EECS 290C: Advanced circuit design for wireless Homework \#2 Solution

Q1. This question is intended to give you the relationship between sensitivity and both signal bandwidth and required SNR:

A 5.5 GHz RF system supports two different types of modulations; MCS1 and MCS8. It also supports two different signal bandwidth (RF bandwidth); 20 MHz and 160 MHz .

For the same receiver that has a total noise figure (NF) of 4 dB at room temperature, calculate the receiver sensitivity in dBm (also at room temperature) for both modulations with the two possible signal bandwidth. Assume the demodulator required SNR is 4 dB and 25 dB , for MCS1 and MCS8, respectively

Answer:

MCS1:

Noise power $(\mathrm{dBm})=-174 \mathrm{dBm} / \mathrm{Hz}+10 \operatorname{logBW}+\mathrm{NF}=-97 \mathrm{dBm}($ for 20 MHz BW$)$ and -88 dBm (for 160 MHz BW)

Sensitivity $(\mathrm{dBm})=$ noise power $(\mathrm{dBm})+$ SNR (dB)
Sensitivity $(20 \mathrm{MHz})=-97 \mathrm{dBm}+4 \mathrm{~dB}=\mathbf{- 9 3 d B m}$
Sensitivity $(160 \mathrm{MHz})=-88 \mathrm{dBm}+4 \mathrm{~dB}=\mathbf{- 8 4 d B m}$
Repeat for MCS8:
Sensitivity $(20 \mathrm{MHz})=-97 \mathrm{dBm}+25 \mathrm{~dB}=\mathbf{- 7 2 d B m}$
Sensitivity $(160 \mathrm{MHz})=-88 \mathrm{dBm}+25 \mathrm{~dB}=\mathbf{- 6 3 d B m}$

Q2. For the WCDMA receiver IM3 due to intermodulation between Tx leakage power and blocker in Band I (B1) shown below.

The Tx leakage is -27 dBm after duplexer. The B1 blocker level is -15 dBm at antenna. In class, we calculated the receiver IIP3 requirement due to this arrangement for a diplexer rejection of 30 dB at B1 (result came as -7.9 dBm without margin). Let us assume you found another diplexer that provides 31 dB rejection to blocker at B 1 (1dB better than the one we used in class), how
much the receiver IIP3 can then be relaxed by? (Assume Tx leakage remains the same as before with this new duplexer)

Answer:
Average Pin $=(2$ P_B1 + Ptx $) / 3=(-92-27) / 3=-39.67 \mathrm{dBm}$
IIP3 $=0.5($ Pin $-\mathrm{IM} 3)+\mathrm{Pin}=0.5(-39.67+101.2)-39.67=-8.9 \mathrm{dBm}$
The IIP3 of the receiver can be relaxed by $\mathbf{1 d B}$.
Q3. This question is intended to calculate LO spur level requirement:
A PLL uses a 20 MHz reference crystal oscillator that results in a reference spur $+/-20 \mathrm{MHz}$ away from the LO used for a WCDMA receiver as shown below:

With the adjacent channel $\mathrm{n}+4$ (or 20 MHz away from desired signal) level of -40 dBm , calculate the relative spur level in dBc (relative to the main LO) so that the folded $n+4$ signal in-band due to the PLL spur has a negligible impact on the receiver sensitivity of -117 dBm .

Answer:
For the direct-conversion receiver, the 20 MHz blocker will mix with the spur folding the outcome in-band at baseband. For this outcome to have a negligible impact on sensitivity, the product of the blocker times this spur has to be at least 10 dB below receiver noise (at sensitivity). Since at sensitivity we calculated receiver noise level of $-99.2 \mathrm{dBm} \rightarrow$ we will target -109.2 dBm (10dB below)

Therefore, the baseband level = blocker level x spur level. Therefore with blocker level of 40 dBm , and desired baseband outcome of -109.2 dBm at antenna \rightarrow spur level is (-109.2-(-40)) $=\mathbf{- 6 9 . 2 d B c}$. Note that spur level is in dBc because desired signal is mixed with LO and blocker is mixed with spur, so if LO signal goes higher, desired signal goes higher and so the tolerated spur level goes higher as well since we always wanted the blocker level folding in-band to be 10 dB below sensitivity noise (relative)

This means the spur level has to be >~70dB below LO level for this blocker not to impact sensitivity due to mixing with spur

Q4. This question is intended to refresh your RF matching knowledge to be ready for the following homework problems.
a. Let us assume an RF receiver block has an input impedance (Zin) of 10 -ohms (real, no imaginary) at 2.5 GHz . Design an L-match network to power match this impedance to a 50 -ohm source. There are two possible ways to do an L-match; a series inductor followed by a shunt capacitor or a series capacitor followed by a shunt inductor. You need to design both if feasible. Assume the matching components are ideal (infinite Q). Plot S11 using Spectre. Also plot the matching network voltage gain (Vout @ the input ports of the DUT vs Vin @ the RF port terminal).

Answer:

1. Series inductor/shunt cap:

$$
\begin{aligned}
& \mathrm{Q}=2 \pi * 2.5 \mathrm{e} 9 * \mathrm{Ls} / \mathrm{Rs}=2 \pi * 2.5 \mathrm{e} 9 * \mathrm{Ls} / 10 \\
& \mathrm{Q}^{\wedge} 2+1=50 / 10 \rightarrow \mathrm{Q}=2 \\
& \rightarrow \mathrm{Ls}=20 / 2 \pi^{*} 2.5 \mathrm{e} 9=\mathbf{1 . 2 7 n H} \\
& \mathrm{Q}=\mathrm{Rp} / 2 \pi * 2.5 \mathrm{e} 9 * \mathrm{Lp},(\mathrm{Rp}=50 \Omega, \mathrm{Q}=2) \\
& \rightarrow \mathrm{Lp}=1.59 \mathrm{nH} \\
& \mathrm{Csh}=1 /\left[\left(2 \pi^{*} 2.5 \mathrm{e} 9\right)^{\wedge} 2 \times \mathrm{Lp}\right]=\mathbf{2 . 5 5 p F}
\end{aligned}
$$

2. Series cap/shunt ind:

$$
\begin{aligned}
& \mathrm{Q}=1 /(2 \pi * 2.5 \mathrm{e} 9 * \mathrm{Cs} * \mathrm{Rs})=1 /(2 \pi * 2.5 \mathrm{e} 9 * \mathrm{Cs} * 10) \\
& \mathrm{Q}^{\wedge} 2+1=50 / 10 \rightarrow \mathrm{Q}=2 \\
& \rightarrow \mathrm{Cs}=1 /(2 \pi * 2.5 \mathrm{e} 9 * 2 * 10)=\mathbf{3 . 1 8 p F} \\
& \mathrm{Q}=\mathrm{Rp} * 2 \pi * 2.5 \mathrm{e} 9 * \mathrm{Cp}, \quad(\mathrm{Rp}=50 \Omega, \mathrm{Q}=2) \\
& \rightarrow \mathrm{Cp}=2.55 \mathrm{pF} \\
& \mathrm{Lsh}=1 /\left[(2 \pi * 2.5 \mathrm{e} 9)^{\wedge} 2 \times \mathrm{Cp}\right]=\mathbf{1 . 5 9 n H}
\end{aligned}
$$

b. Replace the ideal inductors in your matching network in (a) with finite Q inductors ($\mathrm{Q}=10$ to mimic on-chip spiral inductors, assume finite Q is mainly due to series resistance of inductor winding).With the aid of Spectre, re-simulate your matching network in (a). Feel free to "tweak" the components of your matching network to get a good S11 (<-12dB). Re-plot S11 and matching network voltage gain.
c. If the RF block impedance has additional capacitive reactive component of -j50 (so total input impedance is $10-\mathrm{j} 50 \mathrm{ohms}$), re-design your matching network to match this to a $50-$ ohm source. See if both L-match ways are still possible. Use ideal components first. Report S11 and matching network voltage gain. Repeat this step with inductor Q of 10.

Answer:

1. Series inductor/shunt cap:

Adjust series Ls value to resonate with -j50 imaginary part of Zin. This additional series value $=50 /\left(2 * \pi^{*} 2.5 \mathrm{e} 9\right)=3.18 \mathrm{nH}$
$\rightarrow \mathrm{Ls}=1.27 \mathrm{nH}+3.18 \mathrm{nH}=4.45 \mathrm{nH}$

The rest of calculation remains same
$\mathrm{Q}=\mathrm{Rp} / 2 \pi^{*} 2.5 \mathrm{e} 9 * \mathrm{Lp},(\mathrm{Rp}=50 \Omega, \mathrm{Q}=2)$
$\rightarrow \mathrm{Lp}=1.59 \mathrm{nH}$
Csh $=1 /\left[(2 \pi * 2.5 \mathrm{e} 9)^{\wedge} 2 \times \mathrm{Lp}\right]=\mathbf{2 . 5 5 p F}$
2. Series ind/shunt ind:
$-\mathrm{j} 50=1 /(2 \pi * 2.5 \mathrm{e} 9 * \mathrm{Css}) \rightarrow \mathrm{Css}=1.27 \mathrm{pF}$
However, we need to have an effective series capacitance of 3.18 pF
$1 /(2 \pi * 2.5 \mathrm{e} 9 * \mathrm{Cs})=1 /(2 \pi * 2.5 \mathrm{e} 9 * 3.18 \mathrm{e}-12)=-\mathrm{j} 20$
This means we need to add a series inductor with impedance of j 30
$\rightarrow 2 \pi * 2.5 \mathrm{e} 9 *$ Lss $=30$
\rightarrow Lss $=1.91 \mathrm{nH}$

The rest of calculation remains the same
$\mathrm{Q}=\mathrm{Rp} * 2 \pi * 2.5 \mathrm{e} 9 * \mathrm{Cp}, \quad(\mathrm{Rp}=50 \Omega, \mathrm{Q}=2)$
$\rightarrow \mathrm{Cp}=2.55 \mathrm{pF}$
Lsh $=1 /\left[\left(2 \pi^{*} 2.5 \mathrm{e} 9\right)^{\wedge} 2 \times \mathrm{Cp}\right]=1.59 \mathrm{nH}$

