Structure between data points

David Bamman
Info 202: Information Organization and Retrieval

October 12, 2016

Perspectives

- Semantic
- Lexical
- Structural
- Architectural
- Implementational

Structural perspective

- Focuses on the patterns that emerge among individual relationships
- Network analysis, social network analysis

Questions about individuals

- Who are the most popular individuals in a network?
- Which individuals have the most influence?
- Who bridges different subgroups of users?
- If one is trying to disrupt a network, who should be removed?
- Are there different types of social actors that can be identified by unique network patterns?

Questions about overall structure

- How interconnected are a group of social actors?
- What is the distribution of individual network properties or social roles? For example, are there only a small percentage of "hubs" with a majority of "isolates"?
- Are there subgroups of highly connected users?
- What network properties or motifs (i.e., recurring network patterns) are related to social outcomes of interest?

Questions about flow

- How do the structures of social relationship vary over time?
- How does the importance of specific individuals, social roles, or clusters change over time?
- How does information spread through a network (e.g., Twitter)? How can information propagation be catalyzed or minimized?
- How does the use of new technologies spread through social networks? Who influences adoption of technology the most?

Nodes

- People
- Web pages
- Servers

- Articles

Edges

Undirected

Directed

Metrics for individuals

What's important?	Measure
Number of friends	Degree centrality
Number or importance of friends	Eigenvector, Katz centrality; PageRank
Distance from others	Closeness centrality
Middleman	Betweenness centrality

Adjacency Matrix

From:

Adjacency Matrix

From:

$$
A_{3,1}=1
$$

Degree (centrality)

From:

Degree (centrality)

From:

$$
\begin{array}{r}
\text { Degree }(3)=\sum_{i=1}^{5} A_{3, i} \\
=A_{3,1}+A_{3,2}+ \\
A_{3,3}+A_{3,4}+A_{3,5}
\end{array}
$$

Degree $(\mathrm{i})=\sum_{j} A_{i, j}$

(Directed) Adjacency Matrix

From:

	I	2	3	4	5
I					
2					
3	I	I			1
4			1		
5		1			

Under what circumstances is degree important?

Centrality

- Eigenvector centrality

$$
\operatorname{centrality}(i)=\sum_{j}\left[A_{i, j} \times \text { centrality }(j)\right]
$$

- Katz centrality

$$
\text { centrality }(i)=\alpha \times \sum_{j}\left[A_{i, j} \times \text { centrality }(j)\right]+\beta
$$

- PageRank

$$
\text { centrality }(i)=\alpha \times \sum_{j}\left[A_{i, j} \times \frac{\text { centrality }(j)}{\text { outdegree }(j)}\right]+\beta
$$

Geodesic path

Shortest path between two nodes

Closeness centrality

Betweenness centrality

betweenness $(i)=\sum_{s, t} I\{i$ is on the path from s to $t\}$

Summary: centrality

What's important?	Measure
Number of friends	Degree centrality
Number or importance of friends	Eigenvector, Katz centrality; PageRank
Distance from others	Closeness centrality
Middleman	Betweenness centrality

Summary statistics

- Density
- Clustering coefficient
- Degree distribution
- Assortativity

Density

How interconnected

 is the network?Fraction of edges to total possible edges

$$
\frac{2 E}{N(N-1)}
$$

$E=$ number of edges in network
$N=$ number of nodes in network

Clustering coefficient

- Probability that two randomly selected friends of A will be friends with each other

$$
\frac{2 e_{i}}{k_{i}\left(k_{i}-1\right)}
$$

$e_{i}=$ number of edges in network centered at node i
$k_{i}=$ number of neighbors of node i

Degree distribution

Assortativity

Assortativity

$$
-\frac{1}{2} \sum_{i, j}\left[\frac{\text { outdegree }(i) \times \text { outdegree }(j)}{2 m} \times I\{\text { if node }(i)=\text { node }(j)\}\right]
$$

Connectivity

Connected component: subset of nodes where

- every node in the subset has a path to every other node
- that subset is not part of a larger set with that property

Small-world phenomenon

- Stanley Milgram, "The Small World Problem," Psych. Today (1967)
- 296 people asked to get a letter to a target near Boston by sending it to someone they knew on a first-name basis

Tie strength

- "Strong" ties vs. "weak" ties

Tie strength

Marlow et al. (2009). Random sample of users over 30 days in 2009.

Maintained: click on news feed story/visit profile 3+ times

One-way: any directed message

Reciprocal: reciprocated message

Active Network Sizes

Triadic closure

Two people (A and B) have a friend (C) in common; A and B are likely to become friends.

More likely the stronger the tie is between $\mathrm{A}-\mathrm{C}$ and B C.

Triadic closure

- Why?
- A and B have more opportunity to interact if both are friends with the same person
- A and B may trust each other if they're both friends with the same person
- C has a matchmaking incentive

Structural balance

Structural balance

Structural balance

structural bridges

- early access to information
- ability to combine different sources of information
- gatekeeper between components

Networks

Network	Nodes	Edges	Information
Social	People		
Internet	Servers		
Citation network	Articles		
Web	Web pages		

Information flows

- Information effects (herding behavior)
- Direct-benefit effects
- Epidemics

Herding behavior

- Lines outside restaurants/clubs
- Crowd of people looking up (Milgram et al. 1969)
- Inference that observed choices are more powerful than own private information

Direct benefit effects

- Direct payoffs for making the same decisions others make
- Social networking sites
- Cell phone providers
- Mac/PC

Direct benefit effects

- a and b adopt A, they get a payout of x
- a and b adopt B, they get a payout of y
- otherwise they get a payout of 0

$a=3$

$b=2$
- The topology of the network has consequences for diffusion

- Tightly connected communities can hinder the spread of innovation
- Viral marketing: how do you choose the nodes where you can maximize adoption in the network?
orkut

f

Information vs. adoption

Ryan \& Gross (1943), "The Diffusion of Hybrid Seed Corn in Two lowa Communities," Rural Sociology

Diffusion of innovations

- Spread of a new technology/idea through a social network
- Common principles (Rogers 1995):
- complexity. How easy can people understand it?
- observability. How transparent is it when others are using it?
- trialability. Can it be adopted incrementally?
- compatibility. How comparable is it with existing practices?

Tie strength

- Hearing about vs. adopting innovation
- Bridges are powerful for conveying awareness, but not uptake

Diffusion as Epidemic

Network	Nodes	Edges	Information
People		Disease	

How does the network change as a function of the disease?

Diffusion as Epidemic

Diffusion as Epidemic

Diffusion as Epidemic

Diffusion as Epidemic

Basic Reproductive Number (R_{0})

- Expected number of new infections caused by a randomly selected person in the population

Disease	Ro
1918 Flu	$2-3$
SARS	$2-5$
HIV	$2-5$
Polio	$5-7$
Smallpox	$5-7$
Measles	$12-18$

Basic Reproductive Number (R_{0})

- In tree models, $\mathrm{R}_{0}=\mathrm{pxk}$
- $p=$ probability of infecting 1 person
decrease p by preventing spread of disease
- $k=$ number of people in contact with

Data

- Co-authorship networks
- Citation networks
- Social networks
- Hyperlink networks

https://snap.stanford.edu/data/

