1 List of common mistakes and some comments

- When on wants to say that two elements of a field $x, y \in K$ are algebraically independent they have to specify over which subfield of K they are algebraically independent.
- A lot of students did a lot of juggling in proving that in a characteristic $p>0$ field k, a polynomial of the form $f(x)=x^{p}-a$ with $a \in k$ is either irreducible or has a root in k. The standard argument is the following: $\alpha \in \bar{k}$ satisfy $f(\alpha)=0$ in some algebraic closure \bar{k} / k. We have that in $\bar{k}, f(x)$ factors as $(x-\alpha)^{p}$. Let $g(x)$ be the minimal polynomial of α. Then $g(x)$ divides $f(x)$ and is of the form $(x-\alpha)^{m}$ with $m \leq p$. If $1<m<p$ then $g^{\prime}(x) \neq 0$ and $g^{\prime}(\alpha)=0$ which contradicts the fact that $g(x)$ is the minimal polynomial of α. This proves $m=1$ or $m=p$ which correspond precisely to the case in which $f(x)$ has a root or $f(x)$ is irreducible respectively.
- It is not true that finite fields have a finite number of irreducible polynomials. Indeed, any element $\alpha \in \overline{\mathbb{F}_{q}}$ defines a unique irreducible monic polynomial $\min _{\alpha}(x) \in \mathbb{F}_{q}[x]$. Since each irreducible polynomial has a finite number of roots in an algebraic closure it is enough to prove that any algebraic closure of a finite field is infinite. We prove that finite fields are not algebraically closed. The units of a finite field of order q form a cyclic group of order $q-1$. For any d dividing $q-1$ the function $x^{d}: \mathbb{F}_{q}^{\times} \rightarrow \mathbb{F}_{q}^{\times}$is not injective and consequently not surjective. In particular the equation $x^{d}-a$ does not have a root for some $a \in \mathbb{F}_{q}$, which proves this field is not algebraically closed.
- When proving $k\left(t^{p}, u^{p}\right) \subseteq k(t, u)$ has an infinite number of intermediate field extensions many students produced an infinite family of elements $\alpha \in k(t, u)$ for which the extensions $k\left(t^{p}, u^{p}, \alpha\right)$ was always the same extensions. One has to remember then that many different elements can define the same field extension. For example $\mathbb{Q}(\sqrt{2})=\mathbb{Q}\left(\sqrt{2^{2 n+1}}\right)$

