
Math 250a hw2

12. (b) If H ∩ N = {e}, show that the map H × N → HN given by (x, y) 7→ xy is a bijection, and that
this map is an isomorphism iff f is trivial, i.e., f(x) = idN for all x ∈ H.

Proof. Call the map ψ.

• ψ is injective. For x1, x2 ∈ H, y1, y2 ∈ N , suppose x1y1 = x2y2. Then x−12 x1 = y2y
−1
1 ∈ H ∩N = {e},

so both sides are equal to the identity e. Thus, x1 = x2 and y1 = y2.

• ψ is surjective by the definition of HN .

If ψ is a group homomorphism, then for any x ∈ H, y ∈ N , we have

ψ((e, y), (x, e)) = ψ((e, y))ψ((x, e))

ψ((x, y)) = yx

xy = yx

xyx−1 = y

f(x) = idN since y is arbitrary

Since x is arbitrary, we have f(x) = idN for all x ∈ H.
Conversely, if f(x) = idN for all x ∈ H, then for all y ∈ N ,

f(x)(y) = idN (y)

xyx−1 = y

xy = yx ∀x ∈ H,∀y ∈ N

Thus, ψ((x1, y1), (x2, y2)) = ψ((x1, y1))ψ((x2, y2)) for all x1x2 ∈ H, y1, y2 ∈ N , so ψ is a homomorphism.
Since it is also a bijection, ψ is an isomorphism.

Common mistake: the group law of product is defined component-wisely; if elements of H,N do not
commute, ψ is not necessarily a homomorphism.

Remark on 19. t ∼ s ⇐⇒ t ∈ Gs defines an equivalence relation on G. Indeed,

• s = es, s ∈ Gs

• t = gs =⇒ s = g−1t =⇒ s ∈ Gt

• t = gs, s = hr =⇒ t = ghr =⇒ t ∈ Gr.

Thus, {Gs : s ∈ G} form a partition of G.
20. Let P be a p-group. Let A be a normal subgroup of order p. Prove that A is contained in the center of
P .
Here is a collection of solutions.

Proof 1. Since A is normal, for any x ∈ P, a ∈ A, we have xax−1 ∈ A. Thus, P acts on A by conjugation.
Let Z denote the center of P and ZA denote Z ∩A. Since the intersection of subgroups is again a subgroup,
ZA is a p-subgroup. By the class formula,

|A| = |ZA|+
∑
a∈C

|P |
|Pa|

where C is a set of representatives for the distinct, nontrivial conjugacy classes and Pa = {x ∈ P : xa = a}.
Note that |Pa| 6= |P | (otherwise a ∈ ZA), so p| |P ||Pa| . If |ZA| = |A| = p, then A = ZA and A ⊂ Z. Otherwise

|ZA| = 1 and the class formula modulo p gives 0 ≡ 1 mod p, a contradiction.

1



Proof 2. Since A is normal, P acts on A by conjugation. The action induces a homomorphism φ : P →
Aut(A) ∼= Z/(p− 1)Z. The order of φ(P ) divides both |P | and p− 1. Since P is a p-group, φ(P ) = {e}, so
for all x ∈ P, a ∈ A, xax−1 = a. Thus, A is in the center of P .

A variation of the above proof maps P into Sp−1, the permutation group of p− 1 objects.

Proof 3. Since |A| = p, A is cyclic. Let A = 〈a〉, for any x ∈ P , there is k ∈ {0, 1, . . . , p − 1} such that

xa = akx. Let pn be the order of x, then a = xp
n

a = ak
pn

xp
n

= ak
pn

. Thus, ak
pn−1 = e, so kp

n ≡ 1 mod p.
By Fermat’s Little Theorem, k ≡ 1 mod p, so xa = ax. Since x is arbitrary, A ⊂ Z(P ).

24. Let p be a prime number. Show that a group of order p2 is abelian, and that there are only two such
groups up to isomorphism.

Proof. By theorem 6.5, a nontrivial p-group G has a nontrivial center Z (proved by the class formula). If
|Z| = p2, then G is abelian. If |Z| = p, then both Z and G/Z have order p and thus are cyclic. Let
Z = 〈x〉, G/Z = 〈yZ〉 for some representative y ∈ G, Then G =

{
yjxi : i, j ∈ {0, . . . , p− 1}

}
. Since x ∈ Z,

y`xkyjxi = y`+jxk+i

= yjxiy`xk

so G is again abelian and |Z| = p2.
Suppose G has an element of order p2, then G is cyclic and G ∼= Z/p2Z. Otherwise, pick x ∈ G− {e} so

xp = 1, and pick y /∈ 〈x〉 so yp = 1 and 〈x〉 ∩ 〈y〉 = {e}. By 12(b), Z/pZ × Z/pZ ∼= 〈x〉〈y〉 is a subgroup of
G. Since both have order p2, we conclude that G ∼= Z/pZ× Z/pZ.

26. (a) Let G be a group of order pq, where p, q are primes and p < q. Assume that q 6≡ 1 mod p. Prove
that G is cyclic.

Proof 1. Let P be a p-Sylow subgroup of G and Q be the q-Sylow subgroup of G. By lemma 6.7, p < q
implies that Q is normal. Then P acts by conjugation on Q, so there is a homomorphism f : P → Aut(Q) ∼=
Z/(q − 1)Z. Since p - q − 1, f is trivial. Thus, for all x ∈ P, y ∈ Q, we have xy = yx. Follow the same line
as proposition 6.8, G is abelian and, since p 6= q, cyclic.

Proof 2. Let P be a p-Sylow subgroup of G and let NP be its normalizer. Observe that P ≤ NP , so either P
is normal, or P = NP . By Sylow’s third theorem, the number np of p-Sylow subgroups of G is ≡ 1 mod p.

The number np = |P |
|NP | 6= q, so P is normal. Similarly, let Q be a q-Sylow subgroup of G, then Q is also

normal, and P ∩Q = {e}. By 12(b), PQ ∼= P ×Q ∼= Z/pZ×Z/qZ ∼= Z/pqZ is cyclic. Since PQ is a subgroup
of G of the same order pq, we conclude that G ∼= PQ.
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