CS294-129: Designing, Visualizing and Understanding Deep Neural Networks

John Canny

Fall 2016

Lecture 10: Recurrent Networks, LSTMs and Applications

Based on notes from Andrej Karpathy, Fei-Fei Li, Justin Johnson

Last time: ConvNets

D	E
16 weight	19 weight
layers	layers
	_
conv3-64	conv3-64
conv3-64	conv3-64
conv3-128	conv3-128
conv3-128	conv3-128
comv3_256	com/3-256
conv3-256	conv3-256
conv3-256	conv3-256
	conv3-256
conv3-512	conv3-512
conv3-512	conv3-512
conv3-512	conv3-512
	conv3-512
conv3-512	conv3-512
conv3-512	conv3-512
conv3-512	conv3-512
	conv3-512
max	pool
FC-4	4096
FC-4	1096
FC-	1000

Last time: Localization and Detection

Classification

Classification + Localization

Object Detection

Instance Segmentation

Neural Network structure

Standard Neural Networks are DAGs (Directed Acyclic Graphs). That means they have a topological ordering.

 The topological ordering is used for activation propagation, and for gradient back-propagation.

• They process one input instance at a time.

Recurrent Neural Networks (RNNs)

Recurrent networks introduce cycles and a notion of time.

• They are designed to process sequences of data $x_1, ..., x_n$ and can produce sequences of outputs $y_1, ..., y_m$.

Unrolling RNNs

RNNs can be unrolled across multiple time steps.

This produces a DAG which supports backpropagation.

But its size depends on the input sequence length.

Unrolling RNNs

Often layers are stacked vertically (deep RNNs):

e.g. Image Captioning image -> sequence of words

Sequential Processing of fixed inputs

Multiple Object Recognition with Visual Attention, Ba et al.

Sequential Processing of fixed inputs

DRAW: A Recurrent Neural Network For Image Generation, Gregor et al.

We can process a sequence of vectors **x** by applying a recurrence formula at every time step:

y

We can process a sequence of vectors **x** by applying a recurrence formula at every time step:

$$h_t = f_W(h_{t-1}, x_t)$$

Notice: the same function and the same set of parameters are used at every time step.

(Vanilla) Recurrent Neural Network

The state consists of a single *"hidden"* vector **h**:

Character-level language model example

Vocabulary: [h,e,l,o]

Example training sequence: **"hello"**

Character-level language model example

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

Character-level anguage model example

Vocabulary: [h,e,l,o]

Example training sequence: **"hello"**

$$h_t = anh(W_{hh}h_{t-1}+W_{xh}x_t)$$

Character-level language model example

Vocabulary: [h,e,l,o]

Example training sequence: "hello"

min-char-rnn.py gist: 112 lines of Python

2 Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy) 3 BSD License 4 5 import numpy as np 7 # data I/0 8 data = open('input.txt', 'r').read() # should be simple plain text file 9 chars = list(set(data)) 10 data_size, vocab_size = len(data), len(chars) print 'data has %d characters, %d unique.' % (data_size, vocab_size) 12 char_to_ix = { ch:i for i,ch in enumerate(chars) } 13 ix_to_char = { i:ch for i,ch in enumerate(chars) } 15 # hyperparameters 16 hidden_size = 100 # size of hidden layer of neurons 17 seq_length = 25 # number of steps to unroll the RNN for 18 learning_rate = 1e-1 20 # model parameters 21 Wxh = np.random.randn(hidden_size, vocab_size)*0.01 # input to hidden 22 Whb = np.random.rando(hidden size, hidden size)*0.01 # hidden to hidden 23 Why = np.random.randn(vocab size, hidden size)*0.01 # hidden to output 24 bh = np.zeros((hidden_size, 1)) # hidden bias 25 by = np.zeros((vocab_size, 1)) # output bias 26 27 def lossFun(inputs, targets, hprev): 28 20 inputs targets are both list of integers. 30 hprev is Hx1 array of initial hidden state 31 returns the loss, gradients on model parameters, and last hidden state 33 xs, hs, ys, ps = {}, {}, {}, {} 34 hs[-1] = np.copy(hprev) 35 loss = 0 36 # forward pass 37 for t in xrange(len(inputs)): 38 xs[t] = np.zeros((vocab_size,1)) # encode in 1-of-k representation 39 xs[t][inputs[t]] = 1 40 hs[t] = np.tanh(np.dot(Wxh, xs[t]) + np.dot(Whh, hs[t-1]) + bh) # hidden state ys[t] = np.dot(why, hs[t]) + by # unnormalized log provaulles to the second secon 43 loss += -np.log(ps[t][targets[t],0]) # softmax (cross-entropy loss) 44 # backward pass: compute gradients going backwards dWxh, dWhh, dWhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why) 46 dbh, dby = np.zeros_like(bh), np.zeros_like(by) 47 dhnext = np.zeros like(hs[0]) 48 for t in reversed(xrange(len(inputs))); 49 dy = np.copy(ps[t]) dy[targets[t]] -= 1 # backprop into y 51 dwhy += np.dot(dy, hs[t].T) 52 dby += dy 53 dh = np.dot(Why.T, dy) + dhnext # backprop into h 54 dhraw = (1 - hs[t] * hs[t]) * dh # backprop through tanh nonlinearity dbh += dhraw 56 dWxh += np.dot(dhraw, xs[t].T) 57 dwhh += np.dot(dhraw, hs[t-1].T) 58 dhnext = np.dot(Whh.T. dhraw) for dparam in [dWxh, dWhh, dWhy, dbh, dby]: 59

60 np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients

```
61 return loss, dWxh, dWhh, dWhy, dbh, dby, hs[len(inputs)-1]
```

63 def sample(h, seed ix, n); 64 65 sample a sequence of integers from the model 66 h is memory state, seed_ix is seed letter for first time step 68 x = np.zeros((vocab_size, 1)) 69 x[seed_ix] = 1 70 ixes = [] 71 for t in xrange(n): 72 h = np.tanh(np.dot(Wxh, x) + np.dot(Whh, h) + bh) 73 y = np.dot(Why, h) + by p = np.exp(y) / np.sum(np.exp(y)) 75 ix = np.random.choice(range(vocab_size), p=p.ravel()) 76 x = np.zeros((vocab_size, 1)) 77 x[ix] = 1 78 ixes.append(ix) 79 return ixes 80 81 n, p = 0, 0 82 mWxh, mWhh, mWhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why) 83 mbh, mby = np.zeros_like(bh), np.zeros_like(by) # memory variables for Adagrad 84 smooth_loss = -np.log(1.0/vocab_size)*seq_length # loss at iteration 0 85 while True: 86 # prepare inputs (we're sweeping from left to right in steps seq_length long) 87 if p+seq_length+1 >= len(data) or n == 0: 88 hprev = np.zeros((hidden size.1)) # reset RNN memory 89 D = 0 # go from start of data 90 inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]] 91 targets = [char_to_ix[ch] for ch in data[p+1:p+seg_length+1]] 92 93 # sample from the model now and then 94 if n % 100 == 0: 95 sample ix = sample(hprev, inputs[0], 200) 96 txt = ''.join(ix_to_char[ix] for ix in sample_ix) 97 print '----\n %s \n----' % (txt,) 98 99 # forward seq_length characters through the net and fetch gradient 100 loss, dWxh, dWhh, dWhy, dbh, dby, hprev = lossFun(inputs, targets, hprev) 101 smooth_loss = smooth_loss * 0.099 + loss * 0.001
102 if n % 109 == 0: print 'iter %d, loss: %f' % (n, smooth_loss) # print progress 104 # perform parameter update with Adagrad 105 for param, dparam, mem in zip([Wxh, Whh, Why, bh, by], [dWxh, dWhh, dWhy, dbh, dby], [mWxh, mWhh, mWhy, mbh, mby]): 108 mem += dparam * dparam 109 param += -learning_rate * dparam / np.sqrt(mem + 1e-8) # adagrad update 111 p += seq_length # move data pointer 112 n += 1 # iteration counter

> (https://gist.github.com/karpath y/d4dee566867f8291f086)

Data I/O

p += seq_length # move data pointer
n 4= 1 # iteration counter

```
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
 2
     BSD License
 3
     0.0.0
 4
 5
     import numpy as np
 6
    # data I/O
     data = open('input.txt', 'r').read() # should be simple plain text file
 8
    chars = list(set(data))
 9
    data_size, vocab_size = len(data), len(chars)
10
```

```
11 print 'data has %d characters, %d unique.' % (data_size, vocab_size)
```

```
12 char_to_ix = { ch:i for i, ch in enumerate(chars) }
```

0.0.0

1

```
13 ix_to_char = { i:ch for i,ch in enumerate(chars) }
```


p += seq_length # move data pointer

Initializations

15 # hyperparameters

16

17

18

19

20

21

23

24

25

- hidden_size = 100 # size of hidden layer of neurons
- seq_length = 25 # number of steps to unroll the RNN for
- learning_rate = 1e-1

model parameters

- Wxh = np.random.randn(hidden_size, vocab_size)*0.01 # input to hidden
- 22 Whh = np.random.randn(hidden_size, hidden_size)*0.01 # hidden to hidden
 - Why = np.random.randn(vocab_size, hidden_size)*0.01 # hidden to output
 - bh = np.zeros((hidden_size, 1)) # hidden bias
 - by = np.zeros((vocab_size, 1)) # output bias

E.	- 1		
		Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)	
	3	BSD License	
	5	import numpy as np	
		# data I/O	
	8	<pre>data = open('input.txt', 'r').read() # should be simple plain text file chars = list(set(data))</pre>	
	10	data_size, vocab_size = len(data), len(chars)	
		char_to_ix = { ch:i for i,ch in enumerate(chars) }	
	13	<pre>ix_to_char = { i:ch for i,ch in enumerate(chars) }</pre>	
		# hyperparameters	
	16 17	hidden_size = 100 # size of hidden layer of neurons seq_length = 25 # number of steps to unroll the RNN for	
	18	learning_rate = 1e-1	
	29	# model parameters	
		Wxh = np.random.randn(hidden_size, vocab_size)*0.01 # input to hidden Whh = np.random.randn(hidden size, hidden size)*0.01 # hidden to hidden	
		Why = np.random.randn(wocab_size, hidden_size)'0.01 # hidden to output	
	24 25	on = np.zeros((nioden_size, 1)) # nioden bias by = np.zeros((vocab_size, 1)) # output bias	
	26	def lossEun(innuts, targets, hnrev):	
	28	***	
	29 30	inputs,targets are both list of integers. hprev is Hxi array of initial hidden state	
	31	returns the loss, gradients on model parameters, and last hidden state	
		xs, hs, ys, ps = {}, {}, {}, {}	
	34	hs[-1] = np.copy(hprev)	
	36	# forward pass	
	37 38	<pre>for t in xrange(len(inputs)): xs[t] = np.zeros((wocab_size,1)) # encode in 1-of-k representation</pre>	
	39	<pre>xs[t][inputs[t]] = 1 hs[t] = nn tanh/nn dat(wh ys[t]) + nn dat(whh hs[t-1]) + hh) = hidden state</pre>	
	40	<pre>ys[t] = np.tom((np.doc(wkm, xs[t]) + np.doc(whm, ns[t=1]) + un) = ntober state ys[t] = np.dot(why, hs[t]) + by # unnormalized log probabilities for next chars</pre>	
	42 43	<pre>ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # probabilities for next chars loss += -np.log(ps[t][targets[t],0]) # softmax (cross-entropy loss)</pre>	
	44	# backward pass: compute gradients going backwards	
	45 46	dwon, dwnn, dwny = np.zeros_like(wxn), np.zeros_like(wnn), np.zeros_like(wny) dbh, dby = np.zeros_like(bh), np.zeros_like(by)	
	47	<pre>dhmext = np.zeros_like(hs[0]) for t in reversed(xrange(len(inputs)));</pre>	
	49	dy = np.copy(ps[t])	
	50 51	dy[targets[t]] -= 1 # backprop into y dwhy += np.dot(dy, hs[t].T)	
	52	dby += dy db = no dot(bby T_db) + dbnevt = becknown into b	
	53 54	<pre>dhraw = (1 - hs[t] * hs[t]) * dh # backprop through tanh nonlinearity</pre>	
	55 56	dbh += dhraw dWxh += no.dot(dhraw, xs[t].T)	
	57	dwhh += np.dot(dhraw, hs[t-1].T)	
	58 59	dhnext = np.dot(whn.T, dhraw) for dparam in [dwxh, dwhh, dwhy, dbh, dby]:	
	69 61	<pre>mp.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients return loss, dwbb, dwbb, dwby, dbb, dby, bs[len(inputs).1]</pre>	
	63	def sample(h, seed_ix, n):	
	64 65	sample a sequence of integers from the model	
	66 67	h is memory state, seed_ix is seed letter for first time step	
	68 69	<pre>x = np.zeros((vocab_size, 1)) x[seed_ix] = 1</pre>	
	78 71	<pre>ixes = [] for t in xrane(n);</pre>	
		h = np.tanh(np.dot(with, x) + np.dot(with, h) + bh) v = np.dot(with, b) + bv	
	74	<pre>p = np.exp(y) / np.sum(np.exp(y)) is = np.exp(mp.exp(p) = nm.exp(x)) is = np.exp(mp.exp(mp.exp(x))) is = np.exp(mp.exp(mp.exp(x))) is = np.exp(mp.exp(x))) is = np.exp(mp.exp(x)) is = np.exp(x) is = np.ex</pre>	
	75 76	<pre>ix - ip.imuml.choice(range(vocan_size), p=p.ravei()) x = np.zeros((vocan_size, 1)) </pre>	
	77 78	x[ix] = 1 ixes.append(ix)	7
	79 88	return ixes	
	81 82	n, p = 0, 0 mkth, mkhh, mkhy = np.zeros_like(wth), np.zeros_like(whh), np.zeros_like(why)	
		<pre>mbh, mby = np.zeros_like(bh), np.zeros_like(by) # memory variables for Adagrad smooth_loss = -np.log[1.6/vocab_size]'seq_length # loss at iteration 0</pre>	
	85	while True:	
		if prepare support (we re sweeping from zero of right in scepe seg_icengin iong) if prese_length+1 >> len(data) or n == 0:	
	88 89	<pre>mprev = np.zeros((nicon(_size_i)) = reset book memory p = 0 # go from start of data</pre>	
	90 91	inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]] targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]	
	92 93	# sample from the model now and then	
	94 95	<pre>if n % 100 == 0: sample_ix = sample(hprev, inputs[0], 200)</pre>	
	96	<pre>txt = ''.join[ix_to_char[ix] for ix in sample_ix) orint '\n %s \n' % (txt.)</pre>	
	98	a ferror of an least absorbers through the set and forch aradian	
	99	loss, dich, duhh, duhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)	
		<pre>smooth_Loss = smooth_Loss * 0.999 + loss * 0.001 if n % 100 == 0: print 'iter %d, loss: %f % (n, smooth_loss) = print progress</pre>	
		# perform parameter update with Adagrad	
		for param, dparam, mem in zip([wch, Whh, Why, bh, by], [Ghoh, dwhh, dwhy, dbh, dbv].	
		[mich, mith, mity, sbh, sby]):	
		param += -learning_rate * dparam / np.sqrt(mem + 1e-8) = adagrad update	
		<pre>p += seq_length # move data pointer</pre>	
		<pre>n += 1 # iteration counter</pre>	

81	n, $p = 0, 0$
82	<pre>mWxh, mWhh, mWhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why)</pre>
83	<pre>mbh, mby = np.zeros_like(bh), np.zeros_like(by) # memory variables for Adagrad</pre>
84	<pre>smooth_loss = -np.log(1.0/vocab_size)*seq_length # loss at iteration 0</pre>
85	while True:
86	# prepare inputs (we're sweeping from left to right in steps seq_length long)
87	if p+seq_length+1 >= len(data) or n == 0:
88	<pre>hprev = np.zeros((hidden_size,1)) # reset RNN memory</pre>
89	<pre>p = 0 # go from start of data</pre>
90	inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
91	<pre>targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]</pre>
92	
93	# sample from the model now and then
94	if n % 100 == 0:
95	<pre>sample_ix = sample(hprev, inputs[0], 200)</pre>
96	<pre>txt = ''.join(ix_to_char[ix] for ix in sample_ix)</pre>
97	print '\n %s \n' % (txt,)
98	
99	<pre># forward seq_length characters through the net and fetch gradient</pre>
100	loss, dWxh, dWhh, dWhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
101	<pre>smooth_loss = smooth_loss * 0.999 + loss * 0.001</pre>
102	<pre>if n % 100 == 0: print 'iter %d, loss: %f' % (n, smooth_loss) # print progress</pre>
103	
104	# perform parameter update with Adagrad
105	for param, dparam, mem in zip([Wxh, Whh, Why, bh, by],
106	[dWxh, dWhh, dWhy, dbh, dby],
107	[mWxh, mWhh, mWhy, mbh, mby]):
108	mem += dparam * dparam
109	param += -learning_rate * dparam / np.sqrt(mem + 1e-8) # adagrad update
110	
111	<pre>p += seq_length # move data pointer</pre>
112	n += 1 # iteration counter

l		Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)	
	3	BSD License	
	4		
l	6	Import numpy as np	
l		# data I/O	
l	8	<pre>data = open('input.txt', 'r').read() # should be simple plain text file shore = list(set(data))</pre>	
	10	data_size, vocab_size = len(data), len(chars)	
		print 'data has %d characters, %d unique.' % (data_size, vocab_size)	
		<pre>char_to_ix = { ch:i for i,ch in enumerate(chars) }</pre>	
	13	1X_t0_cnar = { 1:ch for 1,ch in enumerate(chars) }	
		# hyperparameters	
	16	hidden_size = 100 # size of hidden layer of neurons	
		<pre>seq_length = 25 # number of steps to unroll the RNN for learning rate = 1a 1</pre>	
		Tour wind, note - To-T	
	20	# model parameters	
		Wxh = np.random.randn(hidden_size, vocab_size)*0.01 # input to hidden	
		whn = np.random.randn(nidden_size, nidden_size)*8.81 # hidden to nidden Why = np.random.randn(vocab size, hidden size)*8.81 # hidden to output	
	24	bh = np.zeros((hidden_size, 1)) # hidden bias	
	25	<pre>by = np.zeros((vocab_size, 1)) # output bias</pre>	
	26	def lossEun(insute tarnate hnrew):	
	28	and address of geta, three .	
	29	inputs, targets are both list of integers.	
	30	hprev is Hx1 array of initial hidden state	
		recurs the loss, gradients on model parameters, and last hidden state	
		xs, hs, ys, ps = {}, {}, {}, {}, {}	
	34	hs[-1] = np.copy(hprev)	
	35	1055 = 0 # forward pass	
	37	<pre>for t in xrange(len(inputs)):</pre>	
	38	<pre>xs[t] = np.zeros((vocab_size,1)) # encode in 1-of-k representation</pre>	
	39	<pre>xs[t][inputs[t]] = 1 be[f] = nn tanh(nn dat(wh ys[t]) + nn dat(wh hs[t.1]) + hh) = hidden erate</pre>	
	41	<pre>ys[t] = np.dot(why, hs[t]) + by # unnormalized log probabilities for next chars</pre>	
	42	<pre>ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # probabilities for next chars</pre>	
	43	<pre>loss += -np.log(ps[t][targets[t],0]) # softmax (cross-entropy loss)</pre>	
	44	# backward pass: compute gradients going backwards dwth, dwhh, dwhy = np.zeros like(wth), np.zeros like(whh), np.zeros like(why)	
	46	dbh, dby = np.zeros_like(bh), np.zeros_like(by)	
	47	<pre>dhnext = np.zeros_like(hs[0])</pre>	
	48	<pre>for t in reversed(xrange(len(inputs))): dx = nn conv(ns[t])</pre>	
	59	dy[targets[t]] -= 1 # backprop into y	
	51	dwhy += np.dot(dy, hs[t].T)	
		dby += dy	
	53	<pre>dm = np.dot(wny.1, dy) + dnmext = backprop into n dhraw = (1 - hs[t] ' hs[t]) ' dh # backprop through tanh nonlinearity</pre>	
	55	dbh += dhraw	
	56	dwxh += np.dot(dhraw, xs[t].T)	
		dwhh += np.dot(dhraw, hs[t-1].T) dhavt = np.dot(whh Tdhraw)	
	59	for dparam in [dwkh, dwhh, dwhy, dbh, dby]:	
	69	<pre>np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients</pre>	
	61	return loss, dwxh, dwhh, dwhy, dbh, dby, hs[len(inputs)-1]	
		def sample(h, seed_ax, n):	
	65	sample a sequence of integers from the model	
	66	h is memory state, seed_ix is seed letter for first time step	
	68	<pre>x = np.zeros((wocab_size, 1))</pre>	
	69 78	x[seed_ix] = 1 ixes = []	
		for t in xrange(n):	
		h = np.tanh(np.dot(whh, x) + np.dot(whh, h) + bh) y = np.dot(why, h) + by	
	74	p = np.exp(y) / np.sum(np.exp(y))	
	75	<pre>ix = np.random.choice(range(wocab_size), p=p.ravel()) x = np.raros(/wocab_size_1))</pre>	_
	77	x[ix] = 1	
	78	ixes.append(ix)	
	88		
		n, p = 0, 0 much, mdh, mdhy = nn.zeros like(uch), nn.zeros like(ubh) -ro maros like(ubu)	
		mbh, mby = np.zeros_like(bh), np.zeros_like(by) # memory variables for Adagrad	
		<pre>smooth_loss = -mp.log(1.0/vocab_size)*seq_length = loss at iteration 0 while True:</pre>	
	85	<pre># prepare inputs (we're sweeping from left to right in steps seq_length long)</pre>	
		if p+seq_length+1 >= len(data) or n == 0: herew - no marce((b))den size 11) # canat DNN memory	
	89	p = 0 # go from start of data	
	99	inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]	
		roiAera - From ToTrufcul ioi cu nu omrafbertheadTraud[ye1]]	
		# sample from the model now and then	/
		<pre>sample_ix = sample(hprev, inputs[0], 200)</pre>	/
	96	<pre>txt = ''.join[ix_to_char[ix] for ix in sample_ix)</pre>	r
		print '\n %s \n' % (txt,)	
	99	# forward seq_length characters through the net and fetch gradient	
	100	loss, dwth, dwhh, dwhy, dbh, dby, hprev = lossFun(inputs, targets, hprev) smooth loss = smooth loss * 0.000 + loss * 0.001	
		if n % 100 == 0: print 'iter %d, loss: %f' % (n, smooth_loss) # print progress	
		g perform parameter undate with Adaprad	
		for param, dparam, mem in zip([Wckh, Whh, Why, bh, by],	
	106	[dush, dwhh, dwhy, dbh, dby], [much midh midu, mbh mbu]);	
	108	nem += dparam * dparam	
		param += -learning_rate * dparam / np.sqrt(mem + 1e-8) = adagrad update	
		<pre>p += seq_length # move data pointer</pre>	

84

89

91 92

94

95

98

101

102

104

108

110

111 112

Main loop

n, p = 0, 0mWxh, mWhh, mWhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why) mbh, mby = np.zeros like(bh), np.zeros like(by) # memory variables for Adagrad smooth_loss = -np.log(1.0/vocab_size)*seq_length # loss at iteration 0 while True: # prepare inputs (we're sweeping from left to right in steps seq_length long) if p+seq_length+1 >= len(data) or n == 0: hprev = np.zeros((hidden_size,1)) # reset RNN memory p = 0 # go from start of data inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]] targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]] # sample from the model now and then if n % 100 == 0: sample_ix = sample(hprev, inputs[0], 200) txt = ''.join(ix to char[ix] for ix in sample ix) print '----\n %s \n----' % (txt,) # forward seq_length characters through the net and fetch gradient loss, dWxh, dWhh, dWhy, dbh, dby, hprev = lossFun(inputs, targets, hprev) smooth_loss = smooth_loss * 0.999 + loss * 0.001 if n % 100 == 0: print 'iter %d, loss: %f' % (n, smooth_loss) # print progress # perform parameter update with Adagrad for param, dparam, mem in zip([Wxh, Whh, Why, bh, by], [dWxh, dWhh, dWhy, dbh, dby], [mWxh, mWhh, mWhy, mbh, mby]): mem += dparam * dparam param += -learning rate * dparam / np.sgrt(mem + 1e-8) # adagrad update p += seq_length # move data pointer n += 1 # iteration counter

```
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
   BSD License
   import numpy as np
   # data I/O
   data = open('input.txt', 'r').read() # should be simple plain text file
   chars = list(set(data))
   data_size, vocab_size = len(data), len(chars)
   print 'data has %d characters, %d unique.' % (data_size, vocab_size)
   char_to_ix = { ch:i for i, ch in enumerate(chars) }
   ix_to_char = { i:ch for i,ch in enumerate(chars) }
  hidden_size = 100 # size of hidden layer of neurons
   seq_length = 25 # number of steps to unroll the RNN for
   learning_rate = 1e-1
20 # model parameters
   Wxh = np.random.randn(hidden_size, vocab_size)*0.01 # input to hidden
   Whh = np.random.randn(hidden_size, hidden_size)*0.01 # hidden to hidden
   Why = np.random.randn(wocab_size, hidden_size)*0.01 # hidden to output
    bh = np.zeros((hidden_size, 1)) # hidden bias
   by = np.zeros((vocab_size, 1)) # output bias
   def lossFun(inputs, targets, hprev):
     inputs, targets are both list of integers.
      hprev is Hx1 array of initial hidden state
     returns the loss, gradients on model parameters, and last hidden state
     xs, hs, ys, ps = {}, {}, {}, {}, {}
     hs[-1] = np.copy(hprev)
loss = 0
      # forward pass
     for t in xrange(len(inputs));
        xs[t] = np.zeros((vocab_size,1)) # encode in 1-of-k representation
        xs[t][inputs[t]] = 1
        hs[t] = np.tanh(np.dot(Wxh, xs[t]) + np.dot(Whh, hs[t-1]) + bh) # hidden state
        ys[t] = np.dot(Why, hs[t]) + by # unnormalized log probabilities for next chars
        ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # probabilities for next chars
        loss += -mp.log(ps[t][targets[t],0]) # softmax (cross-entropy loss)
      # backward pass: compute gradients going backwards
       dwxh, dwhh, dwhy = np.zeros_like(wxh), np.zeros_like(whh), np.zeros_like(why)
      dbh, dby = np.zeros_like(bh), np.zeros_like(by)
      dhnext = np.zeros like(hs[0])
      for t in reversed(xrange(len(inputs))):
        dy = np.copy(ps[t])
        dy[targets[t]] -= 1 # backprop into y
        dwhy += np.dot(dy, hs[t].T)
        dby += dy
       db = np.dot(why.T. dy) + dbmext = backprop into b
        dhraw = (1 - hs[t] ' hs[t]) ' dh # backprop through tanh nonlinearity
        dbh += dhraw
       dWxh += np.dot(dhraw, xs[t].T)
        dwhh += np.dot(dhraw, hs[t-1].T)
        dhnext = np.dot(Whh.T, dhraw)
     for doaram in [dwxh, dwhh, dwhy, dbh, dby];
      np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients
     return loss, dwith, dwhh, dwhy, dbh, dby, hs[len(inputs)-1]
   def sample(h, seed_ix, n):
    sample a sequence of integers from the model
h is memory state, seed_ix is seed letter for first time step
     x = np.zeros((vocab_size, 1))
     x[seed_ix] = 1
     ixes = []
for t in xrange(n):
    h = np.tanh(np.dot(with, x) + np.dot(with, h) + bh)
      y = np.dot(Why, h) + by
p = np.exp(y) / np.sum(np.exp(y))
       ix = np.random.choice(range(vocab_size), p=p.ravel())
       x = np.zeros((vocab_size, 1))
x[ix] = 1
       ixes.append(ix)
     return ixes
   n, p = 0, 0
mixth, mihh, mihy = np.zeros_like(Wxh), np.zeros_like(Wh), np.zeros_like(Why)
   mbh, mby = np.zeros_like(bh), np.zeros_like(by) # memory variables for Adagrad
smooth_loss = -np.log(1.0/vocab_size)*seq_length # loss at iteration 0
while True:
     if p+seq_length+1 >= len(data) or n == 0:
    hprev = np.zeros((hidden_size,1)) # reset RNN memory
     p = 0 # go from start of data
inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
     targets = [char_to_ix[ch] for ch in data[p+1:p+seg length+1]]
     # sample from the model now and then
     if n % 100 == 0;
      if n a low = c.
sample_ix = sample(hprev, inputs[0], 200)
txt = ''.join(ix_tCo_char[ix] for ix in sample_ix)
print '....\n %s \n....' % (txt, )
    = forward seq_length characters through the net and fetch gradient loss, doch, ddh, ddh, ddh, ddh, dp, hprev = lossingliquits, targets, hprev) southloss = exothloss = 0 set loss *0 edge + loss *0.edg
     for param, dparam, mem in zip([With, Whh, Why, bh, by],
                                [dwh, dwhh, dwhy, dbh, dby],
[mwh, mwhh, mwhy, mbh, mby]):
       mem += dparam * dparam param += -learning_rate * dparam / np.sqrt(mem + 1e-3) # adagrad update
     p += seq_length # move data pointer
```

81	n, p = 0 , 0
82	<pre>mWxh, mWhh, mWhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why)</pre>
83	<pre>mbh, mby = np.zeros_like(bh), np.zeros_like(by) # memory variables for Adagrad</pre>
84	<pre>smooth_loss = -np.log(1.0/vocab_size)*seq_length # loss at iteration 0</pre>
85	while True:
86	# prepare inputs (we're sweeping from left to right in steps seq_length long)
87	if p+seq_length+1 >= len(data) or n == 0:
88	<pre>hprev = np.zeros((hidden_size,1)) # reset RNN memory</pre>
89	<pre>p = 0 # go from start of data</pre>
90	inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
91	targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]
92	
93	# sample from the model now and then
94	if n % 100 == 0:
95	<pre>sample_ix = sample(hprev, inputs[0], 200)</pre>
96	<pre>txt = ''.join(ix_to_char[ix] for ix in sample_ix)</pre>
97	print '\n %s \n' % (txt,)
98	
99	<pre># forward seq_length characters through the net and fetch gradient</pre>
100	loss, dWxh, dWhh, dWhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
101	<pre>smooth_loss = smooth_loss * 0.999 + loss * 0.001</pre>
102	<pre>if n % 100 == 0: print 'iter %d, loss: %f' % (n, smooth_loss) # print progress</pre>
103	
104	# perform parameter update with Adagrad
105	<pre>for param, dparam, mem in zip([Wxh, Whh, Why, bh, by],</pre>
106	[dWxh, dWhh, dWhy, dbh, dby],
107	[mWxh, mWhh, mWhy, mbh, mby]):
108	mem += dparam * dparam
109	<pre>param += -learning_rate * dparam / np.sqrt(mem + 1e-8) # adagrad update</pre>
110	
111	<pre>p += seq_length # move data pointer</pre>
112	n += 1 # iteration counter

```
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
   BSD License
   import numpy as np
   # data I/O
   data = open('input.txt', 'r').read() # should be simple plain text file
   chars = list(set(data))
   data_size, vocab_size = len(data), len(chars)
   print 'data has %d characters, %d unique.' % (data_size, vocab_size)
   char_to_ix = { ch:i for i, ch in enumerate(chars) }
   ix_to_char = { i:ch for i,ch in enumerate(chars) }
   hidden_size = 100 # size of hidden layer of neurons
   seq_length = 25 # number of steps to unroll the RNN for
   learning_rate = 1e-1
20 # model parameters
   Wxh = np.random.randn(hidden_size, vocab_size)*0.01 # input to hidden
   Whh = np.random.randn(hidden_size, hidden_size)*0.01 # hidden to hidden
   Why = np.random.randn(wocab_size, hidden_size)*0.01 # hidden to output
   bh = np.zeros((hidden_size, 1)) # hidden bias
   by = np.zeros((vocab_size, 1)) # output bias
   def lossFun(inputs, targets, hprev):
     inputs, targets are both list of integers.
      hprev is Hx1 array of initial hidden state
      returns the loss, gradients on model parameters, and last hidden state
      xs, hs, ys, ps = {}, {}, {}, {}, {}
     hs[-1] = np.copy(hprev)
loss = 0
      # forward pass
      for t in xrange(len(inputs));
        xs[t] = np.zeros((vocab_size,1)) # encode in 1-of-k representation
         xs[t][inputs[t]] = 1
        hs[t] = np.tanh(np.dot(Wxh, xs[t]) + np.dot(Whh, hs[t-1]) + bh) # hidden state
        ys[t] = np.dot(Why, hs[t]) + by # unnormalized log probabilities for next chars
         ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # probabilities for next chars
        loss += -mp.log(ps[t][targets[t],0]) # softmax (cross-entropy loss)
      # backward pass: compute gradients going backwards
       dwxh, dwhh, dwhy = np.zeros_like(wxh), np.zeros_like(whh), np.zeros_like(why)
      dbh, dby = np.zeros_like(bh), np.zeros_like(by)
      dhnext = np.zeros like(hs[0])
      for t in reversed(xrange(len(inputs))):
        dy = np.copy(ps[t])
        dy[targets[t]] -= 1 # backprop into y
         dwhy += np.dot(dy, hs[t].T)
        dby += dy
       db = np.dot(why.T. dy) + dbmext = backprop into b
        dhraw = (1 - hs[t] ' hs[t]) ' dh # backprop through tanh nonlinearity
        dbh += dhraw
       dWxh += np.dot(dhraw, xs[t].T)
        dwhh += np.dot(dhraw, hs[t-1].T)
        dhnext = np.dot(Whh.T, dhraw)
    for dparam in [dwxh, dwhh, dwhy, dbh, dby]:
      np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients
      return loss, dwxh, dwhh, dwhy, dbh, dby, hs[len(inputs)-1]
   def sample(h, seed_ix, n):
    sample a sequence of integers from the model
h is memory state, seed_ix is seed letter for first time step
     x = np.zeros((vocab_size, 1))
      x[seed_ix] = 1
     ixes = []
for t in xrange(n):
    h = np.tanh(np.dot(with, x) + np.dot(with, h) + bh)
      y = np.dot(Why, h) + by
p = np.exp(y) / np.sum(np.exp(y))
       ix = np.random.choice(range(vocab_size), p=p.ravel())
       x = np.zeros((vocab_size, 1))
x[ix] = 1
       ixes.append(ix)
      return ixes
   n, p = 0, 0
mixth, mihh, mihy = np.zeros_like(Wxh), np.zeros_like(Wh), np.zeros_like(Why)
   mbh, mby = np.zeros_like(bh), np.zeros_like(by) # memory variables for Adagrad
smooth_loss = -np.log(1.0/vocab_size)*seq_length # loss at iteration 0
while True:
      if p+seq_length+1 >= len(data) or n == 0:
    hprev = np.zeros((hidden_size,1)) # reset RNN memory
      p = 0 # go from start of data
inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
      targets = [char_to_ix[ch] for ch in data[p+1:p+seg length+1]]
      # sample from the model now and then
     if n % 100 == 0;
      if n a low = 0:
sample_ix = sample(hprev, inputs[0], 200)
txt = ''.join(ix_t0_char[ix] for ix in sample_ix)
print '....\n %s \n....' % (txt, )
    # forward seq_length characters through the ret and fetch gradient loss, doch, ddwh, ddwh, ddwh, ddwh, theye = lossFundinguts, targets, hprev) southloss = 9 \times 100 \times 10^{-10} \times 10^{-10} (in a 100 == 0: print 'iter hd, loss: hf' h (n, smooth_loss) # print progress
      for param, dparam, mem in zip([With, Whh, Why, bh, by],
                                [dixh, dwhh, dwhy, dbh, dby],
[mixh, mihh, mihy, mbh, mby]):
       mem += dparam * dparam param += -learning_rate * dparam / np.sqrt(mem + 1e-3) # adagrad update
      p += seq_length # move data pointer
```

81	n, p = Θ , Θ
82	<pre>mWxh, mWhh, mWhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why)</pre>
83	<pre>mbh, mby = np.zeros_like(bh), np.zeros_like(by) # memory variables for Adagrad</pre>
84	<pre>smooth_loss = -np.log(1.0/vocab_size)*seq_length # loss at iteration 0</pre>
85	while True:
86	<pre># prepare inputs (we're sweeping from left to right in steps seq_length long)</pre>
87	if p+seq_length+1 >= len(data) or n == 0:
88	<pre>hprev = np.zeros((hidden_size,1)) # reset RNN memory</pre>
89	<pre>p = 0 # go from start of data</pre>
90	inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
91	<pre>targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]</pre>
92	
93	# sample from the model now and then
94	if n % 100 == 0:
95	<pre>sample_ix = sample(hprev, inputs[0], 200)</pre>
96	<pre>txt = ''.join(ix_to_char[ix] for ix in sample_ix)</pre>
97	print '\n %s \n' % (txt,)
98	
99	<pre># forward seq_length characters through the net and fetch gradient</pre>
100	loss, dWxh, dWhh, dWhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
101	<pre>smooth_loss = smooth_loss * 0.999 + loss * 0.001</pre>
102	<pre>if n % 100 == 0: print 'iter %d, loss: %f' % (n, smooth_loss) # print progress</pre>
103	
104	# perform parameter update with Adagrad
105	for param, dparam, mem in zip([Wxh, Whh, Why, bh, by],
106	[dWxh, dWhh, dWhy, dbh, dby],
107	[mWxh, mWhh, mWhy, mbh, mby]):
108	mem += dparam * dparam
109	<pre>param += -learning_rate * dparam / np.sqrt(mem + 1e-8) # adagrad update</pre>
110	
111	<pre>p += seq_length # move data pointer</pre>
112	<pre>n += 1 # iteration counter</pre>

	Minimal character-level Vanilla RNN model, Written by Andrei Karpathy (@karpathy)	
	BSD License	
4	***	
5	import numpy as np	
6	1 days #10	
1	<pre>data = open('input.txt', 'r').read() # should be simple plain text file</pre>	
9	chars = list(set(data))	
10	data_size, vocab_size = len(data), len(chars)	
	print 'data has %d characters, %d unique.' % (data_size, vocab_size)	
	<pre>char_to_ix = { ch:i for i, ch in enumerate(chars) }</pre>	
13	IX_co_cliar = { I.cr for I, cr II enderate(cliars) }	
	# hyperparameters	
16	hidden_size = 100 # size of hidden layer of neurons	
	<pre>seq_length = 25 # number of steps to unroll the RNN for</pre>	
18	<pre>learning_rate = 1e-1</pre>	
	i model econometers	
	<pre>whote: parameters Wyb = no.random.rando/bidden size, vocab size)*8.81 # input to bidden</pre>	
	whh = np.random.randn(hidden_size, hidden_size)*0.01 # hidden to hidden	
	Why = np.random.randn(vocab_size, hidden_size)*0.01 # hidden to output	
24	<pre>bh = np.zeros((hidden_size, 1)) # hidden bias</pre>	
	<pre>by = np.zeros((vocab_size, 1)) # output bias</pre>	
	def lossFun(inputs, targets, horev):	
8		
29	inputs, targets are both list of integers.	
30	hprev is Hx1 array of initial hidden state	
	returns the Loss, gradients on model parameters, and last hidden state	
	xs. hs. vs. ps = $\{1, 1\}, \{2\}, \{3\}$	
34	hs[-1] = np.copy(hprev)	
15	loss = 0	
36	# forward pass	
	<pre>for t in xrange(len(inputs)):</pre>	
	<pre>xstsi = np.2eros((voca0_size,1)) # encode in 1-01-k representation xs[t][inputs[t]] = 1</pre>	
	hs[t] = np.tanh(np.dot(wkh, xs[t]) + np.dot(whh, hs[t-1]) + bh) # hidden state	
1	<pre>ys[t] = np.dot(Why, hs[t]) + by # unnormalized log probabilities for next chars</pre>	
42	<pre>ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # probabilities for next chars</pre>	
43	<pre>loss += -np.log(ps[t][targets[t],0]) # softmax (cross-entropy loss) # backmand energy and energy and energy loss</pre>	
44 44	# backward pass: compute gradients going backwards dwh. dwh. dwhu = nn zeros like(wh), nn zeros like(wh), nn zeros like(wh)	
	dbh, dby = np.zeros like(bh), np.zeros like(by)	
	<pre>dhnext = np.zeros_like(hs[0])</pre>	
8	<pre>for t in reversed(xrange(len(inputs))):</pre>	
9	dy = np.copy(ps[t])	
50	<pre>oyjtargets[t]] -= 1 # backprop into y duby += np.dot(dy_ bs[t] T)</pre>	
	dby += dy	
	dh = np.dot(why.T, dy) + dhnext # backprop into h	
54	<pre>dhraw = (1 - hs[t] ' hs[t]) ' dh # backprop through tanh nonlinearity</pre>	
	dbh += dhraw	
56 57	uwxn np.dot(dhraw, xs[t].1) dabh += nn dot(dhraw, hs[t.1].T)	
58	dhnext = np.dot(whh.T, dhraw)	
59	for dparam in [dwxh, dwhh, dwhy, dbh, dby]:	
9	<pre>np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients</pre>	
	return loss, dwkh, dwhh, dwhy, dbh, dby, hs[len(inputs)-1]	
	oer sample(n, seeq_lx, n):	
	sample a sequence of integers from the model	
36	h is memory state, seed_ix is seed letter for first time step	
	<pre>x = np.zeros((vocab_size, 1))</pre>	
69	x[seed_ix] = 1	
78	ixes = [] for t in vrame(n):	
	h = np.tanh(np.dot(wah, x) + np.dot(whh, h) + bh)	
	y = np.dot(why, h) + by	
	<pre>p = np.exp(y) / np.sum(np.exp(y)) ix = np.random.choice(range(uncab_size), npp.ravel())</pre>	
76	x = np.zeros((vocab_size, 1))	_
	x[ix] = 1	
	LX05.eppenu(LX) return IXes	
88		
	n, p = 0, 0 mich, mich, michy = nn.zeros like(Wich), nn.zeros like(Wich) - nn marce like(Wich)	
	<pre>mbh, mby = np.zeros_like(bb), np.zeros_like(by) # memory variables for Adagrad</pre>	
	<pre>smooth_loss = -np.log(1.0/vocab_size)'seq_length # loss at iteration 0</pre>	
	while True: # prepare inputs (we're sweeping from left to right ip steps see length loop)	
	if p+seq_length+1 >= len(data) or n == 0:	
88	hprev = np.zeros((hidden_size,1)) # reset RNN memory	
	inputs = [char_to_ix[ch] for ch in data[p:p+seg_length]]	
	targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]	
	a cample from the model one and then	
	if n % 100 == 0:	/
95	<pre>sample_ix = sample(hprev, inputs[0], 200)</pre>	/
96	<pre>txt = ''.join(ix_to_char[ix] for ix in sample_ix) arist ') n Se) n ' N (fit)</pre>	•
98	prant m Rb Mir R (LRL,)	
99	# forward seq_length characters through the net and fetch gradient	
100	loss, dwh, dwh, dwhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)	
	if n % 100 == 0: print 'iter %d, loss: %f' % (n, smooth loss) # print propress	
	# perform parameter update with Adaprad	
	for perew, uparell, mem in zip(jech, who, why, co, cy), [dwh, dwh, dwh, dbh, dbv].	
	[mixh, mith, mity, mbh, mby]):	
	nem += dparam * dparam	
	perem +iceniiing_rece " dparam / mp.sqrt(mem + ic-8) = acagras upoace	
	•	
	p += seq_length # move data pointer	
	p += seq_length + move data pointer $n += 1 \ \text{i iteration counter}$	

81	n, $p = 0, 0$
82	mWxh, mWhh, mWhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why)
83	<pre>mbh, mby = np.zeros_like(bh), np.zeros_like(by) # memory variables for Adagrad</pre>
84	<pre>smooth_loss = -np.log(1.0/vocab_size)*seq_length # loss at iteration 0</pre>
85	while True:
86	# prepare inputs (we're sweeping from left to right in steps seq_length long)
87	if p+seq_length+1 >= len(data) or n == 0:
88	<pre>hprev = np.zeros((hidden_size,1)) # reset RNN memory</pre>
89	p = 0 # go from start of data
90	inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
91	targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]
92	
93	# sample from the model now and then
94	if n % 100 == 0:
95	sample_ix = sample(hprev, inputs[0], 200)
96	<pre>txt = ''.join(ix_to_char[ix] for ix in sample_ix)</pre>
97	print '\n %s \n' % (txt,)
98	
99	# forward seq_length characters through the net and fetch gradient
100	loss, dWxh, dWhh, dWhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
101	smooth_loss = smooth_loss * 0.999 + loss * 0.001
102	if n % 100 == 0: print 'iter %d, loss: %f' % (n, smooth_loss) # print progress
103	
104	# perform parameter update with Adagrad
105	for param, dparam, mem in zip([Wxh, Whh, Why, bh, by],
106	[dWxh, dWhh, dWhy, dbh, dby],
107	[mWxh, mWhh, mWhy, mbh, mby]):
108	mem += dparam * dparam
109	<pre>param += -learning_rate * dparam / np.sqrt(mem + 1e-8) # adagrad update</pre>
110	
111	<pre>p += seq_length # move data pointer</pre>
112	n += 1 # iteration counter

Loss function

-

- forward pass (compute loss)
- backward pass (compute param gradient)

07	defilestur/innute_terrete_bereult
27	der IossFun(Inputs, targets, nprev):
28	inputs targets are both list of integers
29	horey is 4v1 array of initial hidden state
21	returns the loss gradients on model parameters, and last hidden state
33	ININ
33	xs. hs. vs. ns = $\{\}, \{\}, \{\}, \{\}\}$
34	hs[-1] = np.copy(hprev)
35	loss = 0
36	# forward pass
37	<pre>for t in xrange(len(inputs)):</pre>
38	<pre>xs[t] = np.zeros((vocab_size,1)) # encode in 1-of-k representation</pre>
39	<pre>xs[t][inputs[t]] = 1</pre>
40	<pre>hs[t] = np.tanh(np.dot(Wxh, xs[t]) + np.dot(Whh, hs[t-1]) + bh) # hidden state</pre>
41	<pre>ys[t] = np.dot(Why, hs[t]) + by # unnormalized log probabilities for next chars</pre>
42	<pre>ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # probabilities for next chars</pre>
43	<pre>loss += -np.log(ps[t][targets[t],0]) # softmax (cross-entropy loss)</pre>
44	<pre># backward pass: compute gradients going backwards</pre>
45	dWxh, dWhh, dWhy = np.zeros_like(Wxh), np.zeros_like(Whh), np.zeros_like(Why)
46	dbh, dby = np.zeros_like(bh), np.zeros_like(by)
47	dhnext = np.zeros_like(hs[0])
48	<pre>for t in reversed(xrange(len(inputs))):</pre>
49	dy = np.copy(ps[t])
50	<pre>dy[targets[t]] -= 1 # backprop into y</pre>
51	dWhy += np.dot(dy, hs[t].T)
52	dby += dy
53	dn = np.dot(wny.1, dy) + dnnext # backprop into n
54	dhraw = (1 - hs[t] " hs[t]) " un # backprop through tann honiinearity
55	$duyh \neq unidw$
50	dwhh += np.dot(dhraw, xs[t], I)
58	dhnext = np.dot(Whb T dbraw)
59	for dnaram in [dWxb, dWbb, dWby, dbb, dby];
60	np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients
61	return loss, dwxh, dwh, dwhv, dbh, dbv, hs[len(inputs)-1]
01	······································

```
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy
  BSD License
  import numpy as np
  # data I/O
  data = open('input.txt', 'r').read() # should be simple plain text file
  chars = list(set(data))
  data size, yocab size = len(data), len(chars)
  print 'data has %d characters, %d unique.' % (data_size, vocab_size)
                                                                                                                               def lossFun(inputs, targets, hprev):
                                                                                                                   27
  char to ix = { ch:i for i.ch in enumerate(chars) }
  ix_to_char = { i:ch for i,ch in enumerate(chars) }
                                                                                                                                     0.0.0
  hidden size = 100 # size of hidden laver of neurons
  seq_length = 25 # number of steps to unroll the RNN for
  learning_rate = 1e-1
                                                                                                                                     inputs, targets are both list of integers.
20 # model parameters
  Wxh = np.random.randn(hidden size, vocab size)*0.01 # input to hidden
  Whb = np.random.randn/hidden size, hidden size)*8.81 # hidden to hidden
                                                                                                                   30
                                                                                                                                     hprev is Hx1 array of initial hidden state
  Why = np.random.randn(vocab_size, hidden_size)*0.01 # hidden to output
  bh = np.zeros((hidden_size, 1)) # hidden bia
  by = np.zeros((vocab_size, 1)) # output bias
                                                                                                                                     returns the loss, gradients on model parameters, and last hidden state
                                                                                                                   31
  def lossFun(inputs, targets, hprev)
                                                                                                                                     0.0.0
    inputs, targets are both list of integers
                                                                                                                   32
    hprev is Hx1 array of initial hidden state
    returns the loss, gradients on model parameters, and last hidden state
    xs, hs, ys, ps = {}, {}, {}, {}, {}
                                                                                                                                    xs, hs, ys, ps = \{\}, \{\}, \{\}, \{\}\}
    hs[-1] = np.copy(hprev)
   loss = 0
                                                                                                                                    hs[-1] = np.copy(hprev)
    for t in xrange(len(inputs));
     xs[t] = np.zeros((vocab_size,1)) # encode in 1-of-k representation
     hs[t] = np.tanh(np.dot(Wxh, xs[t]) + np.dot(Whh, hs[t-1]) + bh) # hidden state
                                                                                                                                     loss = 0
     ys[t] = np.dot(Why, hs[t]) + by # unn
     ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # pro
                                                                                                                                    # forward pass
    dwxh, dwhh, dwhy = np.zeros_like(wxh), np.zeros_like(whh), np.zeros_like(why)
    dbh, dby = np.zeros_like(bh), np.zeros_like(by)
    dhnext = np.zeros like(hs[0])
                                                                                                                   37
                                                                                                                                     for t in xrange(len(inputs)):
    for t in reversed(xrange(len(inputs))):
     dy = np.copy(ps[t])
     dv[targets[t]] -= 1 # backgrop into v
     dwhy += np.dot(dy, hs[t].T)
                                                                                                                                         xs[t] = np.zeros((vocab_size,1)) # encode in 1-of-k representation
     dby += dy
     dh = nn.dot(Why.T. dy) + dhnext = backpron into h
     dhraw = (1 - hs[t] ' hs[t]) ' dh # backprop through tanh nonlinearity
                                                                                                                                         xs[t][inputs[t]] = 1
     dbh += dhraw
     dWxh += np.dot(dhraw, xs[t].T)
     dwhh += np.dot(dhraw, hs[t-1].T)
     dhnext = np.dot(Whh.T, dhraw)
                                                                                                                                         hs[t] = np.tanh(np.dot(Wxh, xs[t]) + np.dot(Whh, hs[t-1]) + bh) # hidden state
   for dparam in Idwxh, dwhh, dwhy, dbh, dbyl;
     np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients
    return loss, dwxh, dwhh, dwhy, dbh, dby, hs[len(inputs)-1]
                                                                                                                                      ys[t] = np.dot(Why, hs[t]) + by # unnormalized log probabilities for next chars
                                                                                                                   41
  def sample(h, seed_ix, n):
   sample a sequence of integers from the model
   h is memory state, seed_ix is seed letter for first time step
                                                                                                                                         ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # probabilities for next chars
                                                                                                                   42
   x = np.zeros((vocab_size, 1))
   x[seed_ix] = 1
   ixes = []
                                                                                                                                         loss += -np.log(ps[t][targets[t],0]) # softmax (cross-entropy loss)
   for t in xrange(n):
                                                                                                                   43
    h = np.tanh(np.dot(wxh, x) + np.dot(whh, h) + bh)
    y = np.dot(Why, h) + by
p = np.exp(y) / np.sum(np.exp(y))
    ix = np.random.choice(range(vocab_size), p=p.ravel())
    x = np.zeros((vocab_size, 1))
x[ix] = 1
    ixes.append(ix)
   return ixes
  much, math, mathy = np.zeros_like(with), np.zeros_like(with), np.zeros_like(wity)
                                                                                    egin{aligned} h_t &= 	anh(W_{hh}h_{t-1} + W_{xh}x_t) \ y_t &= W_{hy}h_t \end{aligned}
  mbh. mby = np.zeros like(bh), np.zeros like(by) # memory variables for Adapras
  smooth_loss = -mp.log(1.0/vocab_size)*seq_length # loss at iteration 0
  while True:
   # prepare inputs (we're sweeping from left to right in steps seg length long)
    if p+seq_length+1 >= len(data) or n == 0:
    hprev = np.zeros((hidden_size,1)) # reset RNN memory
    p = 0 # go from start of data
     nputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
   targets = [char_to_ix[ch] for ch in data[p+1:p+seg_length+1]]
   # sample from the model now and then
   if n % 100 == 0:
     sample_ix = sample(hprev, inputs[0], 200)
    txt = ''.join(ix_to_char[ix] for ix in sample_ix)
    nrint '----\n %s \n----' % (txt, )
   # forward seq_length characters through the net and fetch gradien
   loss, dkkh, dkhh, dkhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
smooth_loss = smooth_loss * 0.999 + loss * 0.001
   if n % 100 == 0: print 'iter %d, loss: %f' % (n, smooth_loss) # print progress
                                                                                                                                                                             Softmax classifier
        form parameter update with Adaprad
   for param, dparam, mem in zip([Wch, Whh, Why, bh, by],
                      [dwh, dwhh, dwhy, dbh, dby]
                      [mixh, mith, mity, mbh, mby]);
    nen += doaran * doaran
    param += -learning_rate * dparam / np.sqrt(mem + 1e-8) # adagrad update
   p += seq_length # move data pointer
```

2 Minimal character-level Vanilla RNW model. Written by Andrej Karpathy (@karpathy) 3 BSD License															
4 **** 5 Japort numpy as np 6															
7 # data 1/0 a data = open('input.txt', 'r').read() # should be simple plain text file 0 chars = list(det(data))															
<pre>10 deta_size_vocab_size = len(deta), len(chars) 11 print 'data has 3d denarcters, 3d unique' 'x (data_size, vocab_size) 12 char_tot_ise : (chi: for i, ichi e nuenetet(chars)) 2444</pre>	<pre># backward pass: compute gradients going ba</pre>	ackwards													
11 is_to_char = { ich for i,ch in ensuerate(chars) } 12 st hyperparameters 45	dWxh, dWhh, dWhy = np.zeros_like(Wxh), np.z	zeros_like(Whh), np.zeros_like(Why)													
16 blocker_size = 100 + size of hidden layer of morrors 17 exel.epth = 20 + number of stops to unrall the RMs for 21 learning_rate = 1e-1	dbh, dby = np.zeros_like(bh), np.zeros_like	e(by)													
47 2 # model parameters 2 km = up. random. rando(liden_size, vocab_size)*0.81 # input to hidden 2 km = up. random. rando(liden_size, vocab_size)*0.81 # injut to hidden	dhnext = np.zeros_like(hs[0])														
2 why = protocol manufacture lists, index 120 % of the interval of the interva	<pre>for t in reversed(xrange(len(inputs))):</pre>														
27 der fassing(inputs, targets, hprev):	<pre>dy = np.copy(ps[t])</pre>														
1 inputs, targets are both list of integers. 1 provers in di array of initial hidden state 1 returns the loss, gradietto su model parameters, and last hidden state 50	dy[targets[t]] -= 1 # backprop into y														
22 *** Ns. ys. ps = 0, 0, 0, 0 23 *** Ns. ys. ps = 0, 0, 0, 0 24 **** Ns. ys. ps = 0, 1, 0, 0 51	:0.0.0.0 :0.0.0.0 (https://www.internationality.com/second/internatity.com/second/internat														
10 Loss = a															
iii xs[t] = np.zero(v(voda,str.,1)) = encode (in -i = representation) ss[t] = np.ten(voda,str.,1) = non-dec(inh, ns[t-1]) + np.dec(inh, ns[t-1]) + np.ten(str.,ns[t-1]) + np.ten	53 $dh = np.dot(Why.T, dy) + dhnext # backr$														
54 ps(1 - mp.ox(m), ms(1) + y * momentum or probabilities for held cars's ps(1 - mp.ox(m), ms(1) + y * momentum or probabilities for next hars's ps(1) + ms(1) + ms	dhraw = (1 - hs[t] * hs[t]) * dh # backp	rop through tanh nonlinearity													
5 down dwy open (jest (k)), op.zeros_like(b), op.zeros_like(b), op.zeros_like(b)) 6 dow, dwy = np.zeros_like(b), np.zeros_like(b), zotros_like(b), zotros_like(b)) 5 down dwy open zerostike(b), np.zeros_like(b), zotros_like(b), zotros_lik	dbh += dhraw														
a for t in reverse(irrange(les(ispost))):	dWxh += np.dot(dhraw, xs[t].T)														
51 deby += rp.dot(dey, hn[t],1) 52 dey += dy 63 de = re.dot(dey, r, dy) + diment + backgroup lates h 57	dWhh += np.dot(dhraw, hs[t-1].T)														
si dhraw = (t - hs[t] * hs[t]) * dh + backgrop through tanh nonlinearity si dhh = dhraw se dhh = modeddmax, xs[t].T) 58	dhnext = np.dot(Whh.T, dhraw)														
s) adh = rp.dot(max, htts://.i. s) dhest = rp.dot(ht, dhr.ad) s) for darus in (bah, dah, dah, dah, dah, dy): 59	for dparam in [dWxh, dWhh, dWhy, dbh, dby]	:													
00 rp.cls(dparma, s, s, outgarma) = cls to mitigate exploding gradients 01 return loss, edub, deb, deb, deb, deb, deb, deb, deb, de	np.clip(dparam, -5, 5, out=dparam) # clip	o to mitigate exploding gradients													
sample a segurce of integers from the model h is memory state, seed.ik is seed latter for first time step 	return loss, dWxh, dWhh, dWhy, dbh, dby, h	s[len(inputs)-1]													
<pre>c: x : sp.zers((vcab.tit, 1))</pre>															
7: for t is a range(b): 1: $b = 0$; the standpoint(solic) (abs, 1) + respectively, b) (b) 7: $y = cp. dot(byr, b) + by$ 2: $c = 0$: $construct(solic) + construct(solic)$		target chars: "e" "l" "l" "o"													
<pre>ix = up.randum.thise(range(vecah_size), pp.ravel()) % x = up.zeros((vecah_size, 1)) % (xi) = 1 </pre>		0.1 0.2 0.5 0.1 0.2 0.3 0.5 -1.5													
71 Dec.apped(1) 72 return Les 10.0.2.2.0		-3.0 -1.0 1.9 -0.1 4.1 1.2 -1.1 2.2													
<pre>imach, mahh, mahy = ny.zeros.llie(nah), ny.zeros.llie(nah), ny.zeros.llie(nah), ny.zeros.llie(nah) 11 mah, may = m_zeros.llie(nah), ny.zeros.llie(nah), ny zeros.llie(nah), ny zeros.llie(nah), nah 11 mah, may = ny zeros.llie(nah), ny.zeros.llie(nah), ny zeros.llie(nah), ny zeros.ll</pre>		↑ ↑ ↑ ↑ ↓ hv													
is while three: # proper shorts (white sweeping from left to right in steps seq_length long) if fryets_length=>= kend(ata) or n = 0; hence = a monof(kiddo stars in) = rest the second to prove the second stars that is not the second to second stars	rocolli														
p = 0 = 0 (from init of data papers = [dat_ts_in(a)] for ch in data[p:prose_length]] trappers = [dat_ts_in(a)] for ch in data[p:prose_length]]	recall.	hidden layer $\begin{array}{c c} 0.3 \\ -0.1 \end{array}$ $\begin{array}{c c} 1.0 \\ 0.3 \end{array}$ $\begin{array}{c c} 0.1 \\ -0.5 \end{array}$ $\begin{array}{c c} W \\ -0.5 \end{array}$ $\begin{array}{c c} W \\ -0.5 \end{array}$ $\begin{array}{c c} 0.3 \\ 0.9 \end{array}$													
<pre>supple from the model now and then if n % See = 0; complete is completeness (in the second seco</pre>		0.9 0.1 -0.3 0.7													
0) tot = ''.jdad(is.it.g.sar[is] for is in sample.is) 17 printa na ka a (tot.)		↓ ↓ ↓ W_xh													
a) = remain an introduction transfer through the set and frech gradient lane, do A, et al. (set of the set of the s		inut layer 0 1 0 0 0													
 a perform parameter update kill Adaputé for param, dyaram, sen is satisfab, who, Way, Ny, Jy, [dots, eds), doty, eds, vol.j. [dots, eds), doty, eds, vol.j. 															
<pre>image = contrast = contrast</pre>		input chars: "h" "e" "l" "l"													
111 p += seq_length # nove data pointer 112 n += 1 # iteration counter															

```
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
   BSD License
   import numpy as np
   # data I/O
   data = open('input.txt', 'r').read() # should be simple plain text file
   chars = list(set(data))
   data size, yocab size = len(data), len(chars)
   print 'data has %d characters, %d unique.' % (data_size, vocab_size)
   char to ix = { ch:i for i.ch in enumerate(chars) }
   ix_to_char = { i:ch for i,ch in enumerate(chars) }
   hidden size = 100 # size of hidden laver of neurons
   seq_length = 25 # number of steps to unroll the RNN for
   learning_rate = 1e-1
20 # model parameters
   Wxh = np.random.randn(hidden size, vocab size)*0.01 # input to hidden
   Whb = np.random.randn/hidden size, hidden size)*8.81 # hidden to hidden
   Why = np.random.randn(vocab_size, hidden_size)*0.01 # hidden to output
   bh = np.zeros((hidden_size, 1)) # hidden bias
   by = np.zeros((vocab_size, 1)) # output bias
   def lossFun(inputs, targets, hprev):
    inputs, targets are both list of integers.
     hprev is Hx1 array of initial hidden state
     returns the loss, gradients on model parameters, and last hidden state
     xs, hs, ys, ps = {}, {}, {}, {}, {}
     hs[-1] = np.copy(hprev)
     loss = 0
     # forward pas
     for t in xrange(len(inputs));
       xs[t] = np.zeros((vocab_size, 1)) # encode in 1-of-k representation
        xs[t][inputs[t]] = 1
       hs[t] = np.tanh(np.dot(Wxh, xs[t]) + np.dot(Whh, hs[t-1]) + bh) # hidden state
        ys[t] = np.dot(why, hs[t]) + by # unnormalized log probabilities for next chars
        ps[t] = np.exp(ys[t]) / np.sum(np.exp(ys[t])) # probabilities for next chars
       loss += -np.log(ps[t][targets[t],0]) # softmax (cross-entropy loss)
     # backward pass: compute gradients going backwards
      dwth, dwhh, dwhy = np.zeros_like(wth), np.zeros_like(whh), np.zeros_like(why)
     dbh, dby = np.zeros_like(bh), np.zeros_like(by)
     dhnext = np.zeros like(hs[0])
     for t in reversed(xrange(len(inputs))):
       dy = np.copy(ps[t])
       dv[targets[t]] -= 1 # backgrop into v
        dwhy += np.dot(dy, hs[t].T)
       dby += dy
       dh = np.dot(Why.T, dy) + dhnext # backprop into h
       dhraw = (1 - hs[t] ' hs[t]) ' dh # backprop through tanh nonlinearity
       dbh += dhraw
       dwxh += np.dot(dhraw, xs[t].T)
        dwhh += np.dot(dhraw, hs[t-1].T)
       dhnext = np.dot(Whh.T, dhraw)
    for doaram in Idwxh, dwhh, dwhv, dbh, dbvl;
       np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients
     return loss, dwxh, dwhh, dwhy, dbh, dby, hs[len(inputs)-1]
    sample a sequence of integers from the model
h is memory state, seed_ix is seed letter for first time step
    x = np.zeros((vocab_size, 1))
     x[seed_ix] = 1
    ixes = []
for t in xrange(n)
      h = np.tanh(np.dot(wxh, x) + np.dot(whh, h) + bh)
      y = np.dot(Why, h) + by
p = np.exp(y) / np.sum(np.exp(y))
       ix = np.random.choice(range(vocab_size), p=p.ravel())
     x = np.zeros((vocab_size, 1))
x[ix] = 1
      ixes.append(ix)
     return ixes
   much, math, mathy = np.zeros_like(with), np.zeros_like(with), np.zeros_like(wity)
   mbh. mby = np.zeros like(bh), np.zeros like(by) # memory variables for Adapras
    smooth_loss = -mp.log(1.0/vocab_size)*seq_length # loss at iteration 0
   while True:
     # prepare inputs (we're sweeping from left to right in steps seq_length long)
     if p+seq_length+1 >= len(data) or n == 0:
      hprev = np.zeros((hidden_size,1)) # reset RNN memory
      p = 0 # go from start of data
     inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
     targets = [char_to_ix[ch] for ch in data[p+1:p+seg_length+1]]
     # sample from the model now and then
     if n % 100 == 0:
       sample_ix = sample(hprev, inputs[0], 200)
       txt = ''.join(ix_to_char[ix] for ix in sample_ix)
       print '---- \n %s \n----' % (txt. )
     loss, dkkh, dkhh, dkhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
smooth_loss = smooth_loss * 0.999 + loss * 0.001
     if n % 100 == 0: print 'iter %d, loss: %f' % (n, smooth_loss) # print progress
           form parameter update with Adaprad
     for param, dparam, mem in zip([Wch, Whh, Why, bh, by],
                                 [dwh, dwhh, dwhy, dbh, dby]
                                 [mixh, mith, mity, mbh, mby]);
       nen += doaran * doaran
```

param += -learning_rate * dparam / np.sqrt(mem + 1e-8) # adagrad update

p += seq_length # move data pointer

63

64

65

66

67

68

69

71

72

73

74

75

76

77

78

```
def sample(h, seed_ix, n):
  0.0.0
  sample a sequence of integers from the model
  h is memory state, seed_ix is seed letter for first time step
  0.0.0
 x = np.zeros((vocab_size, 1))
 x[seed_ix] = 1
 ixes = []
 for t in xrange(n):
    h = np.tanh(np.dot(Wxh, x) + np.dot(Whh, h) + bh)
    y = np.dot(Why, h) + by
    p = np.exp(y) / np.sum(np.exp(y))
    ix = np.random.choice(range(vocab_size), p=p.ravel())
    x = np.zeros((vocab_size, 1))
   x[ix] = 1
    ixes.append(ix)
  return ixes
```


Sonnet 116 - Let me not ...

by William Shakespeare

Let me not to the marriage of true minds Admit impediments. Love is not love Which alters when it alteration finds, Or bends with the remover to remove: O no! it is an ever-fixed mark That looks on tempests and is never shaken; It is the star to every wandering bark, Whose worth's unknown, although his height be taken. Love's not Time's fool, though rosy lips and cheeks Within his bending sickle's compass come: Love alters not with his brief hours and weeks, But bears it out even to the edge of doom. If this be error and upon me proved, I never writ, nor no man ever loved.

Pierre aking his soul came to the packs and drove up his father-in-law women.

PANDARUS:

Alas, I think he shall be come approached and the day When little srain would be attain'd into being never fed, And who is but a chain and subjects of his death, I should not sleep.

Second Senator:

They are away this miseries, produced upon my soul, Breaking and strongly should be buried, when I perish The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and my fair nues begun out of the fact, to be conveyed, Whose noble souls I'll have the heart of the wars.

Clown:

Come, sir, I will make did behold your worship.

VIOLA: I'll drink it.

VIOLA:

Why, Salisbury must find his flesh and thought That which I am not aps, not a man and in fire, To show the reining of the raven and the wars To grace my hand reproach within, and not a fair are hand, That Caesar and my goodly father's world; When I was heaven of presence and our fleets, We spare with hours, but cut thy council I am great, Murdered and by thy master's ready there My power to give thee but so much as hell: Some service in the noble bondman here, Would show him to her wine.

KING LEAR:

O, if you were a feeble sight, the courtesy of your law, Your sight and several breath, will wear the gods With his heads, and my hands are wonder'd at the deeds, So drop upon your lordship's head, and your opinion Shall be against your honour.

open source textbook on algebraic geometry

但 The Stacks Project														
<u>home</u> <u>about</u> <u>t</u>	ags explained tag lookup	browse search	bibliography 1	recent comments blog	add slogans									
Browse chapters	;			Parts										
Part Preliminaries	Chapter	online	TeX source view	w pdf 1. 2.	Preliminaries Schemes Topics in Scheme Theory									
Treiminaries	 Introduction Conventions 	<u>online</u> online	tex () pd	1f ≽ 4. 1f ≽ 5.	Algebraic Spaces Topics in Geometry Deformation Theory									
	 Set Theory Categories Templement 	online online	tex O pd tex O pd	If ≽ 7. If ≽ 8.	Algebraic Stacks Miscellany									
	 Fopology Sheaves on Spaces 	<u>online</u> <u>online</u>	tex () pd	If > Statist	tics									
	 7. Sites and Sheaves 8. Stacks 	<u>online</u> <u>online</u>	tex() pd	If ≽ The S If ≽ ∘ 455	tacks project now consists of 5910 lines of code									
	9. Fields 10. Commutative Algebra	<u>online</u> online	tex() pd	lf ≽ 0 142 lf ≽ 0 236	221 tags (56 inactive tags) 66 sections									

Latex source

For $\bigoplus_{n=1,...,m}$ where $\mathcal{L}_{m_{\bullet}} = 0$, hence we can find a closed subset \mathcal{H} in \mathcal{H} and any sets \mathcal{F} on X, U is a closed immersion of S, then $U \to T$ is a separated algebraic space.

Proof. Proof of (1). It also start we get

$$S = \operatorname{Spec}(R) = U \times_X U \times_X U$$

and the comparicoly in the fibre product covering we have to prove the lemma generated by $\coprod Z \times_U U \to V$. Consider the maps M along the set of points Sch_{fppf} and $U \to U$ is the fibre category of S in U in Section, ?? and the fact that any U affine, see Morphisms, Lemma ??. Hence we obtain a scheme S and any open subset $W \subset U$ in Sh(G) such that $Spec(R') \to S$ is smooth or an

$$U = \bigcup U_i \times_{S_i} U_i$$

which has a nonzero morphism we may assume that f_i is of finite presentation over S. We claim that $\mathcal{O}_{X,x}$ is a scheme where $x, x', s'' \in S'$ such that $\mathcal{O}_{X,x'} \to \mathcal{O}'_{X',x'}$ is separated. By Algebra, Lemma ?? we can define a map of complexes $\operatorname{GL}_{S'}(x'/S'')$ and we win.

To prove study we see that $\mathcal{F}|_U$ is a covering of \mathcal{X}' , and \mathcal{T}_i is an object of $\mathcal{F}_{X/S}$ for i > 0 and \mathcal{F}_p exists and let \mathcal{F}_i be a presheaf of \mathcal{O}_X -modules on \mathcal{C} as a \mathcal{F} -module. In particular $\mathcal{F} = U/\mathcal{F}$ we have to show that

 $\widetilde{M}^{\bullet} = \mathcal{I}^{\bullet} \otimes_{\operatorname{Spec}(k)} \mathcal{O}_{S,s} - i_X^{-1} \mathcal{F})$

is a unique morphism of algebraic stacks. Note that

Arrows = $(Sch/S)_{fppf}^{opp}, (Sch/S)_{fppf}$

and

$$V = \Gamma(S, \mathcal{O}) \longmapsto (U, \operatorname{Spec}(A))$$

is an open subset of X. Thus U is affine. This is a continuous map of X is the inverse, the groupoid scheme S.

Proof. See discussion of sheaves of sets.

The result for prove any open covering follows from the less of Example ??. It may replace S by $X_{spaces, \acute{e}tale}$ which gives an open subspace of X and T equal to S_{Zar} , see Descent, Lemma ??. Namely, by Lemma ?? we see that R is geometrically regular over S.

Lemma 0.1. Assume (3) and (3) by the construction in the description.

Suppose $X = \lim |X|$ (by the formal open covering X and a single map $\underline{Proj}_X(\mathcal{A}) = \operatorname{Spec}(B)$ over U compatible with the complex

$$Set(\mathcal{A}) = \Gamma(X, \mathcal{O}_{X, \mathcal{O}_X}).$$

When in this case of to show that $\mathcal{Q} \to \mathcal{C}_{Z/X}$ is stable under the following result in the second conditions of (1), and (3). This finishes the proof. By Definition ?? (without element is when the closed subschemes are catenary. If T is surjective we may assume that T is connected with residue fields of S. Moreover there exists a closed subspace $Z \subset X$ of X where U in X' is proper (some defining as a closed subset of the uniqueness it suffices to check the fact that the following theorem

(1) f is locally of finite type. Since S = Spec(R) and Y = Spec(R).

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a surjective étale morphism $U \to X$. Let $U \cap U = \coprod_{i=1,\dots,n} U_i$ be the scheme X over S at the schemes $X_i \to X$ and $U = \lim_i X_i$.

The following lemma surjective restrocomposes of this implies that $\mathcal{F}_{x_0}=\mathcal{F}_{x_0}=\mathcal{F}_{\mathcal{X},\dots,0}.$

Lemma 0.2. Let X be a locally Noetherian scheme over S, $E = \mathcal{F}_{X/S}$. Set $\mathcal{I} = \mathcal{J}_1 \subset \mathcal{I}'_n$. Since $\mathcal{I}^n \subset \mathcal{I}^n$ are nonzero over $i_0 \leq \mathfrak{p}$ is a subset of $\mathcal{J}_{n,0} \circ \overline{A}_2$ works.

Lemma 0.3. In Situation ??. Hence we may assume q' = 0.

Proof. We will use the property we see that \mathfrak{p} is the mext functor (??). On the other hand, by Lemma ?? we see that

$$D(\mathcal{O}_{X'}) = \mathcal{O}_X(D)$$

where K is an F-algebra where δ_{n+1} is a scheme over S.

Proof. Omitted.

Lemma 0.1. Let C be a set of the construction.

Let ${\mathcal C}$ be a gerber covering. Let ${\mathcal F}$ be a quasi-coherent sheaves of O-modules. We have to show that

 $\mathcal{O}_{\mathcal{O}_X} = \mathcal{O}_X(\mathcal{L})$

Proof. This is an algebraic space with the composition of sheaves \mathcal{F} on $X_{\acute{e}tale}$ we have

 $\mathcal{O}_X(\mathcal{F}) = \{morph_1 \times_{\mathcal{O}_X} (\mathcal{G}, \mathcal{F})\}$

where ${\mathcal G}$ defines an isomorphism ${\mathcal F} \to {\mathcal F}$ of ${\mathcal O}\text{-modules}.$

Lemma 0.2. This is an integer Z is injective.

Proof. See Spaces, Lemma ??.

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open covering. Let $\mathcal{U} \subset \mathcal{X}$ be a canonical and locally of finite type. Let X be a scheme. Let X be a scheme which is equal to the formal complex.

The following to the construction of the lemma follows.

Let X be a scheme. Let X be a scheme covering. Let

 $b: X \to Y' \to Y \to Y \to Y' \times_X Y \to X.$

be a morphism of algebraic spaces over S and Y.

Proof. Let X be a nonzero scheme of X. Let X be an algebraic space. Let \mathcal{F} be a quasi-coherent sheaf of \mathcal{O}_X -modules. The following are equivalent

(1) \mathcal{F} is an algebraic space over S.

(2) If X is an affine open covering.

Consider a common structure on X and X the functor $\mathcal{O}_X(U)$ which is locally of finite type.

- the composition of ${\mathcal G}$ is a regular sequence,
- \$\mathcal{O}_{X'}\$ is a sheaf of rings.

Proof. We have see that $X = \operatorname{Spec}(R)$ and \mathcal{F} is a finite type representable by algebraic space. The property \mathcal{F} is a finite morphism of algebraic stacks. Then the cohomology of X is an open neighbourhood of U.

Proof. This is clear that \mathcal{G} is a finite presentation, see Lemmas ??. A reduced above we conclude that U is an open covering of \mathcal{C} . The functor \mathcal{F} is a "field

$$\mathcal{O}_{X,x} \longrightarrow \mathcal{F}_{\overline{x}} \quad -1(\mathcal{O}_{X_{\acute{e}tale}}) \longrightarrow \mathcal{O}_{X_{\acute{e}}}^{-1}\mathcal{O}_{X_{\lambda}}(\mathcal{O}_{X_{\eta}}^{\overline{v}})$$

is an isomorphism of covering of $\mathcal{O}_{X_i}.$ If $\mathcal F$ is the unique element of $\mathcal F$ such that X is an isomorphism.

The property \mathcal{F} is a disjoint union of Proposition $\ref{eq:set}$ and we can filtered set of presentations of a scheme \mathcal{O}_X -algebra with \mathcal{F} are opens of finite type over S. If \mathcal{F} is a scheme theoretic image points.

If \mathcal{F} is a finite direct sum $\mathcal{O}_{X_{\lambda}}$ is a closed immersion, see Lemma ??. This is a sequence of \mathcal{F} is a similar morphism.

This repository Sea	Explore Gist Blog H	Help 🔮 k	arpathy +- 🗗 🌣 🎚						
torvalds / linux		⊕ Watch - 3,711 ★ Star	23,054 ¥ Fork 9,141						
inux kernel source tree									
3 520,037 commits	1 branch 🗞 420 releases	5,039 contributors	<> Code						
p branch: master -	linux / +	:=	11 74 Pull requests						
Merge branch 'drm-fixes' of	git://people.freedesktop.org/~airlied/linux								
torvalds authored 9 ho	urs ago	latest commit 4b1706927d 🗟	Pulse						
Documentation	Merge git://git.kernel.org/pub/scm/linux/kernel/git/nab/target-pend	ding 6 days ago	1 0.00						
arch	Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm	A a day ago	Lili Cranha						
ill block	block: discard bdi_unregister() in favour of bdi_destroy()	9 days ago	Graphs						
crypto	Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2	2.6 10 days ago	HTTPS clone URL						
drivers	Merge branch 'drm-fixes' of git://people.freedesktop.org/~airlied/li	inux 9 hours ago	https://github.c 👔						
in firmware	firmware/lihex2fw.c: restore missing default in switch statement	2 months ago	You can clone with HTTPS						
in fs	vfs: read file_handle only once in handle_to_path	4 days ago	SSH, or Subversion. 3						
include	Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm	i/ a day ago	Clone in Desktop						
init init	init: fix regression by supporting devices with major:minor:offset f	io a month ago	Download ZIP						
ino.	Marea branch Yar linus' of ait-linit karnal aminubleamilinus/karna	a month ano							

```
static void do command(struct seq file *m, void *v)
{
  int column = 32 << (cmd[2] & 0x80);</pre>
  if (state)
    cmd = (int)(int_state ^ (in_8(&ch->ch_flags) & Cmd) ? 2 : 1);
  else
    seq = 1;
  for (i = 0; i < 16; i++) {
    if (k & (1 << 1))
      pipe = (in use & UMXTHREAD UNCCA) +
        ((count & 0x0000000fffffff8) & 0x000000f) << 8;
    if (count == 0)
      sub(pid, ppc md.kexec handle, 0x2000000);
    pipe set bytes(i, 0);
  }
  /* Free our user pages pointer to place camera if all dash */
  subsystem_info = &of_changes[PAGE_SIZE];
  rek controls(offset, idx, &soffset);
  /* Now we want to deliberately put it to device */
  control check polarity(&context, val, 0);
  for (i = 0; i < COUNTER; i++)</pre>
    seq puts(s, "policy ");
}
```

Generated C code

```
/#
* Copyright (c) 2006-2010, Intel Mobile Communications. All rights reserved.
    This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
          This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
     MERCHANTABILITY OF FITNESS FOR A PARTICULAR PURPOSE, See the
   GNU General Public License for more details.
    You should have received a copy of the GNU General Public License
     along with this program; if not, write to the Free Software Foundation,
* Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 *7
#include <linux/kexec.h>
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/platform device.h>
#include <linux/multi.h>
#include <linux/ckevent.h>
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/e820.h>
#include <asm/system info.h>
#include <asm/setew.h>
#include <asm/pgproto.h>
```

```
#include <asm/io.h>
#include <asm/prom.h>
#include <asm/e820.h>
#include <asm/system info.h>
#include <asm/setew.h>
#include <asm/pgproto.h>
#define REG_PG vesa_slot_addr_pack
#define PFM NOCOMP AFSR(0, load)
#define STACK DDR(type) (func)
#define SWAP ALLOCATE(nr)
                           (e)
#define emulate sigs() arch get unaligned_child()
#define access_rw(TST) asm volatile("movd %%esp, %0, %3" :: "r" (0)); \
 if (__type & DO_READ)
static void stat PC SEC read mostly offsetof(struct seq argsqueue, \
         pC>[1]);
static void
os prefix(unsigned long sys)
{
#ifdef CONFIG PREEMPT
 PUT_PARAM_RAID(2, sel) = get_state_state();
 set_pid_sum((unsigned long)state, current_state_str(),
           (unsigned long)-1->lr_full; low;
}
```


[Visualizing and Understanding Recurrent Networks, Andrej Karpathy*, Justin Johnson*, Li Fei-Fei]

quote detection cell

Cell sensitive to position in line:

The sole importance of the crossing of the Berezina lies in the fact that it plainly and indubitably proved the fallacy of all the plans for cutting off the enemy's retreat and the soundness of the only possible line of action--the one Kutuzov and the general mass of the army demanded--namely, simply to follow the enemy up. The French crowd fled at a continually increasing speed and all its energy was directed to reaching its goal. It fled like a wounded animal and it was impossible to block its path. This was shown not so much by the arrangements it made for crossing as by what took place at the bridges. When the bridges broke down, unarmed soldiers, people from Moscow and women with children who were with the French transport, all--carried on by vis inertiae-pressed forward into boats and into the ice-covered water and did not, surrender.

line length tracking cell

if statement cell

1	•	10	DL	1		1	C	a	t	e		L	S	M		f :	i e	1	d		1	n	f	0 1	1	a	t	1	0	Π.			TI	he		11	s m		r u	1	e	1	5		0 0	a	qu	i e	1	S	0
	•	1	r e		1	1	1	t	1	a	1	1	z	e	d			1																																	
s	t	a	ti	1 0		1	n	1	1	n	e		í	n	t		a t	ı d	í	t		d	U	D e		1	5	n		fi	e	1	d	(5	t	r ı	JC	t	8	U	d :	i t		f.	i e	1	d		d	f.	
	-			٦				t	÷		c		2	a	i.	d I	1 1		f	1	P.	1	d			f	1	-		-													-								
r	í.			1	-																	•					1																								
1	١.	-	_				-	-			-																																								
	1	0		1	3	8	2	-		9	1																																								
	C	h	a r	1			. 5		-	S	t	r	i.				-																																		
	1	*	0) (11		0	W	n		C	0	p	y	1	0	1	1	S		-	5	L)	٢.		1																									
	1	SI		5	t	T		=		k	S	t	r	d	U	p	(5	f		>	1	s	m	. 5	s t	r			G	FF)	K	EI	RN	E	L) :	8													
1	1	f	1	1		11	i	k	e	1	v	1	1	1	5		1	1	r	1	ĩ	1	-	-						CU:M		- 19/10						۰.													
	-		0 1						Ē	N	6	À	Ē	M		-				1	1																														
	a	2							-		•	2	-	7	1						ć.																														
	a	T				1	-	. 5	ţ	r		2	4	ł.	SI		- 1		5	1	_			_		_					_		-																		
	1		-	0 0	11		0	A.	П			r	e	T.	r.	e	5 1	1 6	d)		C	0	P y	1	0	Т		1	5 1		Γ.	u.	l e		1													-		5
	r	e	t	1		S	e	C	u	٢	1	t	y	4	a	u	dj	t		٢	u	1	€.	_	1	11	t	(d	f٠	. >	t	y I	pe	1	- (1 f		> 0	p	1	C	LT.	•	>]	5	m _	5	t	٢,	
										(۷	0	1	d			•)	8	d	f		>	1	5 1	١.	r	U	1	e) ;																					
	1	٠	1	C e	1		1	C	U	r	r	e	n	t.	1	v		n	V	a	1	1	d		8	e	1	d	5	1	r	0	U.I	n d		11	1	C	8 5			t h	e	V							
	1									v		i	4	d	-1						a		n	n 1	T	0	v			0	0		d	100		1								1							
	r.	÷		100			den .	1		-	-	2	÷			A 1			1	-	-		10						10							1.11															
	÷.		1					5	5		ŝ	5	4	N	•		- /		1		-	-							-	- 1			-	-	-	-					-										
		P		. *	11	1.1	1	1	Ľ	a	u	a	1	1		62	19	. 6		Ŧ	0	E.	1	6	5.1		N	(inter	*	S	10	l, s	1	5	1	R A	/ a	1910	1 0	L V	11	No.	Υ.								
			d 1				S	-	_	S	t	٢)	;																																					
		r I	e t				0	;																																											
	3	F																																ſ	IF	17	h	łc	//د			m	٦r	n		r	\t	ſ	`		
	ŕ	8	t i	1 1		Ň.	T	P	t																									C	1	J	J		7/ 1				••	11	C	71	IL	C			
1	Č.	*		-	-	h.,	-	-	-	+																																									
1																																																			

code depth cell

Image Captioning

- Explain Images with Multimodal Recurrent Neural Networks, Mao et al.
- Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei
- Show and Tell: A Neural Image Caption Generator, Vinyals et al.
- Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
- Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Recurrent Neural Network

Convolutional Neural Network

test image

before: h = tanh(Wxh * x + Whh * h)

now: h = tanh(Wxh * x + Whh * h + Wih * v)

test image

test image

Image Sentence Datasets

a man riding a bike on a dirt path through a forest. bicyclist raises his fist as he rides on desert dirt trail. this dirt bike rider is smiling and raising his fist in triumph. a man riding a bicycle while pumping his fist in the air. a mountain biker pumps his fist in celebration.

Microsoft COCO [Tsung-Yi Lin et al. 2014] mscoco.org

currently: ~120K images ~5 sentences each

"man in black shirt is playing guitar."

"construction worker in orange safety vest is working on road."

"two young girls are playing with lego toy."

"boy is doing backflip on wakeboard."

"man in black shirt is playing guitar."

"a young boy is holding a baseball bat."

"construction worker in orange safety vest is working on road."

"a cat is sitting on a couch with a

remote control."

"two young girls are playing with lego toy."

"a woman holding a teddy bear in front of a mirror."

"boy is doing backflip on wakeboard."

"a horse is standing in the middle of a road."

Preview of fancier architectures

RNN attends spatially to different parts of images while generating each word of the sentence:

Show Attend and Tell, Xu et al., 2015

LSTM: Long Short-Term Memory

Г

Vanilla RNN:

$$h_t^l = anh W^l \begin{pmatrix} h_t^{l-1} \\ h_{t-1}^l \end{pmatrix}$$

 $h \in \mathbb{R}^n$, $W^l \ [n imes 2n]$

LSTM:

$$W^{l} \quad [4n \times 2n]$$

$$\begin{pmatrix} i \\ f \\ o \\ g \end{pmatrix} = \begin{pmatrix} \text{sigm} \\ \text{sigm} \\ \text{sigm} \\ \text{tanh} \end{pmatrix} W^{l} \begin{pmatrix} h_{t}^{l-1} \\ h_{t-1}^{l} \end{pmatrix}$$

$$c_{t}^{l} = f \odot c_{t-1}^{l} + i \odot g$$

$$h_{t}^{l} = o \odot \tanh(c_{t}^{l})$$

LSTM

[Hochreiter et al., 1997]

vector from below (**x**)

[Hochreiter et al., 1997]

[Hochreiter et al., 1997]

[Hochreiter et al., 1997]

Recall: "PlainNets" vs. ResNets

Understanding gradient flow dynamics

Cute backprop signal video: http://imgur.com/gallery/vaNahKE

```
H = 5 # dimensionality of hidden state
T = 50 # number of time steps
Whh = np.random.randn(H,H)
# forward pass of an RNN (ignoring inputs x)
hs = \{\}
ss = \{\}
hs[-1] = np.random.randn(H)
for t in xrange(T):
    ss[t] = np.dot(Whh, hs[t-1])
    hs[t] = np.maximum(0, ss[t])
# backward pass of the RNN
dhs = \{\}
dss = \{\}
dhs[T-1] = np.random.randn(H) # start off the chain with random gradient
for t in reversed(xrange(T)):
    dss[t] = (hs[t] > 0) * dhs[t] # backprop through the nonlinearity
    dhs[t-1] = np.dot(Whh.T, dss[t]) # backprop into previous hidden state
```

Understanding gradient flow dynamics

[On the difficulty of training Recurrent Neural Networks, Pascanu et al., 2013]

Understanding gradient flow dynamics

[On the difficulty of training Recurrent Neural Networks, Pascanu et al., 2013]

LSTM variants and friends

[An Empirical Exploration of Recurrent Network Architectures, Jozefowicz et al., 2015]

recurrent block output peepholes nut forget gate block input block input block input block input peepholes cell cell cell cell cell cerrent input block input cerrent input cerrent input input cerrent input input input cerrent input

[*LSTM:* A Search Space Odyssey, Greff et al., 2015]

GRU [*Learning phrase representations using rnn encoder-decoder for statistical machine translation*, Cho et al. 2014]

$$r_{t} = \operatorname{sigm} (W_{\operatorname{xr}} x_{t} + W_{\operatorname{hr}} h_{t-1} + b_{\operatorname{r}})$$

$$z_{t} = \operatorname{sigm} (W_{\operatorname{xz}} x_{t} + W_{\operatorname{hz}} h_{t-1} + b_{\operatorname{z}})$$

$$\tilde{h}_{t} = \operatorname{tanh} (W_{\operatorname{xh}} x_{t} + W_{\operatorname{hh}} (r_{t} \odot h_{t-1}) + b_{\operatorname{h}})$$

$$h_{t} = z_{t} \odot h_{t-1} + (1 - z_{t}) \odot \tilde{h}_{t}$$

MUT1:

 $z = \operatorname{sigm}(W_{xx}x_t + b_z)$ $r = \operatorname{sigm}(W_{xr}x_t + W_{hr}h_t + b_r)$ $h_{t+1} = \operatorname{tanh}(W_{hh}(r \odot h_t) + \operatorname{tanh}(x_t) + b_h) \odot z$ $+ h_t \odot (1 - z)$

MUT2:

$$z = \operatorname{sigm}(W_{xz}x_t + W_{hz}h_t + b_z)$$

$$r = \operatorname{sigm}(x_t + W_{hr}h_t + b_r)$$

$$h_{t+1} = \operatorname{tanh}(W_{hh}(r \odot h_t) + W_{xh}x_t + b_h) \odot z$$

$$+ h_t \odot (1 - z)$$

MUT3:

 $z = \operatorname{sigm}(W_{\operatorname{xz}}x_t + W_{\operatorname{hz}}\tanh(h_t) + b_z)$ $r = \operatorname{sigm}(W_{\operatorname{xr}}x_t + W_{\operatorname{hr}}h_t + b_r)$ $h_{t+1} = \operatorname{tanh}(W_{\operatorname{hh}}(r \odot h_t) + W_{xh}x_t + b_h) \odot z$ $+ h_t \odot (1 - z)$

Summary

- RNNs allow a lot of flexibility in architecture design
- Vanilla RNNs are simple but don't work very well
- Common to use LSTM or GRU: their additive interactions improve gradient flow
- Backward flow of gradients in RNN can explode or vanish.
 Exploding is controlled with gradient clipping. Vanishing is controlled with additive interactions (LSTM)
- Better/simpler architectures are a hot topic of current research
- Better understanding (both theoretical and empirical) is needed.