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l Active Filter Implementation

– Filter implementation

– Gm-C

– Cascade Opamp-RC

– Ladder

» Direct replacement

» Signal-flow graph (SFG)

l References
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What do you need to implement a filter?

Passive low-pass filter
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To build filters, you need integrators.
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Active integrators:
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Gm-C implementation:

Gm-C implementation is as good as the Gm cell!!!

• fast! Gm-C implementation in general is an open-loop system, so its 

bandwidth is high.

• noise is set by the Gm cell input referred noise. Gm cell noise does 

not necessarily increase linearly with decreased Gm.

• linearity is limited by how linear the Gm cell is. Fast Gm cells do not 

use closed loop linearizing techniques, rather rely on simple 

techniques such as degeneration and harmonic cancellation. 

Therefore, fast Gm cells have limited linearity

• supply current can be made low if linearity requirement is not too 

stringent.

• area is mainly capacitor limited for low-frequency filters (<2MHz). 

However, for higher bandwidth filters (WLAN for e.g.), area is both 

capacitor and Gm cell limited, but can be smaller than opamp-RC.

• Performance variation over PVT is relatively large without careful 

design and proper biasing (requiring wider tuning range) compared 

to opamp-RC
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Example of a Gm-C cell:

Linearizing network can be as simple as degeneration resistors or as complex as 

harmonic cancellation scheme, or even an opamp-based feedback network! It is a 

tradeoff between Gm-cell linearity and speed

Gm-core Common-mode 

feedback circuit
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opamp-RC implementation:

Opamp-RC implementation is as good as the opamp!!!

● relatively slow! Opamp-RC implementation is a closed-loop system, so its 

bandwidth is limited (by the opamp GBW).

● noise is set by kT/C, so lower noise means higher cap area (assuming 

opamp excess noise is small). This can be shown as follows:
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you can repeat the exercise for second order or 

higher. The conclusion is to reduce filter noise 

you need to increase C 
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Generally, opamp excess noise is 2~7nv/rt(Hz).

• linearity is limited by opamp loop gain at the blocker frequency. 

Therefore, for low-frequency filters, linearity of opamp-RC is very high.

• supply current is set by getting opamp gain-BW product to be ~100 

times the filter bandwidth with >60dBc THD for 0.5Vpp signal. 

• If the opamp has a Gain-BW product of X times the filter bandwidth, 

then the opamp has an open loop gain of 10log(X) at the filter 3dB 

frequency (assuming dominant-pole compensation for opamp)

• Die area is dictated by the required noise, which is mainly capacitor 

limited. This one a major drawback, especially for very low frequency 

filters because you need two floating capacitors per opamp/pole!

Loss-less integrator Lossy integrator GBW

x10
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Filter implementation using cascade opamp-RC

- The basic building block of a cascade opamp-RC filter is the biquad

biquad1 biquad2 biquad3 First-order1
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a lossy integrator is also called “first order” function.
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There are several opamp-RC biquads invented by designers, which 

carried their names. Some examples are:

• Sallen-Key biquad (one opamp)

• Thomas Tow I and II biquads (3 opamps, can be 2 for differential 

design)

• Ackerberg-Mossberg biquad (3 opamps, can be 2 for differential 

design)

• Delyiannis-Friend biquad (one opamp)

• multi-feedback biquad (one opamp)

These biquads differ from each other in:

• The number of opamps needed (some have only one opamp, others 

two or three). This is a big deal for discreet design

• the total size of capacitance needed to realize the biquad

• realizable Q vs capacitance area

• swing at internal nodes

Opamp-RC biquad:
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Examples of opamp-RC biquads:

Thomas-Tow II

Sallen-Key

Multi-feedback

Thomas-Tow I  move Vin of Thomas-Tow II to lossy integrator
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Examples of opamp-RC biquads, Cont:
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Resistor R1 is usually used to change filter gain without impacting its transfer 
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GmC biquad example:
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Example of Gm-C biquad implementation. Assuming equal 

transconductors, one can find:
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Realizable biquad Q with active integrators:
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• The sharper the filter rejection is, the higher its Q becomes. This reduces 

the damping coefficient of the “s” term in the biquad equation above.

• The maximum biquad Q that can be realized with active integrators usually 

is <5 due to the lossless integrator excess phase due to opamp finite GBW 

(finite Gm output impedance and finite BW for Gm-C realization).

A(s)

Opamp GBW 

impacts biquad Q
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Realizable biquad Q with active integrators:

• Real opamp has excess phase (due to its finite GBW and none-dominant 

pole) that causes the integrator to become lossy, limiting the max realizable 

Q of a biquad, especially at higher frequencies
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Biquad-based cascaded filter realization flow:

1. find the s-domain representation of the filter factored into second-order terms.
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2. chose a biquad topology (Opamp-RC based or Gm-C, depending on filter 

specs such as linearity, bandwidth ..etc.).

3. for the chosen topology, choose the biquad implementation (two lossy Gm-C 

integrators for Gm-C implementation for example, or Thomas-Tow II for opamp-

RC implementation ..etc.). This is set by the biquad Q, noise peaking limit, max 

number of opamps ..etc.

4. Map the biquad circuit element values to the biquad coefficients in the s-

domain representation.

5. Scale R and C to meet noise spec. Adjust circuit bias, etc. to meet linearity.

Note: try not to exceed a biquad Q more than 5, else Q tuning will be needed.
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Ladder Filter implementation using Opamp-RC

● SFG realization using opamp-RC

Use scaling resistor 

R for currents**

** opamp RC circuits work with voltages, not currents

KCL/KVL:

• Voltage nodes as a 

function of other voltage 

nodes and series 

branches impedance 

times their currents

• Node currents as a 

function of other 

currents and shunt 

branches admittance 

times their voltages
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Construct the signal-flow graph (SGF):
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Ladder filter opamp-RC realization:
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Compare SFG to opamp-RC realization:
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The unknowns are C4, (R2, R3), and (R4,R5). Set a value for R and C4 and 

calculate R2, R3, R4 and R5.

From opamp circuit: From SFG: conclusion:
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Filter implementation using Gm-C

How to implement and “active” inductor?

- Grounded inductor:
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- Floating inductor:
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The active Gm-C implementation 

of an inductor is sometimes 

called a “gyrator”
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Ladder Gm-C implementation: direct element replacement

Just replace inductors of the LC ladder with active equivalent
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Differential Gm cells with their high impedance output require a common-

mode feedback circuit to set the output common-mode DC voltage. Gm 

cells sharing the same output can be combined into multi-input single-

output Gm cell with one common-mode circuit.
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Example: 5th order elliptic Gm-C lowpass filter

Equivalent LC 

representation
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Ladder Filter implementation using Gm-C

Follow same SFG we did previously to realize the Gm-C ladder. Gm cell 

outputs can be directly connected together for the sum:
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