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 Tuning:

Why tuning?

–  is in rad/sec so it must depend on absolute value of circuit 

elements (R, C, Gm).

– circuit elements are subject to variation due to process and temp.

 an integrated filter MUST be tuned

– filter Q is dimensionless, it depends on the ratio of like circuit 

elements.

 Q needs to be tuned only for high-Q filters (>6)
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+

-

V-tune

Gm

I-tune

 Digital tuning adds to area 

overhead. It also introduces 

parasitic poles/zero to the 

overall TF.

 Analog tuning is more elegant. It 

affects linearity over process, 

temperature and Vcc

R

C

C

Tuning methods:
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Common Filter tuning schemes:

D
B

B

Tuning/cap control

Inband tone

stopband tone

1. in-filter tuning:

Two equal tones are injected into the 

filter, one at a time. The first tone is at a 

passband frequency, while the other is at 

a stopband frequency with known filter 

rejection value. The two tones are 

measured at the filter output with the aid 

of the ADC. Digital baseband adjusts the 

filter tuning code until the exact rejection 

value is met. This assumes the filter is 

only process dependent, but temperature 

and Vdd independent. Retuning is 

needed when temperature drifts

tone1 tone2

freq

D

ADC

Can be the 

receiver ADC

Accurate, eg. 

divided From 

XTAL with 

strong rail-rail 

buffers
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Sense and 

control loop

Master filter

Slave filter

fref, Vref

Tune control

2. master-slave filter tuning:

The slave filter is the actual filter to be tuned. The master filter is a cell 

representing the filter, which can be a simple opam-RC or Gm/C unit or an 

entire biquad of same component types used to construct the slave filter. A 

precision voltage reference (bandgap), or frequency clock (Xtal oscillator) is 

injected into the master filter. An output dependent on the RC product or 

Gm/C ratio is monitored. A feedback loop changes R’s, C’s or both (Gm 

also) to lock the loop. The same tune word/signal used to tune/lock the 

master filter loop is used directly to tune the slave filter. 

Actual filter dummy filter
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An example of a master/slave filter tuning scheme:

All-pass 

network

To slave 

filter

master 

filter

fref

0°

90°

The allpass network uses the same Gm/C or opamp-RC blocks in the main 

filter to construct the following function:

0

0)(
Ps

Ps
sH allpass






The magnitude of the allpass network is unity, but the phase is 90° at  = P0. 

The allpass pole/zero, P0, is set to depend on Gm/C, or opamp-RC, just like the 

main filter 3dB frequency. If the process is well centered, the output of the 

phase detector is zero. If, however, the process is not centered, the output of 

the phase detector is finite and the feedback control signal will adjust (tune) the 

all pass network to force the value of P0 to equal the nominal value. Note that 

for this to work, a precision reference clock (Xtal) is needed whose oscillation 

frequency is P0.

tune

Loop filter
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Another example of a master-slave filter tuning scheme:

~
To slave 

filter

master 

filter

fref
0°

0°

The above architecture is a simple phase-locked loop. The VCO is constructed 

using the same Gm/C or opamp-RC cells used in the main filter. This is a 

relaxation-type VCO whose oscillation frequency 0 is dependent on Gm/C or 

RC. The loop ensures that the VCO frequency is always equal to the precision 

reference frequency fref which is usually coming from a xtal oscillator.

A VCO can be constructed by putting two lossless integrators in a feedback 

loop with some loss compensation for startup loop gain.

Note that for practical reasons, the reference frequency is used way out of 

band to prevent clock feed through. Moreover, the tune signal is heavily filtered 

before feeding it to the slave (main) filter.

Loop filter

tune
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Automatic Filter tuning scheme based on RC time constant:

N
1

Xtal clock

Initially cap is reset (discharged). When rstcomp

signal opens the switch, the cap C start charging 

and the digital starts counting Xtal clocks. When 

Vsaw reaches Vref, comparator output goes high 

and sends a signal to digital to stop counting.
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Automatic Filter tuning based on RC time constant, Cont’:

N 1

So, for a given nominal value of RC, there is an exact number of clock periods M that 

need to be counted during the calibration cycle (stored in the chip memory). If the either 

(or both) of R or C values is off nominal, the tuning cap bank of C (<4:0> in the example 

above) is adjusted until the count M is met. The resulting cap bank code is then sent to 

all cap banks in the actual filter which also uses <4:0> to match the tuning circuit.



11
Lecture #14 Complex Filters. Filter parasitics and Tuning

Copyright© Dr. Osama Shana’a

UC Berkeley, EECS 290C

Group delay equalizers:

Allpass networks are used for filter group delay equalization. This is because 

they only impact the phase (and hence group delay) of the filter and not the 

filter amplitude. 

Sometimes multiple all-pass networks are used to get the desired group delay 

equalization. The order of the group delay equalizer equals the order of the 

allpass function in the s-domain.

f
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Example of a differential group-delay equalizer:

The allpass network does not have to directly follow the baseband filter. It can 

be placed anywhere in the baseband chain. For noise figure purposes, it is 

best to place group delay equalizers after the first stage VGA.

)/(1

)/(1
)(

z  ;    )( 00
0

0

RCs

RCs
sH

p
ps

zs
sH












R

+

_

R

Vin +

R

Vout

Equalizer gain is flat over 

frequency but its phase is that of 

two concentric real poles (90-

degrees phase shift at pole freq)
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Complex active filters:

What is a complex filter?

Iin

Qin Qout

Iout

There is nothing complex about complex filters. They are called “complex” because 

they have two orthogonal signals (I and Q) as inputs and each of their orthogonal 

(complex) outputs depends on both complex inputs. Mathematically, it is easier to 

represent orthogonal signals as complex signals (I + jQ). This representation makes 

math a lot easier. For example, if

   

   tjtjQIinput

tQtI

00

00

sincos

sin    and ;   cos









Complex filter
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where complex filter is best used?

Qout

Iout

0
90 ~

In a low-IF receiver architecture:

Iin

Qin

 

 ttmttmtRFQ

ttmttmtRFI

ttmttmRF

IFIIFrLOin

IFIIFrLOin

IFLOIIFLOr

)sin()()sin()(
2

1
)sin(

)cos()()cos()(
2

1
)cos(

)cos()()cos()(













As seen the image blocker (can be 10’sdB higher than desired) falls on top of desired 

signal. Real low-pass filter does nothing to this because blocker already fell in-band. 

The ADC then needs to have enough dynamic range to handle this combined power of 

blocker+desired so digital baseband can perform image suppression.

LOBlocker @ 

image
desired

IFIF

0

IF

0

IF

90º

-90º

0º

0º Real filters

0

IF

0º

0º

0

IF

-90º

90º

image
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where complex filter is best used?

Qout

Iout

0
90 ~

In a low-IF receiver architecture:

Iin

Qin

 

 ttmttmtRFQ

ttmttmtRFI

ttmttmRF

IFIIFrLOin

IFIIFrLOin

IFLOIIFLOr

)sin()()sin()(
2

1
)sin(

)cos()()cos()(
2

1
)cos(

)cos()()cos()(













A complex filter takes these two complex inputs and ideally passes the desired signal 

and “partially” suppresses the image; that is

   ttmttmQttmttmI IFIIFroutIFIIFrout )sin()()sin()(
2

1
   and ;   )cos()()cos()(

2

1
 

LOBlocker @ 

image
desired

IFIF

0

IF

0

IF

90º

-90º

0º

0º

0

IF

0º

0

IF

-90º

90º

Where  is the complex filter image rejection factor

complex filter

image



16
Lecture #14 Complex Filters. Filter parasitics and Tuning

Copyright© Dr. Osama Shana’a

UC Berkeley, EECS 290C

It appears “as if” the complex filter discriminates against signals folded to baseband due 

to negative frequencies (means image frequency is smaller than LO resulting in 

negative IF freq). Therefore, the complex filter response looks like the following plot

f

dB

fc-fc

Image rejection



Note that the image rejection level, , is set by the filter order (3rd, 5th, etc.), filter 

function (Butterworth, Chebyshev, etc) and the frequency shift, fc. It is also set by the 

I/Q input magnitude and phase matching. If achieved image rejection  is sufficient 

for SNR, you need only either I or Q signal (not both) to send to digital baseband.

 

 ttmttmtRFQ

ttmttmtRFI

ttmttmRF

IFIIFrLOin

IFIIFrLOin

IFLOIIFLOr

)sin()()sin()(
2

1
)sin(

)cos()()cos()(
2

1
)cos(

)cos()()cos()(











 negative freq
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f

dB

fc

Shift filter response 

to the right by fc

f

dB

This “complex” bandpass filter realization is compared to “real” bandpass filter as 

follows. A second order bandpass filter transfer function can be written as

bass

cs
sH BP




2
)(

The realization is basically a 

universal biquad which 

needs to be copied twice 

one for I and the other for Q. 

0

Complex filters in a sense show a simple way of realizing bandpass filters. However, 

there is a real difference between the two. Real bandpass filter does not 

discriminate against image.

fc

f

dB

Real bandpass filter

Real lowpass filter
complex filter

0

1

1




j








 


0

1

1



 Cj

Conceptually, one would think that a way to build a complex filter is by starting with 

a real low pass filter and then somehow shift its response to the right by the 

desired bandpass center frequency.
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Let us investigate the “complex” realization of this bandpass filter. We will start first 

with the lowpass response, then shift the filter frequency response by c, as follows

 RCj
jjHjH

RCj
jH

c

cLPCBPLP












1

1
)()(        

1

1
)(

The complex filter will be realized through an integrator and an amplifier as follows

 

 

   

 
  1

1

1

1

signalscomplex  are   and  both   ;   
1

1

1

1
)(













RCjVV
RCj

V

RCjVVRCjV

VRCjRCjV

VV
RCjRCjRCjV

V
jH

coutinout

coutinout

incout

inout

ccin

out
CBP











The first order complex filter block diagram based on the above equation is:

RCj

1

1RCj c


inV

outV

integrator
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So for an I and Q signals with “I” leading “Q”:

RC

j
VV

j
V c

IoutIinIout

1
 ;    1

1
0

0

__

0

_ 




























 









Therefore, the complex filter transfer function for outputs Vout_I (and Vout_Q) as a function 

of complex inputs Vin_I and Vin_Q becomes:
























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


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










0000
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_

11

1

























CC

Qin
C

Iin

Iout
jjjj

VV
j

V

if I leads Q, then j(I) = -Q (assuming I and Q are matched in amplitude and are 90-degrees out of phase. If this 

condition is not exactly met,  complex filter performance is affected) 

I

Q



















 IoutQout

c
IinIout VVV

j
V __

0

_

0

_

1









Similarly for Q with jQ = I 



















 QoutIout

c
QinQout VVV

j
V __

0

_

0

_

1
















































0000

,
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;

























CC

QinIin
C

Qout
jjjj

V
j

V

V

I leads Q
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The first order complex filter full realization with I/Q signals looks like:

RCj

1


IinV _ IoutV _

RCj

1


QinV _ QoutV _

-1

-1

RCc

RCc

Note that when c is zero, the diagram collapses to a simple “real” first order lowpass 

filter for each I and Q.

I

Q

I leads Q in this 

implementation

RC

f IFC

1

2

0 















































QoutIout
c

QinQout

IoutQout
c

IinIout

VVV
j

V

VVV
j

V

__

0

_

0

_

__

0

_

0

_

1

1
















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The first order complex filter full realization with opamp-RC looks like:

+
_

C1

R1

Vout-Q

R1

R
C

Vin-Q

+
_

C1

R1

Vout-I

R1

Vin-I

c=1/RCC1 ,  0=1/R1C1

Note that the I/Q coupling resistor (RC) decreases as the frequency shift c increases. 

With c =0 (no shift, RC=∞) the complex filter collapses to two independent I/Q real first-

order lowpass filters.

R
C

-1








































QoutIout
c

QinQout

IoutQout
c

IinIout

VVV
j

V

VVV
j

V

__

0

_

0

_

__

0

_

0

_

1

1
















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Note that you can decide to favor upper mix or lower mix in this low-IF receiver (meaning 

positive vs negative frequencies) by changing the sign of the cross-coupled resistor 

voltages (I leads Q or Q leads I). The not flat passband is due to finite opamp GBW

+

+-

-

+

+-

-

Vin,I

Vin,Q Vout,Q

Vout,I

R1

C

R1

RC

CR

CRC

C

1

0

1

1









Iin
c

Iout V

j

V ,

0

,

1

1










Iin

c
Iout V

j

V ,

0

,

1

1










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Complex cascaded filter realization:

This is a biquad (real low pass filter). First you chose circuit parameters 

based on noise, linearity and signal BW. Next step is to design the cross 

coupled resistors between I and Q filters to create a complex filter as shown 

next
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Rb1

C1 C2

Rb2

complex cascade filter:

• Rb1 and Rb2 are calculated based on C1, C2 and c values. In this design, ωc is 4MHz

• Real opamp finite GBW causes some none flat passband response (red) vs ideal 

opamp (blue). Opamp compensation pole is not shifted!
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Real to complex ladder filter realization:

C1 C3

RT RT

L2 ZR=jL2 ZX=j(cL2

YR=jC3 YX=j(-c)C3Real filter

C1 C3

RT RT

jL2

complex filter

-jcL2

-jcC3-jcC1

Capacitor element 

in real filter 

implementationinductor 

element
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 

 
 

 

   


















2
2

13

2

2

222213

2

2

13

2

2

13

jRI
R

L
VV

Lj

R
RI

RILjRILjVVR

RI
Lj

R
VV

RI
Z

R
VV

c

c

c









The example analysis shows that the complex signal flow-graph is constructed by 

starting first with the real lowpass filter signal flow graph, then adding a coupling resistor 

from the output of each opamp of I channel to the input of the corresponding opamp in 

the Q filter and visa versa (with careful attention to the sign).

Let us take the example of calculating the complex SFG for L2:
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Q-filter

I-filter

full complex ladder filter SFG:

cRC3

cL2/R cL2/R

cRC3

cRC1

cRC1

Only 3 integrators per filter are needed to implement this complex bandpass 

filter as compared to 6 integrators per filter for real bandpass filter 

implementation!
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Appendix
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Impact of nonideality of Gm cell on the filter frequency 

response: 

1. Finite Gm output impedance:

The finite output conductance of the Gm cell can be modeled as a finite 

Gout in parallel with the integrating cap. Similarly, the parasitic output 

capacitance of the Gm cell appears is parallel with the integration 

capacitor. This means the ideally lossless integrator becomes a bit lossy 

with the following transfer function:

outT

outT

m

in

out CCC
GsC

g

V

V
sH 


   ;    )(

as seen, Gout appears as “loss” in the integrator transfer function. The value 

of C can be adjusted to “absorb” the parasitic capacitance Cout. This 

technique is called predistortion.

Gm

C

vin
vout

iout

Gout Cout
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The finite Gout has an impact on the realizable biquad “Q” as follows. The 

biquad transfer function can be expressed in terms of natural frequency n

and quality factor Q (based on control theory) as:

22

2

2
n

n

n

s
Q

s 






Filters with very sharp stopband roll off (close to unity stopband to passband 

ratio) have high Q biquads in their realization. Therefore, with finite Gout the 

lossless-lossy integrator biquad function can be rewritten as:

)()(1
1

)(
2

outout

out

out

in

out

bkGABskGbs

AB

bs

B

kGs

A

bs

B

kGs

A

T

T
sH

V

V













It can be seen that Gout increases the coefficient of the “s” term, indicating 

a lower Q. This means the maximum filter Q that can be realized by the 

design will be limited. 
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2. Finite Gm input impedance:

Gm

C

vin vout

iout

Gin

The finite input conductance, as well as parasitic input capacitance, of the 

Gm cell can be modeled as a finite Gin and Cin in parallel with the input. 

Since the filter realization is a cascade of biquads and integrators, the 

input of a Gm cell loads the output of the other resulting in the same 

impact on the transfer function as Gout, and Cout.

Ib
Bipolar-based Gm cell without 

degeneration suffers high input 

conductance. Although speed is 

high, such Gm cell cannot  

realize high Q filters (Q>5 or so)

Cin
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Impact of Gm cell input/output parasitics on the Gyrator performance:
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3. Finite Gm cell bandwidth:

The finite Gm cell bandwidth can be modeled as a finite single-pole system 

as:

1

)(
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

P
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G
sG m

m

Where Gm0 is the DC value and P0 is the finite pole representing the finite 

bandwidth. When this Gm cell is used to build a biquad, the following 

transfer function results
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As seen, the finite Gm cell bandwidth results in increasing the order of the 

biquad section. This impacts the overall filter frequency response if P0 is 

too close to the filter bandwidth. A general practice is to chose the Gm cell 

bandwidth to be 10 times the maximum frequency of interest in the filter 

response for low to moderate Q filters.
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