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To understand complicated problems in the world, whether in the sciences or in the world of
public policy, it is often important to make approximations so that a difficult problem becomes more
feasible to solve. One approach to making such approximations and simplifications, a technique
that mathematicians and physicists in particular rely on very heavily, is to consider different orders
of approximation.

A The general idea and some examples

The basic idea of “orders of approximation” is that a difficult and complex problem can be made
easier by considering only the most important information. Less important parts of the problem,
things that have a much smaller impact on the solution, can be neglected completely until the
most important and fundamental part of the problem has already been solved; these additional,
less important considerations will then just produce a small modification to the result.

We use the jargon “orders of approximation” to describe this separation into the more and less
important parts of a problem. The lower order considerations are more important, while higher
order ones are less important. In particular, we usually rank them starting with “zeroth order”
for information that is absolutely critical to finding even an approximate solution to the problem.
“First order” contributions are also generally important for really solving a problem, but are much
less important than the zeroth order part, and finding the first order correction is useless if you don’t
already know the zeroth order solution. “Second order” contributions are usually small details, and
higher orders above second order can often be ignored.

This will all be much clearer with some examples. One that I think illustrates the idea well is
planning a trip across the United States. In particular, suppose you are planning to go from your
house in Berkeley to your friend’s apartment in New York City. The zeroth order part of your plan
is your mode of transportation: will you fly or drive? Without knowing this most important piece
of information, doing any further planning of your travel route is completely useless! Once you
have the zeroth order solution, you can consider the first order contribution: if flying, then which
airport will you leave from (SFO, Oakland, or SJC) and which one will you arrive at (Kennedy,
LaGuardia, or Newark); if driving, which major highways will you use for most of your trip, and
in which cities (or national parks, etc) will you stop to sleep? Finally, you can consider the second
order contribution to your route: if flying, how you get to or from the airports, or if driving, which
smaller roads you will use to go between the various highways and also at which particular motels
you will stay in each city where you decided to stop.

As you can see from this example, each higher order solution is a refinement of the previous
order’s solution, and the higher order contributions can only be determined once the lower order
contributions are already known.

In general, very vague statements are often expressing an implicit zeroth order approximation.
For instance, if someone asks you about how many undergrads versus grad students there are
at Berkeley, you might say “most Berkeley students are undergrads.” That is a zeroth order
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approximation—you didn’t need to specify the exact numbers, yet you still captured the most
important information needed to answer the question.

What if you needed to be more precise in your answer? From Wikipedia, you can learn that
in Fall 2014, there were a total of 27126 undergraduates at Berkeley, out of 37581 total students,
which makes 72.18%. If instead of saying that “most” Berkeley students are undergrads, you said
that “about 72%” are undergrads, that would be a higher order approximation. In this example it
is harder to precisely delineate different orders of approximation: is the first order approximation
that about 3/4 are undergrads, or that 72% are undergrads? Unfortunately, there’s no definitive
answer to this question, but you can always keep in mind the rule of thumb that lower orders are
more important than higher orders.

Here is a third example. Suppose you were planning to move to a new apartment next year,
and you calculate that your rent will increase by $80 per month, your utility bills will decrease by
$5 per month, and you will have a one-time cost of $50 for renting a van for the move. Let’s try to
classify these into different orders, ranked by their relative importance.

First of all, $80 per month seems to be about 10% of rent for a typical studio apartment in
Berkeley, in other words, it is much smaller. So to zeroth order, your total yearly expenditures on
housing would remain about the same. To first order, your costs will increase because your rent
is going up. Compared with the change in rent, both the change in utility bills and the one-time
moving costs are small, so those fall into the category of second order corrections.

A final important note is that the same information can fall into different orders of approxima-
tion depending on the situation, for the simple reason that what information is important depends
on the precise question you are asking. For this, let’s think about Asimov’s example of the shape of
the earth. If you plan to fly an airplane west from San Francisco until you get back to San Francisco
again, to zeroth order you must assume that the earth is round! Higher order corrections are not
really important. On the other hand, if you are planning to drive across the United States from
San Francisco to New York, your zeroth order approximation about the shape of the earth should
be that the earth is flat. (In other words, a machine designed to travel primarily horizontally, such
as a car, will be sufficient for your trip.) Furthermore, your first order approximation will not be
the curvature of the earth but rather the existence of mountains and rivers and lakes.

To summarize, we can help tackle hard problems by first determining the most important part
of the problem (the zeroth order) and then adding additional information (first, second, and higher
order corrections) to refine the solution. As pointed out by the webcomic XKCD, physicists like
myself may sometimes rely a little too much on this technique, but in fact many problems in the
real world really are amenable to this type of analysis. When faced with a difficult question that
seems unapproachable, this idea should be one of the tools you consider using.

B (OPTIONAL) Motivation for the idea: mathematics

For me, as a physicist, this idea is actually most clearly understood through the lens of mathematics.
In the following section I develop the idea of orders of approximation in the context of approximating
the values of a function. Some calculus appears for the sake of completeness, but it’s not actually
necessary to understand my argument so please don’t be deterred by it. This section is completely
optional, and you will never be tested on it or expected to know it for this class, but if it sounds
interesting to you, please read on - I hope you enjoy it!

Consider the function f(x) = ex, the exponential function. A graph of this function is shown
in Figure 1. Suppose you wanted to know the value of this function when x = 0.01. Well, that’s
actually pretty hard to calculate by hand. If y = e0.01, that means y100 = e. To find that by hand,

2

https://en.wikipedia.org/wiki/University_of_California,_Berkeley
https://xkcd.com/793/


Figure 1: Plot of f(x) = ex

Figure 2: The blue line is f(x) = ex. The orange line is the 0th order approximation.

you could try some value for y, raise it to the hundredth power, and then compare the result to e.
If it was too big, you could try a smaller value for y, and vice-versa. Eventually you would find a
good approximation to the value of y. This is pretty hard even if you know the value of e, which
is itself quite hard to calculate or remember.

But there’s a better method, which requires very little work! In particular, the value of x we
are looking at is very close to 0, so ex is close to e0. (Technically, this is true because f(x) = ex is
a continuous function, but you don’t need to worry about that!) So to lowest order we can make
the approximation that when x is close to 0, ex is approximately e0, which is just 1. That’s so
much easier! This saved us a lot of effort because the function was much easier to calculate at one
special value of x, which let us avoid doing the more difficult general calculation. It’s a pretty good
approximation, too—look at Figure 2. You can see that when x is between about −0.1 and 0.1,
the error in this approximation is less than about 10%.

What if we want to do better than this approximation? Can we find a calculation that is still
easy to do but which gives a more accurate answer than just saying the value is approximately
1? This is where the aforementioned calculus comes in. (Again, if the calculus doesn’t help your
understanding, you can just ignore it and look at the result, below.) We can construct a Taylor
series approximation to our function, which says that when x is small, then

f(x) ≈ f(0) + x

[
d

dx
f(x)

]
x=0

+
x2

2

[
d2

dx2
f(x)

]
x=0

+ · · ·

The approximation we used above, ex ≈ e0 = 1, is the first term in this Taylor series. It is called
the 0th order approximation. To get a somewhat better approximation, we can add on the next
term, which in the case of f(x) = ex is just x. This gives us our first order approximation,

ex ≈ 1 + x
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Figure 3: Compare the first order approximation (green) with the original function (blue) and the
zeroth order approximation (orange).

when x is small. This new approximation is shown compared with both the original function and
the zeroth order approximation in Figure 3. As you can see, the first order approximation is better
than the lowest order (zeroth order) approximation, but when x is very close to 0, the zeroth order
approximation still gives you most of the answer.

Let’s be quantitative about measuring their relative importance. We’ll go back to our example
of x = 0.01. In that case, the ex ≈ 1.01005. The zeroth order approximation is ex ≈ 1, so the
error is 0.01005, or as a percentage of the actual value, about 1%. The first order approximation
is ex ≈ 1 + x = 1.01, so the error is 0.00005 or 5 × 10−5, corresponding to a relative error of less
than one hundredth of a percent.

The point of all this is that we were able to perform a very difficult calculation (e0.01) with
very little effort (1 + 0.01) and got a very good approximation (0.005% error). By dividing the
calculation into different orders of approximation, we give ourselves power to control the tradeoffs
we are making between computational effort and accuracy. We could keep going to higher order
approximations, each time adding a little bit of difficulty to the calculation but improving the
accuracy and precision of our estimate.

This ranking of different orders of approximation continues to be useful so long as the zeroth
order value is more important than the first order correction, which is more important than the
second order correction, and so forth. In other words, the zeroth order approximation should be
mostly correct, while the first order approximation gets rid of most of the error that remains, etc.
Now look back at Figure 3, and looks at x = 1. It clearly doesn’t work here, when the zeroth order
approximation is off by more than 50% of the actual value. In that case, we need to reevaluate
what counts as zeroth order, first order, etc. In calculus, this is done by a generalization of the
Taylor series to approximate functions at values of x that are not near 0. If x ≈ a, then

f(x) ≈ f(a) + (x− a)

[
d

dx
f(x)

]
x=a

+
(x− a)2

2

[
d2

dx2
f(x)

]
x=a

+ · · ·

Using this method to redo our orders of approximation near x = 1, we get the zeroth and first
order approximations as shown in Figure 4. When approximating the same basic thing (the function
f(x) = ex), what counts as a zeroth order approximation or a first order approximation may vary
depending on the exact question we want to answer.
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Figure 4: Zeroth and first order approximations for x ≈ 1.
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