Math 250a hw2

12. (b) If $H \cap N=\{e\}$, show that the map $H \times N \rightarrow H N$ given by $(x, y) \mapsto x y$ is a bijection, and that this map is an isomorphism iff f is trivial, i.e., $f(x)=\operatorname{id}_{N}$ for all $x \in H$.

Proof. Call the map ψ.

- ψ is injective. For $x_{1}, x_{2} \in H, y_{1}, y_{2} \in N$, suppose $x_{1} y_{1}=x_{2} y_{2}$. Then $x_{2}^{-1} x_{1}=y_{2} y_{1}^{-1} \in H \cap N=\{e\}$, so both sides are equal to the identity e. Thus, $x_{1}=x_{2}$ and $y_{1}=y_{2}$.
- ψ is surjective by the definition of $H N$.

If ψ is a group homomorphism, then for any $x \in H, y \in N$, we have

$$
\begin{aligned}
\psi((e, y),(x, e)) & =\psi((e, y)) \psi((x, e)) \\
\psi((x, y)) & =y x \\
x y & =y x \\
x y x^{-1} & =y \\
f(x) & =\operatorname{id}_{N} \quad \text { since } y \text { is arbitrary }
\end{aligned}
$$

Since x is arbitrary, we have $f(x)=\operatorname{id}_{N}$ for all $x \in H$.
Conversely, if $f(x)=\operatorname{id}_{N}$ for all $x \in H$, then for all $y \in N$,

$$
\begin{aligned}
f(x)(y) & =\operatorname{id}_{N}(y) \\
x y x^{-1} & =y \\
x y & =y x \quad \forall x \in H, \forall y \in N
\end{aligned}
$$

Thus, $\psi\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=\psi\left(\left(x_{1}, y_{1}\right)\right) \psi\left(\left(x_{2}, y_{2}\right)\right)$ for all $x_{1} x_{2} \in H, y_{1}, y_{2} \in N$, so ψ is a homomorphism. Since it is also a bijection, ψ is an isomorphism.

Common mistake: the group law of product is defined component-wisely; if elements of H, N do not commute, ψ is not necessarily a homomorphism.

Remark on 19. $t \sim s \Longleftrightarrow t \in G s$ defines an equivalence relation on G. Indeed,

- $s=e s, s \in G s$
- $t=g s \Longrightarrow s=g^{-1} t \Longrightarrow s \in G t$
- $t=g s, s=h r \Longrightarrow t=g h r \Longrightarrow t \in G r$.

Thus, $\{G s: s \in G\}$ form a partition of G.
20. Let P be a p-group. Let A be a normal subgroup of order p. Prove that A is contained in the center of P.
Here is a collection of solutions.
Proof 1. Since A is normal, for any $x \in P, a \in A$, we have $x a x^{-1} \in A$. Thus, P acts on A by conjugation. Let Z denote the center of P and Z_{A} denote $Z \cap A$. Since the intersection of subgroups is again a subgroup, Z_{A} is a p-subgroup. By the class formula,

$$
|A|=\left|Z_{A}\right|+\sum_{a \in C} \frac{|P|}{\left|P_{a}\right|}
$$

where C is a set of representatives for the distinct, nontrivial conjugacy classes and $P_{a}=\{x \in P: x a=a\}$. Note that $\left|P_{a}\right| \neq|P|$ (otherwise $a \in Z_{A}$), so $p \left\lvert\, \frac{|P|}{\left|P_{a}\right|}\right.$. If $\left|Z_{A}\right|=|A|=p$, then $A=Z_{A}$ and $A \subset Z$. Otherwise $\left|Z_{A}\right|=1$ and the class formula modulo p gives $0 \equiv 1 \bmod p$, a contradiction.

Proof 2. Since A is normal, P acts on A by conjugation. The action induces a homomorphism $\phi: P \rightarrow$ $\operatorname{Aut}(A) \cong \mathbb{Z} /(p-1) \mathbb{Z}$. The order of $\phi(P)$ divides both $|P|$ and $p-1$. Since P is a p-group, $\phi(P)=\{e\}$, so for all $x \in P, a \in A, x a x^{-1}=a$. Thus, A is in the center of P.

A variation of the above proof maps P into S_{p-1}, the permutation group of $p-1$ objects.
Proof 3. Since $|A|=p, A$ is cyclic. Let $A=\langle a\rangle$, for any $x \in P$, there is $k \in\{0,1, \ldots, p-1\}$ such that $x a=a^{k} x$. Let p^{n} be the order of x, then $a=x^{p^{n}} a=a^{k^{p^{n}}} x^{p^{n}}=a^{k^{p^{n}}}$. Thus, $a^{k^{p^{n}}-1}=e$, so $k^{p^{n}} \equiv 1 \bmod p$. By Fermat's Little Theorem, $k \equiv 1 \bmod p$, so $x a=a x$. Since x is arbitrary, $A \subset Z(P)$.
24. Let p be a prime number. Show that a group of order p^{2} is abelian, and that there are only two such groups up to isomorphism.

Proof. By theorem 6.5, a nontrivial p-group G has a nontrivial center Z (proved by the class formula). If $|Z|=p^{2}$, then G is abelian. If $|Z|=p$, then both Z and G / Z have order p and thus are cyclic. Let $Z=\langle x\rangle, G / Z=\langle y Z\rangle$ for some representative $y \in G$, Then $G=\left\{y^{j} x^{i}: i, j \in\{0, \ldots, p-1\}\right\}$. Since $x \in Z$,

$$
\begin{aligned}
y^{\ell} x^{k} y^{j} x^{i} & =y^{\ell+j} x^{k+i} \\
& =y^{j} x^{i} y^{\ell} x^{k}
\end{aligned}
$$

so G is again abelian and $|Z|=p^{2}$.
Suppose G has an element of order p^{2}, then G is cyclic and $G \cong \mathbb{Z} / p^{2} \mathbb{Z}$. Otherwise, pick $x \in G-\{e\}$ so $x^{p}=1$, and pick $y \notin\langle x\rangle$ so $y^{p}=1$ and $\langle x\rangle \cap\langle y\rangle=\{e\}$. By $12(\mathrm{~b}), \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} \cong\langle x\rangle\langle y\rangle$ is a subgroup of G. Since both have order p^{2}, we conclude that $G \cong \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$.
26. (a) Let G be a group of order $p q$, where p, q are primes and $p<q$. Assume that $q \not \equiv 1$ mod p. Prove that G is cyclic.

Proof 1. Let P be a p-Sylow subgroup of G and Q be the q-Sylow subgroup of G. By lemma $6.7, p<q$ implies that Q is normal. Then P acts by conjugation on Q, so there is a homomorphism $f: P \rightarrow \operatorname{Aut}(Q) \cong$ $\mathbb{Z} /(q-1) \mathbb{Z}$. Since $p \nmid q-1, f$ is trivial. Thus, for all $x \in P, y \in Q$, we have $x y=y x$. Follow the same line as proposition $6.8, G$ is abelian and, since $p \neq q$, cyclic.

Proof 2. Let P be a p-Sylow subgroup of G and let N_{P} be its normalizer. Observe that $P \leq N_{P}$, so either P is normal, or $P=N_{P}$. By Sylow's third theorem, the number n_{p} of p-Sylow subgroups of G is $\equiv 1 \bmod p$. The number $n_{p}=\frac{|P|}{\left|N_{P}\right|} \neq q$, so P is normal. Similarly, let Q be a q-Sylow subgroup of G, then Q is also normal, and $P \cap Q=\{e\}$. By $12(\mathrm{~b}), P Q \cong P \times Q \cong \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / q \mathbb{Z} \cong \mathbb{Z} / p q \mathbb{Z}$ is cyclic. Since $P Q$ is a subgroup of G of the same order $p q$, we conclude that $G \cong P Q$.

