
Math 250a hw7

5.

• A Z-module is an abelian group and vice versa. However, Z is not a field so we do not say Z-vector
space.

• A module is not an algebra. It may not have an identity element such as 1.

• We have to choose a maximal set of linearly independent elements of A over R. Such a maximal set
exists by Zorn’s lemma.

• After choosing a maximal set of R-independent elements, it is not true that v1, . . . , vm−1 will gen-
erate A ∩ spanR {v1, . . . , vm−1} over Z. We may assume it because by induction there exists some
w1, . . . , wm−1 that do generate, and we may replace vi’s with wi’s.

• A is additive, closed under translation up to integer multiples of its elements, but not closed under
division by integers.

• The m-th coefficient of v′m must not be zero. v′m is chosen to make this coefficient minimal among the
nonzero’s.

• Base case.

• Yes. It is not important how the ai’s are bounded as long as they are, bounded.

An alternative solution formulates it as an algorithm which chooses generators iteratively. Let B(p, r)
denote an open ball centered at p of radius r and |x| denote the Euclidean norm of x ∈ Rn. If A = ∅,
the statement is vacuously true. Otherwise, suppose we have chosen m − 1 linearly independent vectors
v1, . . . , vm−1 ∈ A such that

A0 = A ∩
m−1∑
i=1

Rvi =

m−1∑
i=1

Zvi.

If A = A0, then we are done. Otherwise, choose a radius rm such that

S = B(0, rm) ∩A−
m−1∑
i=1

Rvi 6= ∅.

Pick a vm such that
|vm| = min {|v| : v ∈ S − {0}} .

Minimum exists because B(0, rm) is bounded. The algorithm will halt because A is finite dimensional.

Suppose the algorithm chooses v1, . . . , vm, then we know that A0 =
∑m−1

i=1 Zvi and A ⊂ A0 + Rvi.
We claim that A =

∑m
i=1 Zvi. If not, up to translation there exists rvm ∈ A with r ∈ (0, 1). This is a

contradiction, because the algorithm would have chosen rvm for |rvm| < |vm|.

9. (b) Do not forget the middle exactness, i.e., ker(S−1M ′ → S−1M) = image(S−1M → S−1M ′′).

10.

(a) To see that the annihilator of some x ∈ M is indeed an ideal, consider the A-module morphism
A→M,a 7→ ax. The kernel of this morphism is the annihilator of x in A, which must be an ideal.

(b) Show that a sequence 0→M ′ →M →M ′′ → 0 is exact if and only if the sequence 0→M ′p →Mp →
M ′′p → 0 is exact for all primes p.

• If p is a maximal ideal, not every element in A− p is a unit. For example, (2) is a maximal ideal
in Z and 3 /∈ (2), but 3 is not a unit in Z. Indeed, quotient of a ring by its maximal ideal results
in a field, so they are “units” in a different ring.

1



One direction follows from 9(a). For the converse direction, it suffices to show that for any sequence
M ′ → M → M ′′, if M ′p → Mp → M ′′p is exact for all primes p, then the sequence M ′ → M → M ′′

is exact. Indeed, for injectivity or surjectivity we may let M ′ = 0 or let M ′′ = 0. We always takes
annihilator of some element, possibly in a quotient module.

To see that image(f) ⊂ ker(g), chase the following diagram

M ′ M M ′′

∏
p M

′
p

∏
p Mp

∏
p M

′′
p

Observe that
(ker(g)/image(f))p = ker(g)p/image(f)p.

If ker(g)/image(f) 6= 0, the annihilator of some m ∈ ker(g) with respect to image(f), i.e.

ker(A
·m→ ker(g)/image(f)) = {a : am ∈ image(f)}

is a proper ideal in A, contained some maximal ideal p. Then (ker(g)/image(f))p 6= 0, a contradiction.
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