Math 250a hw5

8. Let p be a prime number, and let $A=\mathbb{Z} / p^{4} \mathbb{Z}(r \in \mathbb{Z} \geq 1)$. Let $G=A^{\times}$. Show that G is cyclic, except in the case when

$$
p=2, r \geq 3
$$

in which case it is of type $\left(2,2^{r-2}\right)$. [Hint: In the general case, show that $\langle 1+p\rangle \cong \mathbb{Z} / p^{r-1} \mathbb{Z}$ and $G \cong$ $\mathbb{Z} / p^{r-1} \mathbb{Z} \times \mathbb{Z} /(p-1) \mathbb{Z}$. In the exceptional case, show that $\langle 5\rangle \cong \mathbb{Z} / 2^{r-2} \mathbb{Z}$ and $G \cong\langle 5\rangle \times\{ \pm 1\}$.]

The idea is provided in the hint. Here are some handy observations.
About binomial coefficients, $\nu_{p}\left(\binom{p^{m}}{i}\right)=m-\nu_{p}(i)$ where $\nu_{p}(n)$ denotes the exponent of the largest power of p which divides n.

In the general case, to show that the order or $1+p$ is not p^{m} for any $m<r-1$, observe that $\forall a \in \mathbb{Z}, \forall m<r$,

$$
a \equiv 1 \quad \bmod p^{r} \Longrightarrow a \equiv 1 \quad \bmod p^{m}
$$

Since $\nu_{p}(i)<i$ for all prime p and positive integers i, we have

$$
(1+p)^{p^{m}}=\sum_{i=0}^{p^{m}}\binom{p^{m}}{i} p^{i} \equiv 1+p^{m+1} \quad \bmod p^{m+2}
$$

Then $\forall m<r-1,(1+p)^{p^{m}} \not \equiv 1 \bmod p^{m+2}$. By contrapositive, $(1+p)^{p^{m}} \not \equiv 1 \bmod p^{r}$.
To show that $G \cong \mathbb{Z} / p^{r-1} \mathbb{Z} \times \mathbb{Z} /(p-1) \mathbb{Z}$, consider the homomorphism

$$
f: G \rightarrow(\mathbb{Z} / p \mathbb{Z})^{\times} \cong \mathbb{Z} /(p-1) \mathbb{Z}, x \mapsto x \quad \bmod p
$$

Indeed, $\langle 1+p\rangle=\operatorname{ker} f$ since LHS is contained in RHS and orders match. Since f is a surjection, $G / \operatorname{ker} f \cong$ $\mathbb{Z} /(p-1) \mathbb{Z}$. Since $p \neq 2, r \geq 1, p-1$ and p^{r-1} are coprime. By the classification of abelian groups, $G \cong \mathbb{Z} / p^{r-1} \mathbb{Z} \times \mathbb{Z} /(p-1) \mathbb{Z}$.

In the exceptional case, consider the homomorphism

$$
f: G \rightarrow(\mathbb{Z} / 4 \mathbb{Z})^{\times} \cong \mathbb{Z} / 2 \mathbb{Z}, x \mapsto x \quad \bmod 4
$$

Again, $\langle 5\rangle=\operatorname{ker} f$ and -1 represents the preimage of $-1 \in(\mathbb{Z} / 4 \mathbb{Z})^{\times}$under f.
11. Let R be the ring of trigonometric polynomials as defined in the text. Show that R consists of all functions f on \mathbb{R} which have an expression of the form

$$
f(x)=a_{0}+\sum_{m=1}^{n}\left(a_{m} \cos m x+b_{m} \sin m x\right)
$$

where $a_{0}, a_{m}, b_{m} \in \mathbb{R}$. Define the trigonometric degree $\operatorname{deg}_{t r}(f):=\max \left\{r \in \mathbb{Z}: a_{r} \neq 0\right.$ or $\left.b_{r} \neq 0\right\}$. Prove that

$$
\operatorname{deg}_{t r}(f g)=\operatorname{deg}_{t r}(f)+\operatorname{deg}_{t r}(g)
$$

Deduce from this that R has no zerodivisors, and that the functions $\sin x$ and $1-\cos x$ are irreducible elements in that ring.

Suppose $\operatorname{deg}_{t r}(f)=r, \operatorname{deg}_{t r}(g)=s$. Let the highest degree terms of f be $a \cos (r x)+b \sin (r x)$ and the highest degree terms of g be $c \cos (s x)+d \sin (s x)$. Then $a^{2}+b^{2}>0$ and $c^{2}+d^{2}>0$. The highest possible trigonometric degree of $f g$ is $r+s$. The degree $r+s$ terms of $f g$ are $\frac{a c-b d}{2} \cos ((r+s) x)$ and $\frac{a d+b c}{2} \sin ((r+s) x)$. Since $(a c-b d)^{2}+(a d+b c)^{2}=\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) \neq 0$, we know that not both coefficients vanish, and $\operatorname{deg}_{t r}(f g)=r+s$.

