1 List of common mistakes and some comments

- Polynomials in several variables over a field behave very differently than polynomials in one variable because $k\left[x_{1}\right]$ is a principal ideal domain but $k\left[x_{1}, \ldots, x_{n}\right]$ for $n>1$ is not a principal ideal domain. This fact makes things much more complicated for several variables and here I list some consequences that made most of the mistakes in this weeks homework.
- The zeros of a polynomial $p(x) \in k[x]$ are called roots. We restrict the usage of the word root for polynomials in one variable because the zeroes of polynomials in several variables behave differently.
- The zero set can be infinite, example: the polynomial $x_{1} \in \mathbb{C}\left[x_{1}, x_{2}\right]$ vanishes in the set $\{(0, a) \mid a \in \mathbb{C}\}$ which is an infinite set.
- The "number of zeros" of a polynomial $p\left(x_{1}, \ldots, x_{n}\right) \in k\left[x_{1}, \ldots, x_{n}\right]$ only makes sense if the field k is finite, but even in this case the relation of "number of zeros" with the degree of the polynomial is much more complicated.
- Having non-empty zero set does not prove the polynomial is reducible anymore. Indeed the polynomial $x^{2}+y^{2}+1 \in \mathbb{C}[x, y]$ is irreducible but $(i, 0)$ is a zero of this polynomial.
- If a polynomial in several variables vanishes at a point $\left(a_{1}, \ldots, a_{n}\right) \in k^{n}$ it does not imply that you can factor out a linear factor as one can do with roots.
- Over a finite field k with cardinality q, if two polynomials $f\left(x_{1}, \ldots, x_{n}\right)$ and $g\left(x_{1}, \ldots, x_{n}\right)$ define the same function on k^{n} it won't be necessarily true that $f=g$. Indeed, the only thing you can say is that they have the same reduction (where by reduction of f we mean the only element of $g \in k\left[x_{1}, \ldots, x_{n}\right]$ whose degree in each individual variable is smaller than q and such that f and g have the same image in the ring $\left.k\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{q}-x_{1}, \ldots, x_{n}^{q}-x_{n}\right)\right)$.
- When working over a finite field of cardinality q one does not consider congruences ($\bmod q$). From studying finite fields we know that any finite field has the form \mathbb{F}_{q} where $q=p^{n}$ for some prime. But the additive structure of the ring \mathbb{F}_{q} is p-torsion rather than q-torsion.
- For the last problem, a lot of students only proved that Moebious transformations are automorphisms of $K(x) / K$ but they did not justify why every automorphisms of $K(x) / K$ is given a Moebious transformation.

