Florian's Notes

$March\ 2016$

Wrenches at O

First Task: Understand overall wrench contribution.

Recall:

a.

$$F_b = \begin{bmatrix} f_b \\ \tau_b \end{bmatrix} \leftarrow \quad \text{force} \in \mathbb{R}^3 \\ \leftarrow \quad \text{moment} \in \mathbb{R}^3$$

b.

$$F_a = Ad_{g_{ab}}^T F_b$$

Applying this to the figure, we have: $F_o = Ad_{g_{c_io}}^T F_{c_i} = Ad_{g_{oc_i}}^T F_{c_i}$

Once all the generalized forces are expressed in the O-frame, we can sum the forces from the contact frames $C_1,...,C_n$

$$F_o = \sum_{i=1}^n A d_{g_{c_i}o}^T F_{c_i}$$

to obtain the total wrench acting at O.

Note

$$\begin{split} g_{oc_i}^{-1} &= \begin{bmatrix} R_{oc_i} & p_{oc_i} \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} R_{oc_i}^T & -R_{oc_i}^T p_{oc_i} \\ 0 & 1 \end{bmatrix} \\ Ad_{g_{oc_i}}^T F_{c_i} &= \begin{bmatrix} R_{oc_i}^T & -R_{oc_i}^T p_{oc_i} R_{oc_i}^T \\ 0 & R_{oc_i}^T \end{bmatrix}^T = \begin{bmatrix} R_{oc_i} & 0 \\ -p_{oc_i} R_{oc_i} & R_{oc_i} \end{bmatrix} \\ R^{\hat{T}} p R^T &= R^T \hat{p}, \text{ from chapter 2 of MLS} \end{split}$$

What wrenches can we apply?

a. Frictionless Model in \mathbb{R}^3

$$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} f_{c_i} \in FC \qquad FC_{c_i} = \{f|f > 0\}$$

b. Coulomb Friction Model in \mathbb{R}^3

Slipping starts when $|f^t| > \mu f^n$, so we want $|f^t| \le \mu f^n$ and $\alpha = \tan^{-1} \mu$ In Normalized Coordinates

$$f = \begin{bmatrix} f_x \\ f_y \\ f_z \end{bmatrix}$$
 $f^n = f_z, |f^t| = |\begin{bmatrix} f_x \\ f_y \\ 0 \end{bmatrix}| = \sqrt{f_x^2 + f_y^2}$

So,

We can apply wrenches in the form

$$F_{c_i} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} f_{c_i} \qquad f_{c_i} \in FC_{c_i} \subseteq \mathbb{R}^3$$

$$FC_{c_i} = \{ f \in \mathbb{R}^3 | \sqrt{f_1^2 + f_2^2} \le \mu f_3, f_3 > 0 \}$$

Examples of Friction Coefficients

steel on steel: 0.58

wood on metal: 0.2 - 0.6

rubber on solid: 1-4

Caveats

How do we estimate μ ?

Do we know the material properties (to the first order)?

How do we account for environmental factors such as dust and moisture?

c. Soft Finger Contact: Additional ability to apply torque along normal

Wrenches take the form $\,$

$$FC_{c_i} = \{ f \in \mathbb{R}^3 | \sqrt{f_1^2 + f_2^2} \le \mu f_3, f_3 > 0, |f_4| \le \gamma f_3 \}$$

where γ is the torsional friction coefficient.

The Planar Case

Recall that planar wrenches live \mathbb{R}^3 and

$$\begin{bmatrix} f_o \in \mathbb{R}^2 \\ \tau_o \in \mathbb{R} \end{bmatrix} = Ad_{g_{oc_i}}^{T} \begin{bmatrix} f_{c_i} \\ \tau_{c_i} \end{bmatrix}$$
$$= \begin{bmatrix} R_{c_i} & 0 \\ (-p_y p_x) R_{c_i} & 1 \end{bmatrix} \begin{bmatrix} f_{c_i} \\ \tau_{c_i} \end{bmatrix}$$

Chooses C_i coordinates so that y-axis points in inwards normal direction.

1. Frictionless point contact:

$$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} f_{c_i} \qquad f_{c_i} > 0 \qquad FC_{c_i} = \{ f_{c_i} \in \mathbb{R} : f_{c_i} \geq \}$$

2. Point contact with friction:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} f_{c_i} \qquad f_{c_i} > 0 \qquad FC_{c_i} = \{ f_{c_i} \in \mathbb{R}^3 | |f_1| < \mu f_2, f_2 \ge 0 \}$$

Let us denote by p=6 (in 3D) and p=3 (in 2D) the dimension of the wrench space.

The Grasp Map

Observe: We madel a contact using a wrench basis $B_{c_i} \in \mathbb{R}^{p \times m_i}$ and a friction cone FC_{c_i} . The allowable wrench forces are given by

$$F_{c_i} = B_{c_i} f_{c_i}$$
 $f_{c_i} \in FC_{c_i}$

Recall

$$F_o = Ad_{g_{oc_i}^{-1}}^T F_{c_i} = \begin{bmatrix} R_{oc_i} & 0 \\ -p_{oc_i}^{\hat{}} R_{oc_i} & R_{oc_i} \end{bmatrix} B_{c_i} f_{c_i}, \quad f_{c_i} \in FC_{c_i}$$

Define $G_i := Ad_{g_{c_i}o}^T B_{c_i} \in \mathbb{R}^{p \times m_i}$, then the total wrench for k contacts is

$$F_o = \sum_{i=1}^k G_i f_{c_i} = \begin{bmatrix} G_1 & \dots & G_k \end{bmatrix} \begin{bmatrix} f_{c_1} \\ \vdots \\ \vdots \\ f_{c_k} \end{bmatrix}$$

and we call

$$G = \begin{bmatrix} G_1 & \dots & G_k \end{bmatrix} = \begin{bmatrix} Ad_{g_{oc_1}}^T B_{c_1} & \dots & Ad_{g_{oc_k}}^T B_{c_k} \end{bmatrix} \in \mathbb{R}^{p \times \sum m_i}$$

The Grasp Map and the object wrench can be written as

$$F_o = Gf_c, \qquad f_c \in FC$$

where
$$f_c = (f_{c_1}, ..., f_{c_k}) \in \mathbb{R}^m$$
, $FC = FC_{c_1} \times ... \times FC_{c_k}$, and $m = \sum_{i=1}^k m_i$

Grasping

Definition $\mathcal{C} \subset \mathbb{R}^n$ is called a *convex cone* for any $x,y \in \mathcal{C}$ and $\alpha,\beta > 0$ s.t. $\alpha x + \beta y \in \mathcal{C}$.

Examples in 2d

Examples in 3d

Lemma $FC \subseteq \mathbb{R}^m$ is a convex cone. Proof

Let
$$f, f' \in FC$$
 and $\alpha_1 f > 0$, $f = (f_1, ..., f_k) \in FC = FC_1 \times ... \times FC_k$

$$f' = (f'_1, ..., f'_k) \in FC$$

$$\alpha f + \beta f' \in FC \Leftrightarrow \alpha f_i + f'_i \in FC_i, \ \forall i$$

but each FC_i is a convex cone (exercise).

Abstract View

Question 1: Which cone is better?

Question 2: Could we use a grasp in other cases?

Definition

A grasp is a force-closure grasp if given any external wrench $F_e \in \mathbb{R}^p$ applied to the object, there exists contact forces $f_c \in FC$ such that

$$Gf_c = -F_e$$

Lemma A grasp is in force-closure if and only if $G(FC) = \mathbb{R}^p$

Definition

If $f_N \in \mathcal{N}(G) \cap FC$ then f_N is an internal force. If $f_N \in \mathcal{N}(G)$, then it is called a strictly internal force.

Proposition (Necessity of Internal Forces)

A grasp is in force-closure if and only if G is a surjective map and there exists a vector of contact forces $f_N \in \mathcal{N}(G)$ such that $f_N \in \text{int}(FC)$.

Why surjectivity is not enough

Proof

Suppose G is surjective and $f_N \in \text{int}(FC) \cap \mathcal{N}G$. Let $F_o \in \mathbb{R}^p$. Let f'_c s.t. $F_o = Gf'_c$ (G is surjective!)

Note that
$$\lim_{\alpha \to \infty} \frac{f'_c + \alpha f_N}{\alpha} = \lim_{\alpha \to \infty} \frac{f'_c}{\alpha} + f_N = f_N \in \text{int}(FC)$$

Hence, by the fact that $f_N \in \text{int}(FC)$, $\exists \alpha' > 0$ s.t. $f^{int} = \frac{f'_c + \alpha' f_N}{\alpha'} \in \text{int}(FC)$ Now $f_c = f'_c + \alpha' f_N \in \text{int}(FC)$ and $Gf_c = Gf'_c + \alpha Gf_N \in FC$, so $Gf'_c = F_o$ $f_c \in FC$, so G is in force closure.

On the other hand, suppose the grasp is in force-closure. Pick $f_1 \in \text{int}(FC)$ and let $F_o = Gf_1$. Then $\exists f_2 \in FC$ where $-F_o = Gf_2$

Then define $f_N = f_1 + f_2$, $Gf_N = 0$ and $f_N \in \text{int}(FC)$ as $f_1 \in FC$ Furthermore, $G(FC) = \mathbb{R}^n \Rightarrow G(\mathbb{R}^m) = \mathbb{R}^m$

Example Grasp with frictionless point contacts

$$F_{o} = \begin{bmatrix} R_{c_{i}} & 0 \\ \hat{p}_{c_{i}} R_{c_{i}} & R_{c_{i}} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} f_{c_{i}}, f_{c_{i}} \ge 0$$

$$= \begin{bmatrix} R_{c_{i}} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \\ \hat{p}_{c_{i}} R_{c_{i}} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \end{bmatrix} f_{c_{i}} \qquad n_{c_{i}} = R_{c_{i}} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} n_{c_{i}} \\ p_{c_{i}} \times n_{c_{i}} \end{bmatrix} f_{c_{i}}$$

So

$$G = \begin{bmatrix} n_{c_1} & \dots & n_{c_k} \\ p_{c_1} \times n_{c_1} & \dots & p_{c_k} \times n_{c_k} \end{bmatrix} \begin{bmatrix} f_{c_1} \\ \vdots \\ \vdots \\ f_{c_k} \end{bmatrix} = Gf_c$$

 $G(FC) = \mathbb{R}^6 \Leftrightarrow \text{positive linear combination of columns span } \mathbb{R}^6$.

Similarly in \mathbb{R}^2

$$F_{o} = \begin{bmatrix} R_{c_{i}} & 0 \\ \left[-p_{y} & p_{x}\right] R_{c_{i}} & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} f_{c_{i}}$$

$$= \begin{bmatrix} n_{c_{i}} \\ \left\langle \left[-p_{iy} & p_{ix}\right], n_{c_{i}}\right\rangle \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} f_{c_{i}}$$

$$G = \begin{bmatrix} n_{c_{1}} & \dots & n_{c_{k}} \\ \left\langle \left[-p_{1y} & p_{1x}\right], n_{c_{1}}\right\rangle & \dots & \left\langle \left[-p_{ky} & p_{kx}\right], n_{c_{k}}\right\rangle \end{bmatrix}$$

Force Closure

Are these grasps in force closure?

No:

$$G_i = \begin{bmatrix} n_i \\ \left\langle \begin{bmatrix} -p_y & p_x \end{bmatrix}, n_i \right\rangle \end{bmatrix}$$

note:

$$\langle \begin{bmatrix} -p_y & p_x \end{bmatrix}, \begin{bmatrix} n_x & n_y \end{bmatrix} \rangle = -p_y n_x + p_x n_y$$

if
$$\begin{bmatrix} n_x & n_y \end{bmatrix} = \alpha \begin{bmatrix} p_x & p_y \end{bmatrix}$$
, then $\langle \begin{bmatrix} -p_y & p_x \end{bmatrix}, \begin{bmatrix} n_x & n_y \end{bmatrix} \rangle = 0$

So
$$G = \begin{bmatrix} x & \dots & x \\ x & \dots & x \\ 0 & \dots & 0 \end{bmatrix}$$

So
$$G = \begin{bmatrix} x & \dots & x \\ x & \dots & x \\ 0 & \dots & 0 \end{bmatrix}$$

Similarly, in 3d, $G_i = \begin{bmatrix} n \\ p \times n \end{bmatrix}$
Do exercise in book!

Definition: A set $S \subseteq \mathbb{R}^n$ is *convex* if and only if for all $x,y \in S$

$$\lambda y + (1 - \lambda)x \in S \quad \forall \lambda \in [0, 1]$$

Intuition Write $\lambda y + (1 - \lambda)x = x + \lambda(y - x)$

Definition: For $S \subseteq \mathbb{R}^n$ the convex hull $\operatorname{co}(S)$ is the smallest set s.t. $S \subseteq \operatorname{co}(S)$ and co(S) is convex.

For a finite set of points,
$$S = \{v_1, ..., v_k\} \subseteq \mathbb{R}^n$$

$$co(S) = \{v = \sum_{i=1}^k \alpha_i v_i | \{\alpha_i = 1, \alpha_i \ge 0\}\}$$

Basic Theorem If $S \subseteq \mathbb{R}^n$ is convex and $c \notin S$ then \exists a hyperplane

$$H_v(c) = \{x \in \mathbb{R}^n; v^t(x - c) = 0\}$$

and

$$S \subseteq \{x | v^t(x - c) > 0\}$$

Proposition

Consider a grasp with frictionless point contacts and grasp matrix $G \in \mathbb{R}^{p \times m}, G = (G_1, ..., G_m)$

The following are equivalent:

- 1. The grasp is in force closure
- $2. \left\{ \sum_{i=1}^{m} \alpha_i G_i \middle| \alpha_i > 0 \right\} = \mathbb{R}^p$
- 3. $co(\{G_1,...,G_m\}) \cap \mathbb{B}_r(o) \neq 0$ for some small r>0 (the convex hull contains a neighborhood of the origin)
- 4. $\nexists v \in \mathbb{R}^p, v \neq 0 \text{ s.t. } v \cdot G_i \geq 0 \forall i \in \{1, ..., m\}$

Pictures

A problem with force closure

Question: How good is a given force closure grasp? **Idea:** We want to be able to resist a given wrench F_o .

$$F_o = Gf_c$$

with as little applied force at each contact as possible.

This leads to the idea of "grasp quality" We consider "Planning Optimal Grasps" C.Ferrari and J.Canny, ICRA '92

Consider

$$f_i \cong \sum_{j=1}^m \alpha_{i,j} f_{i,j}$$

Corresponding wrench with $||f_i^n|| \le 1$:

$$w_{i} = G_{i} f_{i} = \begin{bmatrix} f_{i} \\ c_{i} \times f_{i} \end{bmatrix}$$
$$= \sum_{j=1}^{m} \alpha_{i,j} \begin{bmatrix} f_{i,j} \\ c_{i} \times f_{i,j} \end{bmatrix}$$
$$\alpha_{i,j} \geq 0, \sum \alpha_{i,j} \leq 1$$

Total wrench for contacts $c_1, ..., c_n$

$$w = \sum_{i=1}^{n} w_i = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i,j} \begin{bmatrix} f_{i,j} \\ c_i \times f_{i,j} \end{bmatrix}$$

$$\alpha_{i,j} \ge 0, \ \sum \alpha_{i,j} \le 1$$

i.e. $w \in W_{L_1} = \operatorname{co}(W_{i,j} | i \in \{1,...,n\}, j \in \{1,...,m\})$

Let
$$||w|| = ||\begin{bmatrix} f \\ \tau \end{bmatrix} = \sqrt{||f||^2 + \lambda ||\tau||^2}$$

 $B_r(o) = \{ w \in \mathbb{R}^p |||w|| \le r \}$

F&C compute a grasp quality metric in terms of the largest ball in W_{L_1} around the origin.

Issues

Computation relies on discetization

Continuous?

Upper and lower bounds

Gradients and optimization

Friction coefficient!

- (a) Robotic Grasping and Contact: A review (Bicchi et al)
- (b) Grasp Quality Measures (R Suarez et al)
- (c) Classical Grasp Quality Evaluation: New Algorithms and Theory (Pokorny)