2e_i}{k_i(k_i-1)}$$

 e_i = number of edges in network centered at node i k_i = number of neighbors of node i

Assortativity

m = total number of edges in network

Connectivity

Connected component: subset of nodes where

— every node in the subset has a path to every other node

— that subset is not
part of a larger set with
that property

Small-world phenomenon

- Stanley Milgram, "The Small World Problem," *Psych. Today* (1967)
- 296 people asked to get a letter to a target near Boston by sending it to someone they knew on a first-name basis

Tie strength

• "Strong" ties vs. "weak" ties

Tie strength

Marlow et al. (2009). Random sample of users over 30 days in 2009.

Maintained: click on news feed story/visit profile 3+ times

One-way: any directed message

Reciprocal: reciprocated message

Triadic closure

Two people (A and B) have a friend (C) in common; A and B are likely to become friends.

More likely the stronger the tie is between A-C and B-C.

Triadic closure

- Why?
 - A and B have more opportunity to interact if both are friends with the same person
 - A and B may trust each other if they're both friends with the same person
 - C has a matchmaking incentive

Structural balance

Structural balance

Structural balance

- early access to information
- ability to combine different sources of information
- gatekeeper between components

Networks

Network	Nodes	Edges	Information
Social	People		
Internet	Servers		
Citation network	Articles		
Web	Web pages		

Information flows

- Information effects (herding behavior)
- Direct-benefit effects
- Epidemics

Herding behavior

- Lines outside restaurants/clubs
- Crowd of people looking up (Milgram et al. 1969)
- Inference that observed choices are more powerful than own private information

Direct benefit effects

- Direct payoffs for making the same decisions others make
- Social networking sites
- Cell phone providers
- Mac/PC

Direct benefit effects

- a and b adopt A, they get a payout of x
- a and b adopt B, they get a payout of y
- otherwise they get a payout of 0

 The topology of the network has consequences for diffusion

- Tightly connected communities can hinder the spread of innovation
- Viral marketing: how do you choose the nodes where you can maximize adoption in the network?

Information vs. adoption

Ryan & Gross (1943), "The Diffusion of Hybrid Seed Corn in Two Iowa Communities," Rural Sociology

Diffusion of innovations

- Spread of a new technology/idea through a social network
- Common principles (Rogers 1995):
 - complexity. How easy can people understand it?
 - observability. How transparent is it when others are using it?
 - trialability. Can it be adopted incrementally?
 - compatibility. How comparable is it with existing practices?

- Hearing about vs. adopting innovation
- Bridges are powerful for conveying awareness, but not uptake

Diffusion as Epidemic				
Network	Nodes	Edges	Information	
	People		Disease	

How does the network change as a function of the disease?

Basic Reproductive Number (R₀)

 Expected number of new infections caused by a randomly selected person in the population

Disease	R ₀
1918 Flu	2-3
SARS	2-5
HIV	2-5
Polio	5-7
Smallpox	5-7
Measles	12-18

Basic Reproductive Number (R₀)

- In tree models, $R_0 = p \times k$
- p = probability of infecting 1 person
- k = number of people in contact with

decrease p by preventing spread of disease

decrease k by quarantine

Data

- Co-authorship networks
- Citation networks
- Social networks
- Hyperlink networks

https://snap.stanford.edu/data/