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Abstract 
In this paper we will address the problem of plan- 

ning optimal grasps. Two general optimality criteria, 
that consider the total finger force and the maximum 
finger force will be introduced and discussed. More- 
over their formalization, using various metrics on a 
space of generalized forces, will be detailed. The ge- 
ometric interpretation of the two criteria will lead to 
an efficient planning algorithm. An example of its use 
in a robotic environment equipped with two-jaw and 
three-jaw grippers will also be shown. 

1 Introduction 
Planning a good grasp is fundamental in applica- 

tions that require the objects to be firmly held by the 
robot. In this paper we aim to introduce and discuss 
the formalization of quality criteria, that can be used 
to judge how good is a given grasp configuration. One 
of our criteria is new, and the other is the same as 
that proposed in [7]. We give physical motivation for 
both that derive from consideration of limits on the 
finger actuators. We give a geometric interpretation 
of the criteria which unifies them, and allows simple 
algorithms for optimal grasp planning according to ei- 
ther criterion. The criteria themselves are very gen- 
eral, and apply to any kind of mechanism (grippers, 
multifingered hand, cooperative robot arms, and so 
on). The geometrical aspects of grasping will be em- 
phasized while the problem of controlling compliance 
between the object and the jaws is not considered. 

Flexibility and efficiency are both major require- 
ments in robotic applications, and robotics research 
needs to focus on best resolving this conflict. As 
clearly pointed out in [l] the flexibility-efficiency is- 
sue stands at the core of robotics. 

In the past there has been a growing interest to- 
wards multifingered hands, because it was believed 
that their extreme flexibility could enhance the per- 
formances of assembly systems. Because of their in- 
tricate design, they are difficult to control and plan 
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for, expensive, unreliable, and require much comput- 
ing power. A different paradigm (RISC robotics) sug- 
gest using different grippers each of which is suitable 
for a small subset of operations. Those grippers can 
be interchanged on the same robot, or they can be 
mounted on different robots (or modules) and work in 
cooperation. In this approach, one must decide which 
of the grippers should be used for handling a given 
part. 

In choosing among different grippers, the planner 
uses quality criteria for deciding which is the best solu- 
tion for each gripper and the best overall. Our criteria 
can be calculated easily for a wide variety of gripper 
and part types, although the implementation so far 
has been for planar objects. 

The paper follows this path: in section two and 
three we will summarize the major working hypothe- 
sis and definitions that underlie this work. In section 
four, we introduce and discuss the quality criteria we 
are proposing. In section five we will present the al- 
gorithm for grasp planning and we figure out its com- 
plexity. 

2 Working hypotheses 
Gripper jaws can exert forces and torques on the 

grasped objects through the contact points. Given the 
position of the gripper and the object to be grasped, 
how can we say “this is a good grasp” ? One idea 
is formally represented by the definition of “force clo- 
sure grasp” [4]. A grasp is said to be force closure if it 
is possible to apply forces and torques at the contact 
points such that any external force and torque can be 
balanced. In a force closure grasp, finger locations do 
not change to counter external forces. It the follow- 
ing we will only consider grasp configurations that a 
fortiori satisfy the force closure condition. In fact our 
criteria make quantitative the notion of good force clo- 
sure grasp. Both criteria must be positive for any force 
closure grasp. 

A key point in modeling a grasp is the definition of 
the contact between objects and fingers. We will use 
the “hard-finger” model. In this model, fingers can 
exert any force pointing into the friction cone at the 
point of contact. If the contact is more complex (i.e. 
it is not a point contact, but it is an edge contact or a 
face contact) it can be described as the convex sum of 
proper point contacts [4]. Edge contact is equivalent 
to two point contacts located at the end of the edge, 
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while face contacts are equivalent to point contacts at 
the vertices of the face. 

Forces and torques acting on an object can be rep- 
resented in a 6-dimensional space, having three vari- 
ables for the three components of the total moment 
acting on the object and three more for the total 
force. This space is called “the wrench space”. With 
2-dimensional objects wrench space is 3-dimensional 
consisting of two orthogonal force directions, lying in 
the plane of the object and the torque perpendicular 
to the force plane. Any force and torque on the object 
can be represented by a point in the wrench space. 
Hence we have an immediate representation of each 
point contact force exerted by the fingers. For each 
point-to-edge contact we have one primitive contact 
and two primitive wrenches that describe it. For each 
edge-to-edge contact we have two primitive contacts 
and therefore four primitive wrenches. 

3 Related work 
In [6], Markenscoff and Papadimitriou studied op- 

timum form semiclosure grips, i.e., grips that can bal- 
ance any force through the centre of gravity of the 
object by finger forces. They emphasized the use of 
a quality criterion that minimizes the sum of the in- 
tensities of the applied forces (also suggested in [5 ] )  
although, as they observed, their formalization is suit- 
able for being used also for minimizing the worst-case 
maximum of the finger forces. The solution proposed 
in this paper is more general, and unifies in a general 
framework the formalization of the optimality criteria. 
We will consider force-closure grasps, i.e., grasps that 
can resist any external wrench. Moreover the pro- 
posed solution can be applied to any 3-dimensional 
object, even if we only show examples of its use on 
%dim sional ones. 

In [fl, grasps are evaluated using the Quantitative 
Steinitz’s Theorem. The “efficiency” of a grasp is given 
&s the value of the radius of thelargesi cldsed-ball, 
centered in the origin of the wrench space, contained 
in the set of all the possible wrenches that can be 
resisted by appling a t  most unit forces at the contact 
points. These is one of the two measures we study in 
the following. 

4 The Quality of Grasp 
Some grasp configurations can be better than oth- 

ers in the sense that they can balance every external 
force, without applying too large finger forces. Avoid- 
ing large forces minimizes the deformation of both the 
object and the jaws. Moreover, it minimizes the power 
for actuating the gripper. An intuitive way of judging 
the quality of a grasp is to consider the ratio between 
the magnitude of the maximum wrench to be resisted 
(over all the possible directions), and some notion of 
the magnitude of the applied finger forces. 

This concept needs to be formalized, in order to be 
effectively used in a grasp planner. First of all we need 
to make clear what the magnitude of a wrench is, in 
this section. Then a precise definition for magnitude 
of the applied forces will be given in the next. 

In section 2, we mentioned how forces and torques 
can be represented by points in the wrench space. In 

general, a wrench is a vector w E RP, defined as fol- 
lows: 

w = (  :) 
where F E R3 (or R2) is the force vector and T E 
R3 (or R) is the torque vector, acting on the object. 
The dimension p is usually 6, but it reduces to 3, while 
considering 2-dimensional objects. Let’s denote as W 
the wrench space. 

We define the magnitude of a wrench, (and we in- 
dicate as ~ ~ w ~ ~ )  the following quantity: 

The choice of A is somehow arbitrary, because the 
torque magnitude can be indipendently scaled with 
respect to the force magnitude. It should be remem- 
bered that forces and torques are dimensionally differ- 
ent. Choosing a value for A equal to  1 means measur- 
ing the 1 1 ~ 1 1  according an L2 metric. 

4.1 Representing Anger forces 
Let’s denote the force exerted by the finger at the 

i-th point contact as f i .  Because of friction, this force 
is in the friction cone, and it is a positive combination 
of forces along the extrema of the friction cone itself. 
Let’s define ft the component of this force along the 
normal to the object surface at the contact point, and 
f: the component tangent to the object surface at the 
point contact. Coulomb’s law says that ft 2 pf:, 
with p the coefficient of friction. 

In the planar case, for each contact, we have: 

where /3i,Pr 2 0, and f i , l ,  fi,, are unit vectors along 
the two lines delimiting the friction cone. 

In the 3-dimensional case the actual friction cone 
can be approximated with a proper pyramid. We have: 

m 

h = l  

where /3h 2 0, and 3 i . h  are unit vectors on the friction 
cone surface. 

The above expressions can be rewritten in terms of 
f:. In general f i  is given by a convex combination 
of forces along the extrema of the friction cone, whose 
normal component is ft. We have, in the planar case: 

with ai, ar 2 0, ai+ a, = 1. 
In 3-D we have: 

m 

h = l  

where (Yh 2 o and Er=:=, (Yh = 1. 
We should notice that knowledge of the normal con- 

tact force is not enough for specifying the actual con- 
tact force. In fact there can be infinitely many contact 
forces (inside the friction cone) that satisfy the condi- 
tions above and have the same normal magnitude. 
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Let be g the generalized force vector, built by piling 
up all the ff . Given n contacts, we have the following 
definition: 

As we pointed out earlier, specifying g does not 
determine the actual wrench acting on the object (or 
equivalently of the wrench that can be resisted by ap- 
plying 9) .  

Hence it is worthwhile defining a predicate A : 
W x G + { T ,  F } ,  where Q is t r e  set of all possi- 
ble generalized forces g .  For each w E W and g E E, 
we say that w A g  is true if the wrench w belongs to 
the set of wrenches that can be resisted through the 
generalized force g .  

We define the set A as the set of all couples ( w , g )  
such that w A g  is true, i.e., 

A = { ( w , g )  I w A g  is true} 
Moreover we can define as w A  the set of generalized 

forces that can resist the wrench w ,  and as Ag the set 
of wrenches that can be resisted by g .  We have: 

w A  = { g I w A g  is true ) 
and 

Ag = { w I w A g  is true} 

4.2 Grasp quality measure 

following quantity: 
Let’s define as local grasp quality measure (LQ) the 

llwll LQW = max - 
g e w A  lbll 

which is the best ratio between resulting wrench and 
applied force for a given wrench direction w. 

With this definition, we are ready now to introduce 
the grasp quality measure (Q). Given a grasp config- 
uration (i.e. a set of point contacts on the object), Q 
is defined as follows: 

Q = minLQw 
W 

We take the minimum because we usually have no 
control over the wrench that the gripper must resist. 
We therefore want to guarantee a level of performance 
as judged by the local quality measure over all possible 
wrenches, and this is the measure Q 

Notice that for a given direction of w, the value 
of Q is not dependent on IIwII, because we are con- 
sidering the ratio of wrenches and applied forces, and 
both scale linearly with each other. Because of this in- 
variance of Q with scaling, minimizing over w means 
minimizing over the directions of w .  We have: 

Q = m j n L Q ~  
W 

and w = d i r ( w )  = w/llw11. Without loss of general- 
ity, we choose llwll so that 11g11 = 1. Let’s define the 
set B C A as follows: 

B = { ( w , g )  I w A g  is true,and llgll = 1)  

Equivalently, we define a predicate B : W x G + 
{TI  F } ,  such that w B g  is true if the wrench w E Ag 
and 11g11 = 1. 

We have: 
w B  = { g I w A g  is trueland llgll = 1) 

B g  = { w I w A g  is true,and 11g11 = 1) 
and 

Hence we can rewrite LQ, as follows: 

max 
WE& 

llwll 

We denote with BG the set that is the union of all 
the sets Bg,i.e.: 

BG= U B g  
W G  

Taking the maximum value of the wrench module 
for each wrench that belongs to BQ, means consider- 
ing those wrenches that are on the boundary of BG. 
Hence: 

LQG = IlwII I w E Bd(BG) 1 
Finally, we can rewrite Q as follows: 

As for the force-closure condition, there is a simple 
geometrical interpretation of Q. The force-closure con- 
dition is equivalent to having the origin of the wrench- 
space contained in the convex hull of the primitive 
wrenches [2]. 

Similarly, the proposed quality criteria can be easily 
interpreted in the wrench space, leading to a geomet- 
rical analysis of the grasp quality. The geometrical 
interpretation of the last formula is: taking the maxi- 
mum of wrenches in BG, means getting the boundary 
of BG. Then, Q is just the distance of the nearest 
point to the origin, from the origin itself. That is: 

in other words, Q is the radius of the largest sphere 
(centered at the origin) which is contained in BG. 

Of course, there can still be some directions where 
the reaction wrench can be greater, but we want to 
be assured we get a lower bound over all directions. 
Hence the grasp quality is equal to the magnitude of 
the minimum, over all wrench directions, of the max- 
imum wrench we can. exert in that direction. 

In the above definition we postponed the definition 
of 11g11. In fact, different definitions can represent dif- 
ferent quality criteria. We are proposing two different 
criteria for evaluating the quality of a grasp. The first 
is concerned with finding the grasp configurations that 
maximize the wrench, given independent force limits, 
i.e. that minimize the worst-case force applied at any 
point contact. The second criterion minimizes the sum 
of all the applied forces: because the magnitude of the 
force is proportional to the total current in motors and 
amplifiers, using this criteria will result in the mini- 
mization of the power need to actuate the gripper. 
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These two criteria can be represented by using dif- 
ferent metrics in the definition of 11g11. In particular, 
using an L,  metric (l!gll = max(g1, ...,gn) ), we can 
represent the former criteria, while using an L1 metric 
(11911 = (SI. + ... + gn) ) we can represent the latter. 
The two criteria will be discussed in the next two sub- 
sections. 

Finally, it should be pointed out that these are gen- 
eral criteria, that can be applied with any generic 
mechanism performing a grasp operation. Even 
though we are considering two and three jaw grip- 
pers, the above criteria can be evaluated for any kind 
of multifingered hand as well as cooperative arms. 

4.3 Minimizing the  maximum Anger force 
While considering a grasp configuration that is opti- 

mal with respect to the maximum applied finger force, 
it is reasonable to state the hypothesis that the ap- 
plied forces are individually and independently upper- 
bounded. Moreover we can say that the upper bound 
can be considered equal to 1. This is because we are 
considering the ratio of wrenches and applied forces, 
and both scale linearly with each other. Thus we set 
11g11 = 1, using an L,  metric. Moreover, the reaction 
forces are contained in the friction cone and they can 
be represented by some convex combination of vectors 
along the boundary of the friction cone. 

Considering the force at  the i-th contact we have: 
m 

j=1 

with ai,, 2 0 and Cy=, a;,, 5 1. The f i , j  are the 
vectors that generate the friction cone. 

The reaction torque rj is given by ~j x f , where Tj  

is the vector pointing from the center of mass of the 
object to the point contact where the force is applied. 
We have: 

m 

j=1 

Using the wrench notation we can say: 
m 

wj = ai,jw;,j 

and the set of all the possible wrenches originating 
from the contact i can be denoted as: 

i=l 

m m ..- 

wi = {wi I wj = C a i , j w i , j l  ai,j 2 0, C a i , j  5 I)  
i=l j=1 

This can be do-ne for each contact. The total wrench 
acting on the object is : 

n 

w = C w i  
i=l 

and the set of all the possible wrenches acting on the 
object is given by: 

BG = W L ~  = W1 e . .  .e Wn 

The last formula says that the total wrench exerted 
on the object belongs to the set that is the Minkowski 
sum of the convex sets that correspond to the con- 
tacts. Hence we have a geometric representation of the 
set that correspond to BG. Because we can exchange 
the Minkowski sum with the ConvexHull operation we 
have: 

n 

w L ~  = ConvezHvll ($ {Wj,lj.. .wi ,m}> 
i=l 

This last formula gives an efficient way to compute 
WL- , starting from the primitive wrenches that de- 
scribe each contact. The Minkowski sum over a finite 
number of sets with a finite number of elements gives 
a set that is finite. Hence it is enough to compute the 
convex hull over the elements of that set. The quality 
measure (Q,) is the distance of the nearest facet of 
the convex hull, from the origin. 

4.4 

In this case we state the hypothesis that the sum 
of the magnitude of the forces at  the contact points is 
upper-bounded, and we take the upper bound to be 
1. This is equivalent to say that 11g11 = 1, over an L1 
metric. We have that the total force is: 

Minimizing the  total Anger force 

n 

f =CA 
i= 1 

Every fi is in the friction cone and it is a convex 
combination of some vectors along the extrema of the 
friction cone. Hence f can be rewritten as: 

n m  

i=l j=1 

and a i j  >_ 0, Cy=1 Cy==, aj,j 5 1 

the object can be expressed by: 
Similarly we have that the total wrench acting on 

n m  

w = ffi,jwi,j 
i=l j=1 

and the set of all the possible wrenches is: 
n 

WL, = ConverHull(U{wi,l,. . . , Wi,m} 
i=l 

The last formula says that the total wrench exerted 
on the object belongs to the set that is the convex 
hull generated by the wrenches that correspond to the 
primitive contacts on the object. Again, the formula 
gives a way to compute WL, , by computing the convex 
hull over a finite set of points. The quality measure 
( 9 1 )  is the distance of the nearest facet of the convex 
hull, from the origin. 

The two methods are somehow related. In fact, 
WL, _> WL,, and Qc0 1 Q1, because we are comput- 
ing the convex hull starting from two sets, such that 
one is a subset of the other. Anyway, in general, the 
two criteria are not equivalent. Given two different 
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grasp configurations A and B with their quality mea- 
sures, Q&,Qf ,  Q”,Qf, with, for instance, Q$ > Q g ,  
nothing can be said about the relation between Q;” 
and Qf.  Hence a grasp configuration that is optimal 
according one criterion can be non-optimal according 
the other criterion. 

Finally, an example of the geometrical representa- 
tion of the proposed quality criteria is given in figure 
1, for the grasp of a triangle by a 3-jaw gripper (1- 
a). In 1-b, the primitive wrenches of the three point 
contacts are shown, while in 1-c the shadow areas rep- 
resent the wrenches originating from each contact. In 
1-d and 1-e WL, and W L ~  are respectively shown. 

t“ 

b) 

t” 

I, 

d) 

Figure 1: Graphic Evaluation of the Quality Criteria 

5 An Example of Using the Quality 
Criteria 

In the next subsections, we will present an algo- 
rithm that can evaluate the quality of given grasps. In 
the following we will use the criterion for minimizing 
the total force exerted on the object. At first the algo- 
rithm will be described for two-jaw gripper grasping 
polygonal objects, then the extension for considering 
three-jaw grippers will be discussed. 

5.1 Two-jaw gripper grasping a polygonal object 
In this section we analyze the quality of grasp per- 

formed on polygonal objects by a two-jaw parallel 

gripper. The dimension of the edges of the polygon 
have side length comparable to the width of the finger. 
Let’s consider the case in which we have one side of 
the polygon that completely touches one jaw. We will 
call this type of contact a side-to-side contact. Given 
a two-jaw gripper the other jaw can be in contact ei- 
ther with a vertex, or a side, depending on the shape 
and symmetries of the given polygon. The number of 
possible configuration grows linearly as the number of 
edges of the polygons The planning algorithms can be 
summarized as follows: 

Given a side of the polygon compute the farthest 
vertex with respect to this side. Call them respec- 
tively the “opponent” and the “base”. If there are 
two vertices that satisfy this condition then con- 
sider the side between them as opponent. 

0 Determine the position of the primitive contacts 
both of the base and the opponent. Represent for 
each type of contact its primitive wrenches in the 
wrench-space. 

0 Compute the convex hull and determine the facet 
of minimum distance from the origin. 

This algorithm has to be repeated for each side of the 
polygon comparing at the end of each step the new 
minimum with the previous one and keeping track of 
the grasp configuration with the larger minimum. The 
number of possible configuration grows linearly as the 
number of edges of the polygons, while the compu- 
tation of the convex hull of the primitive wrenches 
in the wrench space, takes constant time. Hence the 
complexity of this algorithm is O(n).  

We have also to.consider the case in which theKe 
are two vertex-to-side contacts with the jaws. It is 
not difficult to see that if two vertex-side contacts are 
specified, the largest sphere volume is attained when 
the line between the contacts is at right angles to the 
jaws. Thus there are only a finite number of part 
configurations to consider in selecting a best grasp. 

5.2 Using a three-jaw gripper 
We analyze the quality of grasp performed on 

polygonal objects by a three-jaw gripper. Again let’s 
start considering convex objects. 

Most of the considerations above are still.valid in 
the three-fingered case: the main difference is in the 
procedure for determining the primitive contacts, be- 
cause the geometry of the gripper is changed. First of 
all consider the case where one of the sides is totally in 
contact with one of the fingers. To determine the type 
of contact involving the other two fingers, we have to 
consider the orientations of the sides of the polygon 
and of the triangle formed by the fingers. Considering 
a counterclockwise representation of the polygons, we 
can say that there will be a point-to-side contact be- 
tween the polygon and one of the jaws, and such con- 
tact will involve the vertex that belongs to two sides 
such that the former has orientation lesser than the 
corresponding finger-triangle side orientation, and the 
latter has orientation greater than the corresponding 
finger-triangle side orientation (see fig. 2). If one of 
this orientation is equal to the finger triangle orienta- 
tion we have a side-tsside contact. 
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Figure 2: Three-jaw Gripper grasping a Polygonal Ob- 
ject 

In the case of a three fingered gripper there is an 
additional test in order to avoid collision among the 
fingers. It is necessary to check if there is any vertex of 
the polygons that lies out of the triangle formed by the 
finger when they are completely closed. If the result of 
the test is negative, no grasp can be performed. Let‘s 
summarize the major point of the grasping algorithm: 

0 Given a side of the polygon (the “base”) compute 
the elements that are in contact with the other 
two jaws using the previous considerations. Call 
them respectively the “right opponent” and the 
“left opponent’’ . 

0 Determine the position of the primitive con- 
tacts both of the base and the two opponents. 
Represent for each type of contact its primitive 
wrenches in the wrench-space. 

Compute the convex hull and determine the facet 
of minimum distance from the origin. 

This algorithm has to  be repeated for each side of the 
polygon comparing at the end of each step the new 
minimum with the previous one and keeping track of 
grasp configuration with the larger minimum. 

We have also to consider the case in which the poly- 
gon has three vertex-to-side contacts with the jaws. 
The three vertices should form a triangle such that it 
can touch the triangle formed by the jaws. By enumer- 
ating all the possible triangle generated by the given 
polygon we can find the possible candidate sticking 
configuration. Hence, the algorithm should be applied 
to these configuration, to evaluate the quality of the 
grasp. 

Again, if the polygon is not convex, we can reason 
on its convex hull. Hence, we can apply the previous 
algorithm to this new polygon, if the condition about 
the dimensions of the jaws and the magnitude of the 
length of the edges of the convex hull of the given 
polygon, is satisfied. 

geometrical interpretation in the wrench space has 
been emphasized, showing how a fast planning algo- 
rithm can be derived. 

Further work IS required to devise an algorithm 
that uses the optimality criteria when there exist an 
infinity of candidate grasps configurations. This is 
the case we have without the hypothesis that the di- 
mensions of the jaws are bigger than the dimension 
of the object. Moreover, as also pointed out in [7], 
the torque and force dimensions are non-comparable. 
Hence one could propose a different definition of opti- 
mum wrench, i.e a different definition for llwll. Rather 
than seeking the largest sphere contained in BG, we 
would then look for the largest ball under the 11 11 
measure. 
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