Math 250a hw7

5.

- A \mathbb{Z}-module is an abelian group and vice versa. However, \mathbb{Z} is not a field so we do not say \mathbb{Z}-vector space.
- A module is not an algebra. It may not have an identity element such as 1 .
- We have to choose a maximal set of linearly independent elements of A over \mathbb{R}. Such a maximal set exists by Zorn's lemma.
- After choosing a maximal set of \mathbb{R}-independent elements, it is not true that v_{1}, \ldots, v_{m-1} will generate $A \cap \operatorname{span}_{\mathbb{R}}\left\{v_{1}, \ldots, v_{m-1}\right\}$ over \mathbb{Z}. We may assume it because by induction there exists some w_{1}, \ldots, w_{m-1} that do generate, and we may replace v_{i} 's with w_{i} 's.
- A is additive, closed under translation up to integer multiples of its elements, but not closed under division by integers.
- The m-th coefficient of v_{m}^{\prime} must not be zero. v_{m}^{\prime} is chosen to make this coefficient minimal among the nonzero's.
- Base case.
- Yes. It is not important how the a_{i} 's are bounded as long as they are, bounded.

An alternative solution formulates it as an algorithm which chooses generators iteratively. Let $B(p, r)$ denote an open ball centered at p of radius r and $|x|$ denote the Euclidean norm of $x \in \mathbb{R}^{n}$. If $A=\emptyset$, the statement is vacuously true. Otherwise, suppose we have chosen $m-1$ linearly independent vectors $v_{1}, \ldots, v_{m-1} \in A$ such that

$$
A_{0}=A \cap \sum_{i=1}^{m-1} \mathbb{R} v_{i}=\sum_{i=1}^{m-1} \mathbb{Z} v_{i}
$$

If $A=A_{0}$, then we are done. Otherwise, choose a radius r_{m} such that

$$
S=B\left(0, r_{m}\right) \cap A-\sum_{i=1}^{m-1} \mathbb{R} v_{i} \neq \emptyset
$$

Pick a v_{m} such that

$$
\left|v_{m}\right|=\min \{|v|: v \in S-\{0\}\} .
$$

Minimum exists because $B\left(0, r_{m}\right)$ is bounded. The algorithm will halt because A is finite dimensional.
Suppose the algorithm chooses v_{1}, \ldots, v_{m}, then we know that $A_{0}=\sum_{i=1}^{m-1} \mathbb{Z} v_{i}$ and $A \subset A_{0}+\mathbb{R} v_{i}$. We claim that $A=\sum_{i=1}^{m} \mathbb{Z} v_{i}$. If not, up to translation there exists $r v_{m} \in A$ with $r \in(0,1)$. This is a contradiction, because the algorithm would have chosen $r v_{m}$ for $\left|r v_{m}\right|<\left|v_{m}\right|$.
9. (b) Do not forget the middle exactness, i.e., $\operatorname{ker}\left(S^{-1} M^{\prime} \rightarrow S^{-1} M\right)=\operatorname{image}\left(S^{-1} M \rightarrow S^{-1} M^{\prime \prime}\right)$.
10.
(a) To see that the annihilator of some $x \in M$ is indeed an ideal, consider the A-module morphism $A \rightarrow M, a \mapsto a x$. The kernel of this morphism is the annihilator of x in A, which must be an ideal.
(b) Show that a sequence $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ is exact if and only if the sequence $0 \rightarrow M_{\mathfrak{p}}^{\prime} \rightarrow M_{\mathfrak{p}} \rightarrow$ $M_{\mathfrak{p}}^{\prime \prime} \rightarrow 0$ is exact for all primes \mathfrak{p}.

- If \mathfrak{p} is a maximal ideal, not every element in $A-\mathfrak{p}$ is a unit. For example, (2) is a maximal ideal in \mathbb{Z} and $3 \notin(2)$, but 3 is not a unit in \mathbb{Z}. Indeed, quotient of a ring by its maximal ideal results in a field, so they are "units" in a different ring.

One direction follows from 9 (a). For the converse direction, it suffices to show that for any sequence $M^{\prime} \rightarrow M \rightarrow M^{\prime \prime}$, if $M_{\mathfrak{p}}^{\prime} \rightarrow M_{\mathfrak{p}} \rightarrow M_{\mathfrak{p}}^{\prime \prime}$ is exact for all primes \mathfrak{p}, then the sequence $M^{\prime} \rightarrow M \rightarrow M^{\prime \prime}$ is exact. Indeed, for injectivity or surjectivity we may let $M^{\prime}=0$ or let $M^{\prime \prime}=0$. We always takes annihilator of some element, possibly in a quotient module.
To see that image $(f) \subset \operatorname{ker}(g)$, chase the following diagram

Observe that

$$
(\operatorname{ker}(g) / \operatorname{image}(f))_{\mathfrak{p}}=\operatorname{ker}(g)_{\mathfrak{p}} / \operatorname{image}(f)_{\mathfrak{p}}
$$

If $\operatorname{ker}(g) / \operatorname{image}(f) \neq 0$, the annihilator of some $m \in \operatorname{ker}(g)$ with respect to image (f), i.e.

$$
\operatorname{ker}(A \xrightarrow{\cdot m} \operatorname{ker}(g) / \operatorname{image}(f))=\{a: a m \in \operatorname{image}(f)\}
$$

is a proper ideal in A, contained some maximal ideal \mathfrak{p}. Then $(\operatorname{ker}(g) / \operatorname{image}(f))_{\mathfrak{p}} \neq 0$, a contradiction.

