EE106B/206B Lecture Notes

Dr. Ken Goldberg

UC Berkeley

23 Feb 2016

Ch. 5.4 Grasp Planning

I. Force Closure and Form Closure

Form Closure = A sub-class of force closure that doesn't rely on friction (μ =

0). [Proposition 5.3]

Form Closure implies Force Closure.

Assumptions about the object O:

- Rigid solid
- Exactly known geometry
- "Regular:" Constructive solid geometry (closed, compact) where O is the closure of its interior ("well-behaved" objects)
- $\circ \quad O \subset \mathbb{R}^3$

Let the object coordinate frame {O} origin be at center of mass.

Let $\Sigma = \partial(O)$ be the boundary of O – connected, piecewise smooth

Given a set of n contact points $C = \{c_i\} \ i = 1 \dots n \ c_i \in \Sigma$

Let $\Lambda(\Sigma)$ be the set of wrenches that can be applied to O with *frictionless* point

contacts ($\mu = \theta$)

 $\mathbf{p}_{ci} = \text{location of } c_i \text{ in } \{O\}$

 $\mathbf{n}_{ci} = inward normal at c_i$

$$\Lambda(\Sigma) = \left\{ \begin{bmatrix} n_{ci} \\ p_{ci} \times n_{ci} \end{bmatrix} \right\}$$

 $\mathcal{F}(O, C)$ is true if C puts O into Form/Force Closure

If the convex hull of $\Lambda(\Sigma)$ contains the origin $\{O\}$, then $\mathcal{F}(O, C)$.

Also, let **p** be the *dimension of the wrench space*, \mathbb{R}^p .

- $\mathbf{p} = 3$ in the plane
- $\mathbf{p} = 6$ in space (3D)

Therefore, if $\Lambda(\Sigma)$ positively spans \mathbb{R}^p , then $\mathcal{F}(\mathbf{0}, \mathbf{C})$.

Exceptional Surface:

Object O with boundary $\partial(O)$ such that it cannot be grasped (without

friction).

Examples: sphere, circle, cylinder, etc.

 $\neg\exists \subset \mathcal{F}(0,\mathcal{C})$

II. Grasp Planning in the Plane ($\mu = 0$) – Geometric Intuition

F(**0**, **C**)?

Analysis: Given O, C: is **F(O, C)** true?

<u>Synthesis</u>: Given O, find C such that $\mathcal{F}(\mathbf{0}, \mathbf{C})$ is true.

I. Rigid Body Motion:

$$\xi = \begin{bmatrix} 2y \\ -2x \\ 1 \end{bmatrix}$$
 (pure rotation) or $\begin{bmatrix} v_x \\ v_y \\ 0 \end{bmatrix}$ (pure translation).

Pure translation:

Intersection at ∞ .

II. Frictionless point contact: constraints on ξ

Define sgn(
$$\xi$$
) =
$$\begin{cases} +1 \text{ if } \theta > 0\\ 0 \text{ if pure translation}\\ -1 \text{ if } \theta < 0 \end{cases}$$

 $sgn(\xi) = +1$ in this halfplane

III. Rotation Center Locus: Multiple (frictionless) Contacts:

$$C = \{c_1, c_2, c_3, c_4\}$$

Let $\Xi = \{\xi_i\}$
If $\Xi = \emptyset$: $\mathcal{F}(\mathbf{0}, \mathbf{C})$

To eliminate the locus: place p_4 anywhere on the jagged edges.

Are 3 contacts enough?

Is O in form closure? *No*: The locus is a point with $sgn(p) = \pm 1$, so there is *infinitesimal* rotation.

 \therefore Need \ge 4 contacts in the plane.

So far, we haven't been allowing contacts on the corners.

Contacts at concave vertices \rightarrow very important, there is a lot of constraint there.

2nd Order Form Closure:

IV. Number of Required Contacts:

Given a set of vectors $X = \{v_1, ..., v_k\}$, X positively spans \mathbb{R}^p if and only if co(X) [Convex-hull of X] contains a neighborhood of the origin (pg. 255).

Theorem 5.4: (Caratheodory) 1911 (Greek)

At least p+1 vectors are necessary to positively span \mathbb{R}^p .

For p = 2: $\forall v_1, v_2$: $-(v_1 + v_2)$ is outside the positive span of v_1, v_2

Theorem 5.5: (Steinitz – Jewish German)

Given a set of vectors that positively span \mathbb{R}^p , \exists a subset of 2p or

Fewer sufficient to positively span \mathbb{R}^p .

Recall: p = dimension of the wrench space

Table 5.3: Lower bounds on the number of fingers required to grasp an object.

Space	Object type	Lower	Upper	FPC	PCWF	SF
Planar	Exceptional	4	6	n/a	3	3
(p = 3)	Non-exceptional			4	3	3
	_					
Spatial	Exceptional	7	12	n/a	4	4
(p = 6)	Non-exceptional			12	4	4
	Polyhedral			7	4	4

V. <u>Grasp planning in the plane ($\mu > 0$)</u>

2 point contacts with friction (2PCWF) in plane.

Define grasp axis: $[p_1 - p_2]$

 $\tan(\alpha) = \mu$

Theorem 5.6: PCWF

G is in FC if and only if the grasp axis lies strictly inside both friction cones. [Nguyen '88]

(Related to Def. 5.2, Prop. 5.1, 5.2, 5.3)

Extends to 2 point contacts with friction in 3D.

Theorem 5.7: Check both contacts individually. [Nguyen '88]

dn2: distance from p, to n2 along n2 dn2: distance from p, to n2 along n2 dr.

Check 1: Is c₁ inside Friction Cone 2?

Check 2: Contact 1 is stable if $\frac{d_{n_2}}{d_{n_2}^{\perp}} \le \mu$.

If both are stable, $\mathcal{F}(\mathbf{0}, \mathbf{C})$.

i.e. Don't need to approximate the friction cone.

VI. Grasp Planning with Uncertainty (in Pose) in the Plane

Assume: Known object

Pose: Not known precisely

Parallel-Jaw Gripper (pg. 11 Problem)

Orienting Polygonal Parts in the Plane: Algorithmica (1993) Dr. Ken Goldberg

Convex hull of O

Radius Function and Diameter Function:

Squeeze function $s, s' \rightarrow s'$

Piecewise constant monotone step function

 Θ_x where θ_x is leftmost point

Symmetry in object \rightarrow periodicity \rightarrow aliasing