Math 250a hw7

5.

- A \mathbb{Z} -module is an abelian group and vice versa. However, \mathbb{Z} is not a field so we do not say \mathbb{Z} -vector space.
- A module is not an algebra. It may not have an identity element such as 1.
- We have to choose a maximal set of linearly independent elements of A over \mathbb{R} . Such a maximal set exists by Zorn's lemma.
- After choosing a maximal set of \mathbb{R} -independent elements, it is not true that v_1, \ldots, v_{m-1} will generate $A \cap span_{\mathbb{R}} \{v_1, \ldots, v_{m-1}\}$ over \mathbb{Z} . We may assume it because by induction there exists some w_1, \ldots, w_{m-1} that do generate, and we may replace v_i 's with w_i 's.
- A is additive, closed under translation up to integer multiples of its elements, but not closed under division by integers.
- The *m*-th coefficient of v'_m must not be zero. v'_m is chosen to make this coefficient minimal among the nonzero's.
- Base case.
- Yes. It is not important how the a_i 's are bounded as long as they are, bounded.

An alternative solution formulates it as an algorithm which chooses generators iteratively. Let B(p,r)denote an open ball centered at p of radius r and |x| denote the Euclidean norm of $x \in \mathbb{R}^n$. If $A = \emptyset$, the statement is vacuously true. Otherwise, suppose we have chosen m-1 linearly independent vectors $v_1, \ldots, v_{m-1} \in A$ such that

$$A_0 = A \cap \sum_{i=1}^{m-1} \mathbb{R}v_i = \sum_{i=1}^{m-1} \mathbb{Z}v_i$$

If $A = A_0$, then we are done. Otherwise, choose a radius r_m such that

$$S = B(0, r_m) \cap A - \sum_{i=1}^{m-1} \mathbb{R}v_i \neq \emptyset.$$

Pick a v_m such that

$$|v_m| = \min\{|v| : v \in S - \{0\}\}.$$

Minimum exists because $B(0, r_m)$ is bounded. The algorithm will halt because A is finite dimensional. Suppose the algorithm chooses v_1, \ldots, v_m , then we know that $A_0 = \sum_{i=1}^{m-1} \mathbb{Z}v_i$ and $A \subset A_0 + \mathbb{R}v_i$. We claim that $A = \sum_{i=1}^m \mathbb{Z}v_i$. If not, up to translation there exists $rv_m \in A$ with $r \in (0, 1)$. This is a contradiction, because the algorithm would have chosen rv_m for $|rv_m| < |v_m|$.

9. (b) Do not forget the middle exactness, i.e., $\ker(S^{-1}M' \to S^{-1}M) = \operatorname{image}(S^{-1}M \to S^{-1}M'')$.

10.

- (a) To see that the annihilator of some $x \in M$ is indeed an ideal, consider the A-module morphism $A \to M, a \mapsto ax$. The kernel of this morphism is the annihilator of x in A, which must be an ideal.
- (b) Show that a sequence $0 \to M' \to M \to M'' \to 0$ is exact if and only if the sequence $0 \to M'_{\mathfrak{p}} \to M_{\mathfrak{p}} \to 0$ $M''_{\mathfrak{p}} \to 0$ is exact for all primes \mathfrak{p} .
 - If \mathfrak{p} is a maximal ideal, not every element in $A \mathfrak{p}$ is a unit. For example, (2) is a maximal ideal in \mathbb{Z} and $3 \notin (2)$, but 3 is not a unit in \mathbb{Z} . Indeed, quotient of a ring by its maximal ideal results in a field, so they are "units" in a different ring.

One direction follows from 9(a). For the converse direction, it suffices to show that for any sequence $M' \to M \to M''$, if $M'_{\mathfrak{p}} \to M_{\mathfrak{p}} \to M''_{\mathfrak{p}}$ is exact for all primes \mathfrak{p} , then the sequence $M' \to M \to M''$ is exact. Indeed, for injectivity or surjectivity we may let M' = 0 or let M'' = 0. We always takes annihilator of some element, possibly in a quotient module.

To see that $\operatorname{image}(f) \subset \operatorname{ker}(g)$, chase the following diagram

$$\begin{array}{cccc} M' & & \longrightarrow & M & \longrightarrow & M'' \\ \downarrow & & \downarrow & & \downarrow \\ \prod_{\mathfrak{p}} M'_{\mathfrak{p}} & & \longrightarrow & \prod_{\mathfrak{p}} M_{\mathfrak{p}} & \longrightarrow & \prod_{\mathfrak{p}} M''_{\mathfrak{p}} \end{array}$$

Observe that

$$(\ker(g)/\operatorname{image}(f))_{\mathfrak{p}} = \ker(g)_{\mathfrak{p}}/\operatorname{image}(f)_{\mathfrak{p}}$$

If $\ker(g)/\operatorname{image}(f) \neq 0$, the annihilator of some $m \in \ker(g)$ with respect to $\operatorname{image}(f)$, i.e.

$$\ker(A \xrightarrow{\cdot m} \ker(g) / \operatorname{image}(f)) = \{a : am \in \operatorname{image}(f)\}$$

is a proper ideal in A, contained some maximal ideal \mathfrak{p} . Then $(\ker(g)/\operatorname{image}(f))_{\mathfrak{p}} \neq 0$, a contradiction.