EE106B/206B Lecture Notes

Dr. Ken Goldberg
UC Berkeley
23 Feb 2016

Ch. 5.4 Grasp Planning

I. Force Closure and Form Closure

Form Closure $=$ A sub-class of force closure that doesn't rely on friction ($\mu=$ 0). [Proposition 5.3]

Form Closure implies Force Closure.
Assumptions about the object O :

- Rigid solid
- Exactly known geometry
- "Regular:" Constructive solid geometry (closed, compact) where O is the closure of its interior ("well-behaved" objects)
- $\mathrm{O} \subset \mathbb{R}^{3}$

Let the object coordinate frame $\{\mathrm{O}\}$ origin be at center of mass.
Let $\Sigma=\partial(\mathrm{O})$ be the boundary of $\mathrm{O}-$ connected, piecewise smooth
Given a set of n contact points $\mathrm{C}=\left\{\mathrm{c}_{\mathrm{i}}\right\} \mathrm{i}=1 \ldots \mathrm{n} \mathrm{c}_{\mathrm{i}} \in \Sigma$
Let $\Lambda(\Sigma)$ be the set of wrenches that can be applied to O with frictionless point contacts $(\boldsymbol{\mu}=\mathbf{0})$
$\mathbf{p}_{\mathbf{c i}}=$ location of $\mathbf{c}_{\mathbf{i}}$ in $\{\mathrm{O}\}$
$\mathbf{n}_{\mathbf{c i}}=$ inward normal at c_{i}
$\Lambda(\Sigma)=\left\{\left[\begin{array}{c}n_{c i} \\ p_{c i}\end{array} \quad \begin{array}{l}n_{c i}\end{array}\right]\right\}$
$\mathcal{F}(O, C)$ is true if C puts O into Form/Force Closure
If the convex hull of $\Lambda(\Sigma)$ contains the origin $\{O\}$, then $\mathcal{F}(O, C)$.
Also, let \mathbf{p} be the dimension of the wrench space, \mathbb{R}^{p}.

- $\mathbf{p}=3$ in the plane
- $\mathbf{p}=6$ in space (3D)

Therefore, if $\Lambda(\Sigma)$ positively spans $\mathbb{R}^{\boldsymbol{p}}$, then $\mathcal{F}(\boldsymbol{O}, \boldsymbol{C})$.

Exceptional Surface:

Object O with boundary $\partial(\mathrm{O})$ such that it cannot be grasped (without friction).

Examples: sphere, circle, cylinder, etc.
$\neg \exists \subset \mathcal{F}(O, C)$
II. Grasp Planning in the Plane $(\mu=0)$ - Geometric Intuition

$\mathcal{F}(\boldsymbol{O}, \boldsymbol{C})$?
Analysis: Given O, C : is $\boldsymbol{\mathcal { F }}(\boldsymbol{O}, \boldsymbol{C})$ true?
Synthesis: Given O, find C such that $\boldsymbol{\mathcal { F }}(\boldsymbol{O}, \boldsymbol{C})$ is true.

I. Rigid Body Motion:

$\xi=\left[\begin{array}{c}2 y \\ -2 x \\ 1\end{array}\right]$ (pure rotation) or $\left[\begin{array}{c}v_{x} \\ v_{y} \\ 0\end{array}\right]$ (pure translation).
Pure translation:

Intersection at ∞.
II. Frictionless point contact: constraints on ξ

Define $\operatorname{sgn}(\xi)=\left\{\begin{array}{c}+1 \text { if } \theta>0 \\ 0 \text { if pure translation } \\ -1 \text { if } \theta<0\end{array}\right.$
$\operatorname{sgn}(\xi) \equiv-1$
in this
halfplane

$\operatorname{sgn}(\xi) \equiv+1$ in this halfplane
III. Rotation Center Locus: Multiple (frictionless) Contacts:

$\mathrm{C}=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4}\right\}$
Let $\Xi=\left\{\xi_{\mathrm{i}}\right\}$
If $\boldsymbol{\Xi}=\varnothing: \mathcal{F}(\boldsymbol{O}, \boldsymbol{C})$
To eliminate the locus: place \mathbf{p}_{4} anywhere on the jagged edges.
Are 3 contacts enough?

Is O in form closure? No : The locus is a point with $\operatorname{sgn}(\mathrm{p})= \pm 1$, so there is infinitesimal rotation.
\therefore Need ≥ 4 contacts in the plane.
So far, we haven't been allowing contacts on the corners.
Contacts at concave vertices \rightarrow very important, there is a lot of constraint there.
$\mathbf{2}^{\text {nd }}$ Order Form Closure:

IV. Number of Required Contacts:

Given a set of vectors $X=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}\right\}, \mathrm{X}$ positively spans \mathbb{R}^{p} if and only if $\operatorname{co}(\mathrm{X})$ [Convex-hull of X$]$ contains a neighborhood of the origin (pg. 255).

Theorem 5.4: (Caratheodory) 1911 (Greek)

At least $\mathrm{p}+1$ vectors are necessary to positively span \mathbb{R}^{p}.

For $\mathrm{p}=2: \forall v_{1}, v_{2}:-\left(v_{1}+v_{2}\right)$ is outside the positive span of v_{1}, v_{2}

Theorem 5.5: (Steinitz - Jewish German)

Given a set of vectors that positively span \mathbb{R}^{p}, \exists a subset of 2 p or Fewer sufficient to positively span \mathbb{R}^{p}.

Recall: $\mathrm{p}=$ dimension of the wrench space

Table 5.3: Lower bounds on the number of fingers required to grasp an object.

Space	Object type	Lower	Upper	FPC	PCWF	SF
Planar	Exceptional	4	6	n/a	3	3
$(p=3)$	Non-exceptional			4	3	3
Spatial	Exceptional	7	12	n/a	4	4
$(p=6)$	Non-exceptional			12	4	4
	Polyhedral			7	4	4

V. Grasp planning in the plane $(\mu>0)$

2 point contacts with friction (2PCWF) in plane.
Define grasp axis: $\left[p_{1}-p_{2}\right]$

$\tan (\alpha)=\mu$

Theorem 5.6: PCWF

G is in FC if and only if the grasp axis lies strictly inside both friction cones. [Nguyen '88]
(Related to Def. 5.2, Prop. 5.1, 5.2, 5.3)
Extends to 2 point contacts with friction in 3D.
Theorem 5.7: Check both contacts individually. [Nguyen '88]

Check 1: Is c_{1} inside Friction Cone 2?
Check 2: Contact 1 is stable if $\frac{d_{n_{2}}}{d_{n_{2}}^{\perp}}<\mu$.
If both are stable, $\boldsymbol{\mathcal { F }}(\boldsymbol{O}, \boldsymbol{C})$.
i.e. Don't need to approximate the friction cone.

VI. Grasp Planning with Uncertainty (in Pose) in the Plane

Assume: Known object
Pose: Not known precisely
Parallel-Jaw Gripper (pg. 11 Problem)
Orienting Polygonal Parts in the Plane: Algorithmica (1993)
Dr. Ken Goldberg
Convex hull of O

Radius Function and Diameter Function:

Squeeze function $s, s^{\prime} \rightarrow s^{\prime}$
Piecewise constant monotone step function

Θ_{x} where θ_{x} is leftmost point
Symmetry in object \rightarrow periodicity \rightarrow aliasing

