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7.1 Introduction
For nearly two decades, a TV game show called Pyramid aired in North Ameri­
ca. The show featured two competing teams, each team consisting of two con­
testants: an ordinary civilian contestant and a celebrity. In the show’s first 
round, both teams’ members viewed a pyramid-shaped sign that displayed six 
category titles, some straightforward like “Where You Live” and others less con­
ventional like “Things You Need to Feed.” Each team then had an opportunity to 
compete for points in 30-second turns. The goal was for one team member to 
gain points by identifying a word or phrase related to the category from clues 
provided by the other team member. For example, a target phrase for the 
“Where You Live” category might be “zip code,” and the clue might be “Mine is 
94705.” “Things you Need to Feed” might include both “screaming baby” and 
“parking meter.”



The team that won the first round advanced to the “Winner’s Circle,” where the 
game was turned around. This time, only the clue giver was shown the category 
name and had to suggest concepts or instances belonging to that category so 
that the teammate could guess the category name. Clues like “alto,” “soprano,” 
and “tenor” would be given to prompt the teammate to guess “Singing Voices” 
or “Types of Singers.”
As the game progressed, the categories became more challenging. It was inter­
esting and entertaining to hear the clue receiver’s initial guess and how subse­
quent guesses changed with more clues. The person giving clues would often 
become frustrated, because to them their clues seemed obvious and discrimi­
nating but would seem not to help the clue receivers in identifying the category. 
Viewers enjoyed sharing in these moments of vocabulary and category confu­
sion.
The Pyramid TV game show developers created a textbook example for teaching 
about categories—groups or classes of things, people, processes, events or any­
thing else that we treat as equivalent—and categorization—the process of as­
signing instances to categories. The game is a useful analog for us to illustrate 
many of the issues we discuss in this chapter. The Pyramid game was challeng­
ing, and sometimes comical, because people bring their own experiences and 
biases to understanding what a category means, and because not every instance 
of a category is equally typical or suggestive. How we organize reflects our 
thinking processes, which can inadvertently reveal personal characteristics that 
can be amusing in a social context. Hence, the popularity of the Pyramid fran­
chise, which began on CBS in 1973 and has been produced in 20 countries.
Many texts in library science introduce categorization via cataloging rules, a set 
of highly prescriptive methods for assigning resources to categories that some 
describe and others satirize as “mark ’em and park ’em.” Many texts in comput­
er science discuss the process of defining the categories needed to create, proc­
ess, and store information in terms of programming language constructs: 
“here’s how to define an abstract type, and here’s the data type system.” Ma­
chine learning and data science texts explain how categories are created 
through statistical analysis of the correlations among the values of features in a 
collection or dataset. We take a very different approach in this chapter, but all of 
these different perspectives will find their place in it.
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Navigating This Chapter
In the following sections, we discuss how and why we create catego­
ries, reviewing some important work in philosophy, linguistics, and 
cognitive psychology to better understand how categories are cre­
ated and used in organizing systems. We discuss how the way we or­
ganize differs when we act as individuals or as members of social, 
cultural, or institutional groups (§7.2); later we share principles for 
creating categories( §7.3), design choices (§7.4), and implementation 
experience (§7.5). Throughout the chapter, we will compare how cat­
egories created by people compare with those created by computer 
algorithms. As usual, we close the chapter with a summary of the key 
points (§7.6).

7.2 The What and Why of Categories
Categories are equivalence classes, sets or groups of things or abstract entities 
that we treat the same. This does not mean that every instance of a category is 
identical, only that from some perspective, or for some purpose, we are treating 
them as equivalent based on what they have in common. When we consider 
something as a member of a category, we are making choices about which of its 
properties or roles we are focusing on and which ones we are ignoring. We do 
this automatically and unconsciously most of the time, but we can also do it in 
an explicit and self-aware way. When we create categories with conscious effort, 
we often say that we are creating a model, or just modeling. You should be fa­
miliar with the idea that a model is a set of simplified descriptions or a physical 
representation that removes some complexity to emphasize some features or 
characteristics and to de-emphasize others.
When we encounter objects or situations, recognizing them as members of a 
category helps us know how to interact with them. For example, when we enter 
an unfamiliar building we might need to open or pass through an entryway that 
we recognize as a door. We might never have seen that particular door before, 
but it has properties and affordances that we know that all doors have; it has a 
doorknob or a handle; it allows access to a larger space; it opens and closes. By 
mentally assigning this particular door to the “doors” category we distinguish it 
from “windows,” a category that also contains objects that sometimes have han­
dles and that open and close, but which we do not normally pass through to en­
ter another space. Categorization judgments are therefore not just about what 
is included in a class, but also about what is excluded from a class. Neverthe­
less, the category boundaries are not sharp; a “Dutch door” is divided horizon­
tally in half so that the bottom can be closed like a door while the top can stay 
open like a window.
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Categories are cognitive and linguistic models for applying prior knowledge; 
creating and using categories are essential human activities. Categories enable 
us to relate things to each other in terms of similarity and dissimilarity and are 
involved whenever we perceive, communicate, analyze, predict, or classify. 
Without categories, we would perceive the world as an unorganized blur of 
things with no understandable or memorable relation to each other. Every wall-
entry we encounter would be new to us, and we would have to discover its prop­
erties and supported interactions as though we had never before encountered a 
door. Of course, we still often need to identify something as a particular in­
stance, but categories enable us to understand how it is equivalent to other in­
stances. We can interchangeably relate to something as specific as “the wooden 
door to the main conference room” or more generally as “any door.”
Even before they can talk, children behave in ways that suggest they have 
formed categories based on shape, color, and other properties they can directly 
perceive in physical objects. People almost effortlessly learn tens of thousands 
of categories embodied in the culture and language in which they grow up. Peo­
ple also rely on their own experiences, preferences, and goals to adapt these 
cultural categories or create entirely individual ones that they use to organize 
resources that they personally arrange. Later on, through situational training 
and formal education, people learn to apply systematic and logical thinking pro­
cesses so that they can create and understand categories in engineering, logis­
tics, transport, science, law, business, and other institutional contexts.
These three contexts of cultural, individual, and institutional categorization 
share some core ideas but they emphasize different processes and purposes for 
creating categories, so they are a useful distinction. Cultural categorization can 
be understood as a natural human cognitive ability that serves as a foundation 
for both informal and formal organizing systems. Individual categorization tends 
to grow spontaneously out of our personal activities. Institutional categorization 
responds to the need for formal coordination and cooperation within and be­
tween companies, governments, and other goal-oriented enterprises.
In contrast to these three categorization contexts in which categories are cre­
ated by people, computational categories are created by computer programs for 
information retrieval, machine learning, predictive analytics, and other applica­
tions. Computational categories are similar to those created by people in some 
ways but differ substantially in other ways.

7.2.1 Cultural Categories
Cultural categories are the archetypical form of categories upon which individu­
al and institutional categories are usually based. Cultural categories tend to de­
scribe our everyday experiences of the world and our accumulated cultural 
knowledge. Such categories describe objects, events, settings, internal experi­
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Linguistic Relativity
Linguistic diversity led Benjamin Whorf, in the mid-20th century, to propose 
an overly strong statement of the relationships among language, culture, 
and thought. Whorf argued that the particularities of one’s native language 
determine how we think and what we can think about. Among his extreme 
ideas was the suggestion that, because some Native American languages 
lacked words or grammatical forms that refer to what we call “time” in Eng­
lish, they could not understand the concept. More careful language study 
showed both parts of the claim to be completely false.
Nevertheless, even though academic linguists have discredited strong ver­
sions of Whorf’s ideas, less deterministic versions of linguistic relativity 
have become influential and help us understand cultural categorization. The 
more moderate position was crisply characterized by Roman Jakobson, who 
said that “languages differ essentially in what they must convey and not in 
what they may convey.” In English one can say “I spent yesterday with a 
neighbor.” In languages with grammatical gender, one must choose a word 
that identifies the neighbor as male or female.

ences, physical orientation, relationships between entities, and many other as­
pects of human experience. Cultural categories are learned primarily, with little 
explicit instruction, through normal exposure of children with their caregivers; 
they are associated with language acquisition and language use within particu­
lar cultural contexts.
Languages differ a great deal in the words they contain and also in more funda­
mental ways that they require speakers or writers to attend to details about the 
world or aspects of experience that another language allows them to ignore. 
This idea is often described as linguistic relativity. (See the sidebar, Linguistic 
Relativity (page 271).)

For example, speakers of the Australian aboriginal language, Guugu Yimithirr, 
do not use concepts of left and right, but rather use cardinal directions. Where 
in English we might say to a person facing north, “Take a step to your left,” they 
would use their term for west. If the person faced south, we would change our 
instruction to “right,” but they would still use their term for west. Imagine how 
difficult it would be for a speaker of Guugu Yimithirr and a speaker of English to 
collaborate in organizing a storage room or a closet.
It is not controversial to notice that different cultures and language communi­
ties have different experiences and activities that give them contrasting knowl­
edge about particular domains. No one would doubt that university undergradu­
ates in Chicago would think differently about animals than inhabitants of Guate­
malan rain forests, or even that different types of “tree experts” (taxonomists, 
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Invoking the Whorfian Hypothesis in a Clothing Ad

An advertisement for the “66 North” clothing brand invokes the Whorfian 
hypothesis to suggest that even though Icelanders have more than a hun­
dred words for snow there is only one kind of winter clothing that matters 

to them; the kind that carries this brand name.

(Photo by R. Glushko. Taken in the Reykjavik airport.)

landscape workers, foresters, and tree maintenance personnel) would catego­
rize trees differently.
On the other hand, despite the wide variation in the climates, environments, 
and cultures that produce them, at a high level “folk taxonomies” that describe 
natural phenomena are surprisingly consistent around the world. Half a century 
ago the sociologists Emile Durkheim and Marcel Mauss observed that the lan­
guage and structure of folk taxonomies mirrors that of human family relation­
ships (e.g., different types of trees might be “siblings,” but animals would be 
part of another family entirely). They suggested that framing the world in terms 
of familiar human relationships allowed people to understand it more easily.
Anthropologist Brent Berlin, a more recent researcher, concurs with Durkheim 
and Mauss’s observation that kinship relations and folk taxonomies are related, 
but argues that humans patterned their family structures after the natural 
world, not the other way around.
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7.2.2 Individual Categories
Individual categories are created in an organizing system to satisfy the ad hoc 
requirements that arise from a person’s unique experiences, preferences, and 
resource collections. Unlike cultural categories, which usually develop slowly 
and last a long time, individual categories are created by intentional activity, in 
response to a specific situation, or to solve an emerging organizational chal­
lenge. As a consequence, the categories in individual organizing systems gener­
ally have short lifetimes and rarely outlive the person who created them.
Individual categories draw from cultural categories but differ in two important 
ways. First, individual categories sometimes have an imaginative or metaphori­
cal basis that is meaningful to the person who created them but which might 
distort or misinterpret cultural categories. Second, individual categories are of­
ten specialized or synthesized versions of cultural categories that capture par­
ticular experiences or personal history. For example, a person who has lived in 
China and Mexico, or lived with people from those places, might have highly in­
dividualized categories for foods they like and dislike that incorporate charac­
teristics of both Chinese and Mexican cuisine.
Individual categories in organizing systems also reflect the idiosyncratic set of 
household goods, music, books, website bookmarks, or other resources that a 
person might have collected over time. The organizing systems for financial re­
cords, personal papers, or email messages often use highly specialized catego­
ries that are shaped by specific tasks to be performed, relationships with other 
people, events of personal history, and other highly individualized considera­
tions. Put another way, individual categories are used to organize resource col­
lections that are likely not representative samples of all resources of the type 
being collected. If everyone had the same collection of music, books, clothes, or 
toys the world would be a boring place.
Traditionally, individual categorization systems were usually not visible to, or 
shared with, others, whereas, this has become an increasingly common situa­
tion for people using web-based organizing system for pictures, music, or other 
personal resources. On websites like the popular Flickr, Instagram, and You­
Tube sites for photos and videos, people typically use existing cultural catego­
ries to tag their content as well as individual ones that they invent.
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7.2.3 Institutional Categories
In contrast to cultural categories that are created and used implicitly, and to in­
dividual categories that are used by people acting alone, institutional categories 
are created and used explicitly, and most often by many people in coordination 
with each other. Institutional categories are most often created in abstract and 
information-intensive domains where unambiguous and precise categories are 
needed to regulate and systematize activity, to enable information sharing and 
reuse, and to reduce transaction costs. Furthermore, instead of describing the 
world as it is, institutional categories are usually defined to change or control 
the world by imposing semantic models that are more formal and arbitrary than 
those in cultural categories. Laws, regulations, and standards often specify in­
stitutional categories, along with decision rules for assigning resources to new 
categories, and behavior rules that prescribe how people must interact with 
them. The rigorous definition of institutional categories enables classification: 
the systematic assignment of resources to categories in an organizing system.
Creating institutional categories by more systematic processes than cultural or 
individual categories does not ensure that they will be used in systematic and 
rational ways, because the reasoning and rationale behind institutional catego­
ries might be unknown to, or ignored by, the people who use them. Likewise, 
this way of creating categories does not prevent them from being biased. In­
deed, the goal of institutional categories is often to impose or incentivize biases 
in interpretation or behavior. There is no better example of this than the prac­
tice of gerrymandering, designing the boundaries of election districts to give 
one political party or ethnic group an advantage.(See the sidebar, Gerrymander­
ing the Illinois 17th Congressional District (page 275).)
Institutional categorization stands apart from individual categorization primari­
ly because it invariably requires significant efforts to reconcile mismatches be­
tween existing individual categories, where those categories embody useful 
working or contextual knowledge that is lost in the move to a formal institution­
al system.
Institutional categorization efforts must also overcome the vagueness and in­
consistency of cultural categories because the former must often conform to 
stricter logical standards to support inference and meet legal requirements. 
Furthermore, institutional categorization is usually a process that must be ac­
counted for in a budget and staffing plans. While some kinds of institutional cat­
egories can be devised or discovered by computational processes, most of them 
are created through the collaboration of many individuals, typically from vari­
ous parts of an organization or from different firms. For example, with the ger­
rymandering case we just discussed, it is important to emphasize that the inputs 
to these programs and the decisions about districting are controlled by people, 
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Gerrymandering the Illinois 17th Congressional District

The 17th Congressional District in Illinois was dubbed “the rabbit on a 
skateboard” from 2003 through 2013 because of its highly contorted shape. 
The bizarre boundary was negotiated to create favorable voting constituen­

cies for two incumbent legislators from opposing parties. 

(Picture from nationatlas.gov. Not protectable by copyright (17 USC Sec. 
105).)

which is why the districts are institutional categories; the programs are simply 
tools that make the process more efficient.
The different business or technical perspectives of the participants are often the 
essential ingredients in developing robust categories that can meet carefully 
identified requirements. And as requirements change over time, institutional 
categories must often change as well, implying version control, compliance test­
ing, and other formal maintenance and governance processes.
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Stop and Think: Color
Think of the very broad category of 
“color.” What are a few examples of 
a “cultural” category of color? How 
about an “individual” one? And an 
“institutional” one?

Some institutional categories that ini­
tially had narrow or focused applica­
bility have found their way into more 
popular use and are now considered 
cultural categories. A good example is 
the periodic table in chemistry, which 
Mendeleev developed in 1869 as a 
new system of categories for the 

chemical elements. The periodic table proved essential to scientists in under­
standing their properties and in predicting undiscovered ones. Today the peri­
odic table is taught in elementary schools, and many things other than elements 
are commonly arranged using a graphical structure that resembles the periodic 
table of elements in chemistry, including sci-fi films and movies, desserts, and 
superheroes.

7.2.4 A “Categorization Continuum”
As we have seen, the concepts of cultural, individual, and institutional categori­
zation usefully distinguish the primary processes and purposes when people 
create categories. However, these three kinds of categories can fuse, clash, and 
recombine with each other. Rather than viewing them as having precise bounda­
ries, we might view them as regions on a continuum of categorization activities 
and methods.
Consider a few different perspectives on categorizing animals as an example. 
Scientific institutions categorize animals according to explicit, principled classi­
fication systems, such as the Linnaean taxonomy that assigns animals to a phy­
lum, class, order, family, genus and species. Cultural categorization practices 
cannot be adequately described in terms of a master taxonomy, and are more 
fluid, converging with principled taxonomies sometimes, and diverging at other 
times. While human beings are classified within the animal kingdom in biologi­
cal classification systems, people are usually not considered animals in most 
cultural contexts. Sometimes a scientific designation for human beings, homo 
sapiens is even applied to human beings in cultural contexts, since the genus-
species taxonomic designation has influenced cultural conceptions of people 
and (other) animals over the years.
Animals are also often culturally categorized as pets or non-pets. The category 
“pets” commonly includes dogs, cats, and fish. A pet cat might be categorized at 
multiple levels that incorporate individual, cultural, and institutional perspec­
tives on categorization—as an “animal” (cultural/institutional), as a “mammal” 
(institutional), as a “domestic short-hair” (institutional) as a “cat” (cultural), and 
as a “troublemaker” or a “favorite” (individual), among other possibilities, in ad­
dition to being identified individually by one or more pet names. Furthermore, 
not everyone experiences pets as just dogs, cats and fish. Some people have rel­
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atively unusual pets, like pigs. For individuals who have pet pigs or who know 
people with pet pigs, “pigs” may be included in the “pets” category. If enough 
people have pet pigs, eventually “pigs” could be included in mainstream cul­
ture’s pet category.
Categorization skewed toward cultural perspectives incorporate relatively tradi­
tional categories, such as those learned implicitly from social interactions, like 
mainstream understandings of what kinds of animals are “pets,” while categori­
zation skewed toward institutional perspectives emphasizes explicit, formal cat­
egories, like the categories employed in biological classification systems.

7.2.5 Computational Categories
Computational categories are created by computer programs when the number 
of resources, or when the number of descriptions or observations associated 
with each resource, are so large that people cannot think about them effectively. 
Computational categories are created for information retrieval, predictive ana­
lytics, and other applications where information scale or speed requirements 
are critical. The resulting categories are similar to those created by people in 
some ways but differ substantially in other ways.
The simplest kind of computational categories can be created using descriptive 
statistics (see §3.3.4). Descriptive statistics do not identify the categories they 
create by giving them familiar cultural or institutional labels. Instead, they cre­
ate implicit categories of items according to how much they differ from the most 
typical or frequent ones. For example, in any dataset where the values follow 
the normal distribution, statistics of central tendency and dispersion serve as 
standard reference measures for any observation. These statistics identify cate­
gories of items that are very different or statistically unlikely outliers, which 
could be signals of measurement errors, poorly calibrated equipment, employ­
ees who are inadequately trained or committing fraud, or other problems.
Many text processing methods and applications use simple statistics to catego­
rize words by their frequency in a language, in a collection of documents, or in 
individual documents, and these categories are exploited in many information 
retrieval applications (see §10.4.1 and §10.4.2).
Categories that people create and label also can be used more explicitly in com­
putational algorithms and applications. In particular, a program that can assign 
an item or instance to one or more existing categories is called a classifier. The 
subfield of computer science known as machine learning is home to numerous 
techniques for creating classifiers by training them with already correctly cate­
gorized examples. This training is called supervised learning; it is supervised 
because it starts with instances labeled by category, and it involves learning be­
cause over time the classifier improves its performance by adjusting the weights 
for features that distinguish the categories. But strictly speaking, supervised 
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CAFE Standards: Blurring the Lines Between Categorization 
Perspectives

The Corporate Average Fuel Economy (CAFE) standards sort vehicles into 
“passenger car” and “light truck” categories and impose higher minimum 
fuel efficiency requirements for cars because trucks have different typical 
uses.
When CAFE standards were introduced, the vehicles classified as light 
trucks were generally used for “light duty” farming and manufacturing pur­
poses. “Light trucks” might be thought of as a “sort of” in-between category
—a light truck is not really a car, but sufficiently unlike a prototypical truck 
to qualify the vehicle’s categorization as “light.” Formalizing this sense of 
in-between-ness by specifying features that define a “car” and a “light 
truck” is the only way to implement a consistent, transparent fuel efficiency 
policy that makes use of informal, graded distinctions between vehicles.
A manufacturer whose average fuel economy for all the vehicles it sells in a 
year falls below the CAFE standards has to pay penalties. This encourages 
them to produce “sport utility vehicles” (SUVs) that adhere to the CAFE def­
initions of light trucks but which most people use as passenger cars. Simi­
larly, the PT Cruiser, a retro-styled hatchback produced by Chrysler from 
2000-2010, strikes many people as a car. It looks like a car; we associate it 
with the transport of passengers rather than with farming; and in fact it is 
formally classified as a car under emissions standards. But like SUVs, in the 
CAFE classification system, the PT Cruiser is a light truck.
CAFE standards have evolved over time, becoming a theater for political 
clashes between holistic cultural categories and formal institutional catego­
ries, which plays out in competing pressures from industry, government, 
and political organizations. Furthermore, CAFE standards and manufactur­
ers’ response to them are influencing cultural categories, such that our cul­
tural understanding of what a car looks like is changing over time as manu­
facturers design vehicles like the PT Cruiser with car functionality in uncon­
ventional shapes to take advantage of the CAFE light truck specifications.

learning techniques do not learn the categories; they implement and apply cate­
gories that they inherit or are given to them. We will further discuss the compu­
tational implementation of categories created by people in §7.5.
In contrast, many computational techniques in machine learning can analyze a 
collection of resources to discover statistical regularities or correlations among 
the items, creating a set of categories without any labeled training data. This is 
called unsupervised learning or statistical pattern recognition. As we pointed 
out in §7.2.1 Cultural Categories (page 270), we learn most of our cultural 
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Supervised and Unsupervised 
Learning

Two subfields of machine learning 
that are relevant to organizing sys­
tems are supervised and unsuper­
vised learning. In supervised learn­
ing, a machine learning program is 
trained with sample items or docu­
ments that are labeled by category, 
and the program learns to assign 
new items to the correct categories. 
In unsupervised learning, the pro­
gram gets the same items but has 
to come up with the categories on 
its own by discovering the underly­
ing correlations between the items; 
that is why unsupervised learning is 
sometimes called statistical pattern 
recognition.

categories without any explicit in­
struction about them, so it is not sur­
prising that computational models of 
categorization developed by cognitive 
scientists often employ unsupervised 
statistical learning methods.
Many computational categories are 
like individual categories because 
they are tied to specific collections of 
resources or data and are designed to 
satisfy narrow goals. The individual 
categories you use to organize your 
email inbox or the files on your com­
puter reflect your specific interests, 
activities, and personal network and 
are surely different than those of any­
one else. Similarly, your credit card 
company analyzes your specific trans­
actions to create computational cate­
gories of “likely good” and “likely 
fraudulent” that are different for ev­
ery cardholder.
This focused scope is obvious when we consider how we might describe a com­
putational category. “Fraudulent transaction for cardholder 
4264123456780123” is not lexicalized with a one-word label as familiar cultural 
categories are. “Door” and “window” have broad scopes that are not tied to a 
single purpose. Put another way, the “door” and “window” cultural categories 
are highly reusable, as are institutional categories like those used to collect eco­
nomic or health data that can be analyzed for many different purposes. The defi­
nitions of “door” and “window” might be a little fuzzy, but institutional catego­
ries are more precisely defined, often by law or regulation. Examples are the 
North American Industry Classification System (NAICS) from the US Census Bu­
reau and the United Nations Standard Products and Services Code (UNSPC).
A final contrast between categories created by people and those created compu­
tationally is that the former can almost always be inspected and reasoned about 
by other people, but only some of the latter can. A computational model that 
categorizes loan applicants as good or poor credit risks probably uses proper­
ties like age, income, home address, and marital status, so that a banker can un­
derstand and explain a credit decision. However, many other computational cat­
egories, especially those that created by clustering and deep learning techni­
ques, are inseparable from the mathematical model that learned to use them, 
and as a result are uninterpretable by people.
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7.3 Principles for Creating Categories
§7.2 The What and Why of Categories (page 269) explained what categories are 
and the contrasting cultural, individual, and institutional contexts and purposes 
for which categories are created. In doing so, a number of different principles 
for creating categories were mentioned, mostly in passing.
We now take a systematic look at principles for creating categories, including: 
enumeration, single properties, multiple properties and hierarchy, probabilistic, 
similarity, and theory- and goal-based categorization. These ways of creating 
categories differ in the information and mechanisms they use to determine cate­
gory membership.

7.3.1 Enumeration
The simplest principle for creating a category is enumeration; any resource in a 
finite or countable set can be deemed a category member by that fact alone. 
This principle is also known as extensional definition, and the members of the 
set are called the extension. Many institutional categories are defined by enu­
meration as a set of possible or legal values, like the 50 United States or the 
ISO currency codes (ISO 4217).
Enumerative categories enable membership to be unambiguously determined 
because a value like state name or currency code is either a member of the cat­
egory or it is not. However, this clarity has a downside; it makes it hard to argue 
that something not explicitly mentioned in an enumeration should be considered 
a member of the category, which can make laws or regulations inflexible. More­
over, there comes a size when enumerative definition is impractical or ineffi­
cient, and the category either must be sub-divided or be given a definition based 
on principles other than enumeration.
For example, for millennia we earthlings have had a cultural category of “plan­
et” as a “wandering” celestial object, and because we only knew of planets in 
our own solar system, the planet category was defined by enumeration: Mercu­
ry, Venus, Earth, Mars, Jupiter, and Saturn. When the outer planets of Uranus, 
Neptune, and Pluto were identified as planets in the 18th-20th centuries, they 
were added to this list of planets without any changes in the cultural category. 
But in the last couple of decades many heretofore unknown planets outside our 
solar system have been detected, making the set of planets unbounded, and def­
inition by enumeration no longer works.
The International Astronomical Union (IAU) thought it solved this category cri­
sis by proposing a definition of planet as “a celestial body that is (a) in orbit 
around a star, (b) has sufficient mass for its self-gravity to overcome rigid body 
forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (c) 
has cleared the neighborhood around its orbit.” Unfortunately, Pluto does not 
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Too Many Planets to 
Enumerate: Keeping up with 

Kepler
Kepler is a space observatory 
launched by NASA in 2009 to 
search for Earth-like planets orbit­
ing other stars in our own Milky 
Way galaxy. Kepler has already dis­
covered and verified a few thousand 
new planets, and these results have 
led to estimates that there may be 
at least as many planets as there 
are stars, a few hundred billion in 
the Milky Way alone. Count fast.

satisfy the third requirement, so it no 
longer is a member of the planet cate­
gory, and instead is now called an “in­
ferior planet.”
Changing the definition of a signifi­
cant cultural category generated a 
great deal of controversy and angst 
among ordinary non-scientific people. 
A typical headline was “Pluto’s demo­
tion has schools spinning,” describing 
the outcry from elementary school 
students and teachers about the injus­
tice done to Pluto and the disruption 
on the curriculum.

7.3.2 Single Properties
It is intuitive and useful to think in terms of properties when we identify instan­
ces and when we are describing instances (as we saw in §4.3 Resource Identity 
(page 152) and in Chapter 5, Resource Description and Metadata). Therefore, it 
should also be intuitive and useful to consider properties when we analyze more 
than one instance to compare and contrast them so we can determine which 
sets of instances can be treated as a category or equivalence class. Categories 
whose members are determined by one or more properties or rules follow the 
principle of intensional definition, and the defining properties are called the in­
tension.
You might be thinking here that enumeration or extensional definition of a cate­
gory is also a property test; is not “being a state” a property of California? But 
statehood is not a property precisely because “state” is defined by extension, 
which means the only way to test California for statehood is to see if it is in the 
list of states.
Any single property of a resource can be used to create categories, and the easi­
est ones to use are often the intrinsic static properties. As we discussed in 
Chapter 5, Resource Description and Metadata, intrinsic static properties are 
those inherent in a resource that never change. The material of composition of 
natural or manufactured objects is an intrinsic and static property that can be 
used to arrange physical resources. For example, an organizing system for a 
personal collection of music that is based on the intrinsic static property of 
physical format might use categories for CDs, DVDs, vinyl albums, 8-track car­
tridges, reel-to-reel tape and tape cassettes.
Using a single property is most natural to do when the properties can take on 
only a small set of discrete values like music formats, and especially when the 
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property is closely related to how the resources are used, as they are with the 
music collection where each format requires different equipment to listen to the 
music. Each value then becomes a subcategory of the music category.
The author, date, and location of creation of an intellectual resource cannot be 
directly perceived but they are also intrinsic static properties. The subject mat­
ter or purpose of a resource, its “what it is about” or “what it was originally for,” 
are also intrinsic static properties that are not directly perceivable, especially 
for information resources.
The name or identifier of a resource is often arbitrary but once assigned nor­
mally does not change, making it an extrinsic static property. Any collection of 
resources with alphabetic or numeric identifiers as an associated property can 
use sorting order as an organizing principle to arrange spices, books, personnel 
records, etc., in a completely reliable way. Some might argue whether this or­
ganizing principle creates a category system, or whether it simply exploits the 
ordering inherent in the identifier notation. For example, with alphabetic identi­
fiers, we can think of alphabetic ordering as creating a recursive category sys­
tem with 26 (A-Z) top-level categories, each containing the same number of 
second-level categories, and so on until every instance is assigned to its proper 
place.
Some resource properties are both extrinsic and dynamic because they are 
based on usage or behaviors that can be highly context-dependent. The current 
owner or location of a resource, its frequency of access, the joint frequency of 
access with other resources, or its current rating or preference with respect to 
alternative resources are typical extrinsic and dynamic properties that can be 
the basis for arranging resources and defining categories.
These properties can have a large number of values or are continuous meas­
ures, but as long as there are explicit rules for using property values to deter­
mine category assignment the resulting categories are still easy to understand 
and use. For example, we naturally categorize people we know on the basis of 
their current profession, the city where they live, their hobbies, or their age. 
Properties with a numerical dimension like “frequency of use” are often trans­
formed into a small set of categories like “frequently used,” “occasionally used,” 
and “rarely used” based on the numerical property values.
While there are an infinite number of logically expressible properties for any re­
source, most of them would not lead to categories that would be interpretable 
and useful for people. If people are going to use the categories, it is important 
to base them on properties that are psychologically or pragmatically relevant 
for the resource domain being categorized. Whether something weighs more or 
less than 5000 pounds is a poor property to apply to things in general, because 
it puts cats and chairs in one category, and buses and elephants in another.
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To summarize: The most useful single properties to use for creating categories 
for an organizing system used by people are those that are formally assigned, 
objectively measurable and orderable, or tied to well-established cultural cate­
gories, because the resulting categories will be easier to understand and de­
scribe.
If only a single property is used to distinguish among some set of resources and 
to create the categories in an organizing system, the choice of property is criti­
cal because different properties often lead to different categories. Using the age 
property, Bill Gates and Mark Zuckerberg are unlikely to end up in the same 
category of people. Using the wealth property, they most certainly would. Fur­
thermore, if only one property is used to create a system of categories, any cate­
gory with a large numbers of items in it will lack coherence because differences 
on other properties will be too apparent, and some category members will not 
fit as well as the others.

7.3.3 Multiple Properties
Organizing systems often use multiple properties to define categories. There 
are three different ways in which to do this that differ in the scope of the prop­
erties and how essential they are in defining the categories.

7.3.3.1 Multi-Level or Hierarchical Categories
If you have many shirts in your closet (and you are a bit compulsive or a “neat 
freak”), instead of just separating your shirts from your pants using a single 
property (the part of body on which the clothes are worn) you might arrange the 
shirts by style, and then by sleeve length, and finally by color. When all of the 
resources in an organizing system are arranged using the same sequence of re­
source properties, this creates a logical hierarchy, a multi-level category sys­
tem.
If we treat all the shirts as the collection being organized, in the shirt organiz­
ing system the broad category of shirts is first divided by style into categories 
like “dress shirts,” “work shirts,” “party shirts,” and “athletic or sweatshirts.” 
Each of these style categories is further divided until the categories are very 
narrow ones, like the “white long-sleeve dress shirts” category. A particular 
shirt ends up in this last category only after passing a series of property tests 
along the way: it is a dress shirt, it has long sleeves, and it is white. Each test 
creates more precise categories in the intersections of the categories whose 
members passed the prior property tests.
Put another way, each subdivision of a category takes place when we identify or 
choose a property that differentiates the members of the category in a way that 
is important or useful for some intent or purpose. Shirts differ from pants in the 
value of the “part of body” property, and all the shirt subcategories share this 
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“top part” value of that property. However, shirts differ on other properties that 
determine the subcategory to which they belong. Even as we pay attention to 
these differentiating properties, it is important to remember the other proper­
ties, the ones that members of a category at any level in the hierarchy have in 
common with the members of the categories that contain it. These properties 
are often described as “inherited” or “inferred” from the broader category. For 
example, just as every shirt shares the “worn on top part of body” property, ev­
ery item of clothing shares the “can be worn on the body” property, and every 
resource in the “shirts” and “pants” category inherits that property.
Each differentiating property creates another level in the category hierarchy, 
which raises an obvious question: How many properties and levels do we need? 
In order to answer this question we must reflect upon the shirt categories in our 
closet. Our organizing system for shirts arranges them with the three properties 
of style, sleeve length, and color; some of the categories at the lowest level of 
the resulting hierarchy might have only one member, or no members at all. You 
might have yellow or red short-sleeved party shirts, but probably do not have 
yellow or red long-sleeved dress shirts, making them empty categories. Obvi­
ously, any category with only one member does not need any additional proper­
ties to tell the members apart, so a category hierarchy is logically complete if 
every resource is in a category by itself.
However, even when the lowest level categories of our shirt organizing system 
have more than one member, we might choose not to use additional properties 
to subdivide it because the differences that remain among the members do not 
matter to us for the interactions the organizing system needs to support. Sup­
pose we have two long-sleeve white dress shirts from different shirt makers, but 
whenever we need to wear one of them, we ignore this property. Instead, we 
just pick one or the other, treating the shirts as completely equivalent or substi­
tutable. When the remaining differences between members of a category do not 
make a difference to the users of the category, we can say that the organizing 
system is pragmatically or practically complete even if it is not yet logically 
complete. That is to say, it is complete “for all intents and purposes.” Indeed, we 
might argue that it is desirable to stop subdividing a system of categories while 
there are some small differences remaining among the items in each category 
because this leaves some flexibility or logical space in which to organize new 
items. This point might remind you of the concept of overfitting, where models 
with many parameters can very accurately fit their training data, but as a result 
generalize less well to new data. (See §5.3.2.5.)
On the other hand, consider the shirt section of a big department store. Shirts 
there might be organized by style, sleeve length, and color as they are in our 
home closet, but would certainly be further organized by shirt maker and by 
size to enable a shopper to find a Marc Jacobs long-sleeve blue dress shirt of 
size 15/35. The department store organizing system needs more properties and 
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Classifying Hawaiian “Boardshorts”

The swimsuits worn by surfers, called “boardshorts,” have evolved from 
purely functional garments to symbols of extreme sports and the Hawaiian 
lifestyle. A 2012 exhibition at the Honolulu Museum of Art captured the di­
versity of boardshorts on three facets: their material, how they fastened 

around the surfer’s fly and waist, and their length.

(Photo by R. Glushko.)

a deeper hierarchy for the shirt domain because it has a much larger number of 
shirt instances to organize and because it needs to support many shirt shop­
pers, not just one person whose shirts are all the same size.

7.3.3.2 Different Properties for Subsets of Resources
A different way to use multiple resource properties to create categories in an 
organizing system is to employ different properties for distinct subsets of the re­
sources being organized. This contrasts with the strict multi-level approach in 
which every resource is evaluated with respect to every property. Alternatively, 
we could view this principle as a way of organizing multiple domains that are 
conceptually or physically adjacent, each of which has a separate set of catego­
ries based on properties of the resources in that domain. This principle is used 
for most folder structures in computer file systems and by many email applica­
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tions; you can create as many folder categories as you want, but any resource 
can only be placed in one folder.
The contrasts between intrinsic and extrinsic properties, and between static and 
dynamic ones, are helpful in explaining this method of creating organizing cate­
gories. For example, you might organize all of your clothes using intrinsic static 
properties if you keep your shirts, socks, and sweaters in different drawers and 
arrange them by color; extrinsic static properties if you share your front hall 
closet with a roommate, so you each use only one side of that closet space; in­
trinsic dynamic properties if you arrange your clothes for ready access accord­
ing to the season; and, extrinsic dynamic properties if you keep your most fre­
quently used jacket and hat on a hook by the front door.
If we relax the requirement that different subsets of resources use different or­
ganizing properties and allow any property to be used to describe any resource, 
the loose organizing principle we now have is often called tagging. Using any 
property of a resource to create a description is an uncontrolled and often un­
principled principle for creating categories, but it is increasingly popular for or­
ganizing photos, web sites, email messages in gmail, or other web-based resour­
ces. We discuss tagging in more detail in §5.2.2.3 Tagging of Web-based Resour­
ces (page 183).
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A Supermarket Map

A typical supermarket embodies a surprisingly complex classification sys­
tem. Each section of the store employs a different set of properties to ar­
range its resources, and some properties such as perishability and onsite 

preparation are important in more than one section. 

(Photo by R. Glushko.)

7.3.3.3 Necessary and Sufficient Properties
A large set of resources does not always require many properties and categories 
to organize it. Some types of categories can be defined precisely with just a few 
essential properties. For example, a prime number is a positive integer that has 
no divisors other than 1 and itself, and this category definition perfectly distin­
guishes prime and not-prime numbers no matter how many numbers are being 
categorized. “Positive integer” and “divisible only by 1 and itself” are necessary 
or defining properties for the prime number category; every prime number must 
satisfy these properties. These properties are also sufficient to establish mem­
bership in the prime number category; any number that satisfies the necessary 
properties is a prime number. Categories defined by necessary and sufficient 
properties are also called monothetic. They are also sometimes called classical 
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The Classical View of Categories
The classical view is that categories are defined by necessary and sufficient 
properties. This theory has been enormously influential in Western thought, 
and is embodied in many organizing systems, especially those for informa­
tion resources. However, as we will explain, we cannot rely on this principle 
to create categories in many domains and contexts because there are not 
necessary and sufficient properties. As a result, many psychologists, cogni­
tive scientists, and computer scientists who think about categorization have 
criticized the classical theory.
We think this is unfair to Aristotle, who proposed what we now call the clas­
sical theory primarily to explain how categories underlie the logic of deduc­
tive reasoning: All men are mortal; Socrates is a man; Therefore, Socrates is 
mortal. People are wrong to turn Aristotle’s thinking around and apply it to 
the problem of inductive reasoning, how categories are created in the first 
place. But this is not Aristotle’s fault; he was not trying to explain how natu­
ral cultural categories arise.

categories because they conform to Aristotle’s theory of how categories are 
used in logical deduction using syllogisms. (See the sidebar, The Classical View 
of Categories (page 288).)
Theories of categorization have evolved a great deal since Plato and Aristotle 
proposed them over two thousand years ago, but in many ways we still adhere 
to classical views of categories when we create organizing systems because 
they can be easier to implement and maintain that way.
An important implication of necessary and sufficient category definition is that 
every member of the category is an equally good member or example of the cat­
egory; every prime number is equally prime. Institutional category systems of­
ten employ necessary and sufficient properties for their conceptual simplicity 
and straightforward implementation in decision trees, database schemas,and 
programming language classes.

Consider the definition of an address as requiring a street, city, governmental 
region, and postal code. Anything that has all of these information components 
is therefore considered to be a valid address, and anything that lacks any of 
them will not be considered to be a valid address. If we refine the properties of 
an address to require the governmental region to be a state, and specifically 
one of the United States Postal Service’s list of official state and territory codes, 
we create a subcategory for US addresses that uses an enumerated category as 
part of its definition. Similarly, we could create a subcategory for Canadian ad­
dresses by exchanging the name “province” for state, and using an enumerated 
list of Canadian province and territory codes.
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7.3.4 The Limits of Property-Based Categorization
Property-based categorization works tautologically well for categories like 
“prime number” where the category is defined by necessary and sufficient prop­
erties. Property-based categorization also works well when properties are con­
ceptually distinct and the value of a property is easy to perceive and examine, 
as they are with man-made physical resources like shirts.
Historical experience with organizing systems that need to categorize informa­
tion resources has shown that basing categories on easily perceived properties 
is often not effective. There might be indications “on the surface” that suggest 
the “joints” or boundaries between types of information resources, but these are 
often just presentation or packaging choices, That is to say, neither the size of a 
book nor the color of its cover are reliable cues for what it contains. Information 
resources have numerous descriptive properties like their title, author, and pub­
lisher that can be used more effectively to define categories, and these are cer­
tainly useful for some kinds of interactions, like finding all of the books written 
by a particular author or published by the same publisher. However, for practi­
cal purposes, the most useful property of an information resource is its about­
ness, which may not be objectively perceivable and which is certainly hard to 
characterize. Any collection of information resources in a library or document 
filing system is likely to be about many subjects and topics, and when an indi­
vidual resource is categorized according to a limited number of its content prop­
erties, it is at the same time not being categorized using the others.
When the web first started, there were many attempts to create categories of 
web sites, most notably by Yahoo! As the web grew, it became obvious that 
search engines would be vastly more useful because their near real-time text in­
dexes obviate the need for a priori assignment of web pages to categories. Rath­
er, web search engines represent each web page or document in a way that 
treats each word or term they contain as a separate property.
Considering every distinct word in a document stretches our notion of property 
to make it very different from the kinds of properties we have discussed so far, 
where properties were being explicitly used by people to make decisions about 
category membership and resource organization. It is just not possible for peo­
ple to pay attention to more than a few properties at the same time even if they 
want to, because that is how human perceptual and cognitive machinery works. 
But computers have no such limitations, and algorithms for information retriev­
al and machine learning can use huge numbers of properties, as we will see lat­
er in this chapter and in Chapter 8 and Chapter 10.
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Classifying the Web: Yahoo! in 1996

Their goal was to manually assign every web page to a category.

(Screenshot by R. Glushko. Source: Internet Archive wayback machine.)
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7.3.5 Probabilistic Categories and “Family Resemblance”
As we have seen, some categories can be precisely defined using necessary and 
sufficient features, especially when the properties that determine category 
membership are easy to observe and evaluate. Something is either a prime num­
ber or it isn’t. A person cannot be a registered student and not registered at the 
same time.
However, categorization based on explicit and logical consideration of proper­
ties is much less effective, and sometimes not even possible for domains where 
properties lack one or more of the characteristics of separability, perceptibility, 
and necessity. Instead, we need to categorize using properties in a probabilistic 
or statistical way to come up with some measure of resemblance or similarity 
between the resource to be categorized and the other members of the category.
Consider a familiar category like “bird.” All birds have feathers, wings, beaks, 
and two legs. But there are thousands of types of birds, and they are distin­
guished by properties that some birds have that other birds lack: most birds can 
fly, most are active in the daytime, some swim, some swim underwater; some 
have webbed feet. These properties are correlated or clustered, a consequence 
of natural selection that conveys advantages to particular configurations of 
characteristics, and there are many different clusters; birds that live in trees 
have different wings and feet than those that swim, and birds that live in de­
serts have different colorations and metabolisms that those that live near water. 
So instead of being defined by a single set of properties that are both necessary 
and sufficient, the bird category is defined probabilistically, which means that 
decisions about category membership are made by accumulating evidence from 
the properties that are more or less characteristic of the category.
Categories of information resources often have the same probabilistic character. 
The category of spam messages is suggested by the presence of particular 
words (beneficiary, pharmaceutical) but these words also occur in messages 
that are not spam. A spam classifier uses the probabilities of each word in a 
message in spam and non-spam contexts to calculate an overall likelihood that 
the message is spam.
There are three related consequences for categories when their characteristic 
properties have a probabilistic distribution:

• The first is an effect of typicality or centrality that makes some members of 
the category better examples than others. Membership in probabilistic cate­
gories is not all or none, so even if they share many properties, an instance 
that has more of the characteristic properties will be judged as better or 
more typical. Try to define “bird” and then ask yourself if all of the things 
you classify as birds are equally good examples of the category (look at the 
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What Is a Game?
Ludwig Wittgenstein (1889-1951) was a philosopher who thought deeply 
about mathematics, the mind, and language. In 1999, his Philosophical In­
vestigations was ranked as the most important book of 20th-century philos­
ophy in a poll of philosophers. In that book, Wittgenstein uses “game” to ar­
gue that many concepts have no defining properties, and that instead there 
is a “complicated network of similarities overlapping and criss-crossing: 
sometimes overall similarities, sometimes similarities of detail.” He con­
trasts board games, card games, ball games, games of skill, games of luck, 
games with competition, solitary games, and games for amusement. Witt­
genstein notes that not all games are equally good examples of the category, 
and jokes about teaching children a gambling game with dice because he 
knows that this is not the kind of game that the parents were thinking of 
when they asked him to teach their children a game.

six birds in Family Resemblance and Typicality (page 293)). This effect is also 
described as gradience in category membership and reflects the extent to 
which the most characteristic properties are shared.

• A second consequence is that the sharing of some but not all properties cre­
ates what we call family resemblances among the category members; just as 
biological family members do not necessarily all share a single set of physi­
cal features but still are recognizable as members of the same family. This 
idea was first proposed by the 20th-century philosopher Ludwig Wittgen­
stein, who used “games” as an example of a category whose members re­
semble each other according to shifting property subsets.

• The third consequence, when categories do not have necessary features for 
membership, is that the boundaries of the category are not fixed; the catego­
ry can be stretched and new members assigned as long as they resemble in­
cumbent members. Personal video games and multiplayer online games like 
World of Warcraft did not exist in Wittgenstein’s time but we have no trouble 
recognizing them as games and neither would Wittgenstein, were he alive. 
Recall that in Chapter 1 we pointed out that the cultural category of “li­
brary” has been repeatedly extended by new properties, as when Flickr is 
described as a web-based photo-sharing library. Categories defined by family 
resemblance or multiple and shifting property sets are termed polythetic.

We conclude that instead of using properties one at a time to assign category 
membership, we can use them in a composite or integrated way where together 
a co-occurring cluster of properties provides evidence that contributes to a simi­
larity calculation. Something is categorized as an A and not a B if it is more sim­
ilar to A’s best or most typical member rather than it is to B’s.
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Family Resemblance and Typicality
These six animals have some physical features in common but not all of 
them, yet they resemble each other enough to be easily recognizable as 
birds. Most people consider a pigeon to be a more typical bird than a pen­
guin.

A penguin, a pigeon, a swan, a stork, a flamingo, and a frigate bird. (Clock­
wise from top-left.)

(Photos by R. Glushko.)
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7.3.6 Similarity
Similarity is a measure of the resemblance between two things that share some 
characteristics but are not identical. It is a very flexible notion whose meaning 
depends on the domain within which we apply it. Some people consider that the 
concept of similarity is itself meaningless because there must always be some 
basis, some unstated set of properties, for determining whether two things are 
similar. If we could identify those properties and how they are used, there would 
not be any work for a similarity mechanism to do.
To make similarity a useful mechanism for categorization we have to specify 
how the similarity measure is determined. There are four psychologically-
motivated approaches that propose different functions for computing similarity: 
feature- or property-based, geometry-based, transformational, and alignment- 
or analogy-based.

7.3.6.1 Feature-based Models of Similarity
An influential model of feature-based similarity calculation is Amos Tversky’s 
contrast model, which matches the features or properties of two things and 
computes a similarity measure according to three sets of features:

• those features they share,
• those features that the first has that the second lacks, and
• those features that the second has that the first lacks.

The similarity based on the shared features is reduced by the two sets of dis­
tinctive ones. The weights assigned to each set can be adjusted to explain judg­
ments of category membership. Another commonly feature-based similarity 
measure is the Jaccard coefficient, the ratio of the common features to the total 
number of them. This simple calculation equals zero if there are no overlapping 
features and one if all features overlap. Jaccard's measure is often used to cal­
culate document similarity by treating each word as a feature.
We often use a heuristic version of feature-based similarity calculation when we 
create multi-level or hierarchical category systems to ensure that the categories 
at each level are at the same level of abstraction or breadth. For example, if we 
were organizing a collection of musical instruments, it would not seem correct 
to have subcategories of “woodwind instruments,” “violins,” and “cellos” be­
cause the feature-based similarity among the categories is not the same for all 
pairwise comparisons among the categories; violins and cellos are simply too 
similar to each other to be separate categories given woodwinds as a category.
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Document Similarity

Documents represented as vectors in term 
space, with the angles between them as a 

measure of their similarity.

7.3.6.2 Geometric Models of Similarity
Geometric models are a type of similarity framework in which items whose 
property values are metric are represented as points in a multi-dimensional 
feature- or property-space. The property values are the coordinates, and similar­
ity is calculated by measuring the distance between the items.
Geometric similarity functions 
are commonly used by search 
engines; if a query and docu­
ment are each represented as 
a vector of search terms, rele­
vance is determined by the 
distance between the vectors 
in the “term space.” The sim­
plified diagram in the sidebar, 
Document Similarity (page 
295), depicts four documents 
whose locations in the term 
space are determined by how 
many of each of three terms 
they contain. The document 
vectors are normalized to 
length 1, which makes it pos­
sible to use the cosine of the 
angle between any two docu­
ments as a measure of their similarity. Documents d1 and d2 are more similar to 
each other than documents d3 and d4, because angle between the former pair 
(Θ) is smaller than the angle between the latter (Φ). We will discuss how this 
works in greater detail in Chapter 10, Interactions with Resources.
If the vectors that represent items in a multi-dimensional property space are of 
different lengths, instead of calculating similarity using cosines we need to cal­
culate similarity in a way that more explicitly considers the differences on each 
dimension.
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Geometric Distance Functions

The distance between points 1 and 2 depends 
on how the distance function combines the dif­
ferences in values (A and B) on each dimen­

sion.

The diagram in the sidebar, 
Geometric Distance Functions 
(page 296) shows two differ­
ent ways of calculating the 
distance between points 1 
and 2 using the differences A 
and B. The Euclidean dis­
tance function takes the 
square root of the sum of the 
squared differences on each 
dimension; in two dimensions, 
this is the familiar Pythagor­
ean Theorem to calculate the 
length of the hypotenuse of a 
right triangle, where the ex­
ponent applied to the differ­
ences is 2. In contrast, the 
City Block distance function, 
so-named because it is the 
natural way to measure dis­
tances in cities with “gridlike” 
street plans, simply adds up 
the differences on each dimension, which is equivalent to an exponent of 1.
We can interpret the exponent as a weighting function that determines the rela­
tive contribution of each property to the overall distance or similarity calcula­
tion. The choice of exponent depends on the type of properties that characterize 
a domain and how people make category judgments within it. The exponent of 1 
in the City Block function ensures that each property contributes its full 
amount. As the exponent grows larger, it magnifies the impact of the properties 
on which differences are the largest.

7.3.6.3  Transformational Models of Similarity
Transformational models assume that the similarity between two things is inver­
sely proportional to the complexity of the transformation required to turn one 
into the other. The simplest transformational model of similarity counts the 
number of properties that would need to change their values. More generally, 
one way to perform the name matching task of determining when two different 
strings denote the same person, object, or other named entity is to calculate the 
“edit distance” between them; the number of changes required to transform one 
into the other.
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7.3.6.4 Alignment or Analogy Models of Similarity
None of the previous types of similarity models works very well when compar­
ing things that have lots of internal or relational structure. In these cases, calcu­
lations based on matching features is insufficient; you need to compare features 
that align because they have the same role in structures or relationships. For 
example, a car with a green wheel and a truck with a green hood both share the 
feature green, but this matching feature does not increase their similarity much 
because the car's wheel does not align with the truck's hood. On the other hand, 
analogy lets us say that an atom is like the solar system. They have no common 
properties, but they share the relationship of having smaller objects revolving 
around a large one.
This kind of analogical comparison is especially important in problem solving. 
You might think that experts are good at solving problems in their domain of ex­
pertise because they have organized their knowledge and experience in ways 
that enable efficient search for and evaluation of possible solutions. For exam­
ple, it is well known that chess masters search their memories of previous win­
ning positions and the associated moves to decide what to play. However, top 
chess players also organize their knowledge and select moves on the basis of 
abstract similarities that cannot be explained in terms of specific positions of 
chess pieces. This idea that experts represent and solve problems at deeper lev­
els than novices do by using more abstract principles or domain structure has 
been replicated in many areas. Novices tend to focus more on surface proper­
ties and rely more on literal similarity.

7.3.7 Goal-Derived Categories
Another psychological principle for creating categories is to organize resources 
that go together in order to satisfy a goal. Consider the category “Things to take 
from a burning house,” an example that cognitive scientist Lawrence Barsalou 
termed an ad hoc or goal-derived category.
What things would you take from your house if a fire threatened it?? Possibly 
your cat, your wallet and checkbook, important papers like birth certificates and 
passports, and grandma’s old photo album, and anything else you think is im­
portant, priceless, or irreplaceable—as long as you can carry it. These items 
have no discernible properties in common, except for being your most precious 
possessions. The category is derived or induced by a particular goal in some 
specified context.
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Things Used at the Gym

A hand towel, a music player with 
headphones, and a bottle of water 
have no properties in common but 
they go together because they are 
members of the “things used at the 

gym when working out” category.

(Photo by R. Glushko.)

7.3.8 Theory-Based Categories
A final psychological principle for cre­
ating categories is organizing things 
in ways that fit a theory or story that 
makes a particular categorization 
sensible. A theory-based category can 
win out even if probabilistic categori­
zation, on the basis of family resem­
blance or similarity with respect to 
visible properties, would lead to a dif­
ferent category assignment. For ex­
ample, a theory of phase change ex­
plains why liquid water, ice, and 
steam are all the same chemical com­
pound even though they share few 
visible properties.
Theory-based categories based on ori­
gin or causation are especially impor­
tant with highly inventive and compu­
tational resources because unlike nat­

ural kinds of physical resources, little or none of what they can do or how they 
behave is visible on the surface (see §3.4.1 Affordance and Capability (page 
109)). Consider all of the different appearances and form factors of the resour­
ces that we categorize as “computers” —their essence is that they all compute, 
an invisible or theory-like principle that does not depend on their visible proper­
ties.

7.4 Category Design Issues and Implications
We have previously discussed the most important principles for creating catego­
ries: resource properties, similarity, and goals. When we use one or more of 
these principles to develop a system of categories, we must make decisions 
about its depth and breadth. Here, we examine the idea that some levels of ab­
straction in a system of categories are more basic or natural than others. We al­
so consider how the choices we make affect how we create the organizing sys­
tem in the first place, and how they shape our interactions when we need to find 
some resources that are categorized in it.

7.4.1 Category Abstraction and Granularity
We can identify any resource as a unique instance or as a member of a class of 
resources. The size of this class—the number of resources that are treated as 
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equivalent—is determined by the properties or characteristics we consider 
when we examine the resources in some domain. The way we think of a re­
source domain depends on context and intent, so the same resource can be 
thought of abstractly in some situations and very concretely in others. As we 
discussed in Chapter 5, Resource Description and Metadata, this influences the 
nature and extent of resource description, and as we have seen in this chapter, 
it then influences the nature and extent of categories we can create.
Consider the regular chore of putting away clean clothes. We can consider any 
item of clothing as a member of a broad category whose members are any kind 
of garment that a person might wear. Using one category for all clothing, that 
is, failing to distinguish among the various items in any useful or practical way 
would likely mean that we would keep our clothes in a big unorganized pile.
However, we cannot wear any random combination of clothing items—we need 
a shirt, a pair of pants, socks, and so on. Clearly, our indiscriminate clothing cat­
egory is too broad for most purposes. So instead, most people organize their 
clothes in more fine-grained categories that fit the normal pattern of how they 
wear clothes.
In §7.3.2 Single Properties (page 281) we described an organizing system for the 
shirts in our closet, so let us talk about socks instead. When it comes to socks, 
most people think that the basic unit is a pair because they always wear two 
socks at a time. If you are going to need to find socks in pairs, it seems sensible 
to organize them into pairs when you are putting them away. Some people 
might further separate their dress socks from athletic ones, and then sort these 
socks by color or material, creating a hierarchy of sock categories analogous to 
the shirt categories in our previous example.
Questions of resource abstraction and granularity also emerge whenever the in­
formation systems of different firms, or different parts of a firm, need to ex­
change information or be merged into a single system. All parties must define 
the identity of each thing in the same way, or in ways that can be related or 
mapped to each other either manually or electronically.
For example, how should a business system deal with a customer’s address? 
Printed on an envelope, “an address” typically appears as a comprehensive, 
multi-line text object. Inside an information system, however, an address is best 
stored as a set of distinctly identifiable information components. This fine-
grained organization makes it easier to sort customers by city or postal codes, 
for sales and marketing purposes. Incompatibilities in the abstraction and gran­
ularity of these information components, and the ways in which they are presen­
ted and reused in documents, will cause interoperability problems when busi­
nesses need to share information.
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It might seem counterintuitive, but when a system of human-generated catego­
ries is too complex for people to interpret and apply reliably, computational clas­
sifiers that compute statistical similarity between new and already classified 
items can outperform people.

7.4.2 Basic or Natural Categories
Category abstraction is normally described in terms of a hierarchy of superordi­
nate, basic, and subordinate category levels. “Clothing,” for example, is a super­
ordinate category, “shirts” and “socks” are basic categories, and “white long-
sleeve dress shirts” and “white wool hiking socks” are subordinate categories. 
Members of basic level categories like “shirts” and “socks” have many perceptu­
al properties in common, and are more strongly associated with motor move­
ments than members of superordinate categories. Members of subordinate cate­
gories have many common properties, but these properties are also shared by 
members of other subordinate categories at the same level of abstraction in the 
category hierarchy. That is, while we can identify many properties shared by all 
“white long-sleeve dress shirts,” many of them are also properties of “blue long-
sleeve dress shirts” and “black long-sleeve pullover shirts.”

7.4.3 The Recall / Precision Tradeoff
The abstraction level we choose determines how precisely we identify resour­
ces. When we want to make a general claim, or communicate that the scope of 
our interest is broad, we use superordinate categories, as when we ask, “How 
many animals are in the San Diego Zoo?” But we use precise subordinate cate­
gories when we need to be specific: “How many adult emus are in the San Diego 
Zoo today?”
If we return to our clothing example, finding a pair of white wool hiking socks is 
very easy if the organizing system for socks creates fine-grained categories. 
When resources are described or arranged with this level of detail, a similarly 
detailed specification of the resources you are looking for yields precisely what 
you want. When you get to the place where you keep white wool hiking socks, 
you find all of them and nothing else. On the other hand, if all your socks are 
tossed unsorted into a sock drawer, when you go sock hunting you might not be 
able to find the socks you want and you will encounter lots of socks you do not 
want. But you will not have put time into sorting them, which many people do 
not enjoy doing; you can spend time sorting or searching depending on your 
preferences.
If we translate this example into the jargon of information retrieval, we say that 
more fine-grained organization reduces recall, the number of resources you find 
or retrieve in response to a query, but increases the precision of the recalled 
set, the proportion of recalled items that are relevant. Broader or coarse-
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grained categories increase recall, but lower precision. We are all too familiar 
with this hard bargain when we use a web search engine; a quick one-word 
query results in many pages of mostly irrelevant sites, whereas a carefully craf­
ted multi-word query pinpoints sites with the information we seek. We will dis­
cuss recall, precision, and evaluation of information retrieval more extensively 
in Chapter 10, Interactions with Resources.
This mundane example illustrates the fundamental tradeoff between organiza­
tion and retrieval. A tradeoff between the investment in organization and the in­
vestment in retrieval persists in nearly every organizing system. The more effort 
we put into organizing resources, the more effectively they can be retrieved. 
The more effort we are willing to put into retrieving resources, the less they 
need to be organized first. The allocation of costs and benefits between the or­
ganizer and retriever differs according to the relationship between them. Are 
they the same person? Who does the work and who gets the benefit?

7.4.4 Category Audience and Purpose
The ways in which people categorize depend on the goals of categorization, the 
breadth of the resources in the collection to be categorized, and the users of the 
organizing system. Suppose that we want to categorize languages. Our first step 
might be determining what constitutes a language, since there is no widespread 
agreement on what differentiates a language from a dialect, or even on whether 
such a distinction exists.
What we mean by “English” and “Chinese” as categories can change depending 
on the audience we are addressing and what our purpose is, however. A lan­
guage learning school’s representation of “English” might depend on practical 
concerns such as how the school’s students are likely to use the language they 
learn, or which teachers are available. For the purposes of a school teaching 
global languages, and one of the standard varieties of English (i.e., those associ­
ated with political power), or an amalgamation of several standard varieties, 
might be thought of as a single instance (“English”) of the category “Languag­
es.”
Similarly, the category structure in which “Chinese” is situated can vary with 
context. While some schools might not conceptualize “Chinese” as a category 
encompassing multiple linguistic varieties, but rather as a single instance within 
the “Languages” category, another school might teach its students Mandarin, 
Wu, and Cantonese as dialects within the language category “Chinese,” that are 
unified by a single standard writing system. In addition, a linguist might consid­
er Mandarin, Wu, and Cantonese to be mutually unintelligible, making them 
separate languages within the broader category “Chinese” for the purpose of 
creating a principled language classification system.

Core Concepts Edition

7.4 Category Design Issues and Implications 301



If people could only categorize in a single way, the Pyramid game show, where 
contestants guess what category is illustrated by the example provided by a 
clue giver, would pose no challenge. The creative possibilities provided by cate­
gorization allow people to order the world and refer to interrelationships among 
conceptions through a kind of allusive shorthand. When we talk about the lan­
guage of fashion, we suggest that in the context of our conversation, instances 
like “English,” “Chinese,” and “fashion” are alike in ways that distinguish them 
from other things that we would not categorize as languages.

7.5 Implementing Categories
Categories are conceptual constructs that we use in a mostly invisible way when 
we talk or think about them. When we organize our kitchens, closets, or file cab­
inets using shelves, drawers, and folders, these physical locations and contain­
ers are visible implementations of our personal category system, but they are 
not the categories. This distinction between category design and implementa­
tion is obvious when we follow signs and labels in libraries or grocery stores to 
find things, search a product catalog or company personnel directory, or analyze 
a set of economic data assembled by the government from income tax forms. 
These institutional categories were designed by people prior to the assignment 
of resources to them.
This separation between category creation and category implementation 
prompts us to ask how a system of categories can be implemented. We will not 
discuss the implementation of categories in the literal sense of building physical 
or software systems that organize resources. Instead, we will take a higher-level 
perspective that analyzes the implementation problem to be solved for the dif­
ferent types of categories discussed in §7.3, and then explain the logic followed 
to assign resources correctly to them.

7.5.1 Implementing Enumerated Categories
Categories defined by enumeration are easy to implement. The members or le­
gal values in a set define the category, and testing an item for membership 
means looking in the set for it. Enumerated category definitions are familiar in 
drop-down menus and form-filling. You scroll through a list of all the countries 
in the world to search for the one you want in a shipping address, and whatever 
you select will be a valid country name, because the list is fixed until a new 
country is born. Enumerated categories can also be implemented with associa­
tive arrays (also known as hash tables or dictionaries). With these data struc­
tures, a test for set membership is even more efficient than searching, because 
it takes the same time for sets of any size (see §9.2.1 Kinds of Structures (page 
362)).
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7.5.2 Implementing Categories Defined by Properties
The most conceptually simple and straightforward implementation of categories 
defined by properties adopts the classical view of categories based on necessary 
and sufficient features. Because such categories are prescriptive with explicit 
and clear boundaries, classifying items into the categories is objective and de­
terministic, and supports a well-defined notion of validation to determine unam­
biguously whether some instance is a member of the category. Items are classi­
fied by testing them to determine if they have the required properties and prop­
erty values. Tests can be expressed as rules:

• If instance X has property P, then X is in category Y.
• If a home mortgage loan in San Francisco exceeds $625,000, then it is clas­
sified as a “jumbo” loan by the US Office of Federal Housing Oversight.

• For a number to be classified as prime it must satisfy two rules: It must be 
greater than 1, and have no positive divisors other than 1 and itself.

This doesn’t mean the property test is always easy; validation might require 
special equipment or calculations, and tests for the property might differ in 
their cost or efficiency. But given the test results, the answer is unambiguous. 
The item is either a member of the category or it isn’t.
A system of hierarchical categories is defined by a sequence of property tests in 
a particular order. The most natural way to implement multi-level category sys­
tems is with decision trees. A simple decision tree is an algorithm for determin­
ing a decision by making a sequence of logical or property tests. Suppose a 
bank used a sequential rule-based approach to decide whether to give someone 
a mortgage loan.

• If applicant’s annual income exceeds $100,000, and if the monthly loan pay­
ment is less than 25% of monthly income, approve the mortgage application.

• Otherwise, deny the loan application.

This simple decision tree is depicted in Figure 7.1, Rule-based Decision Tree. The 
rules used by the bank to classify loan applications as “Approved” or “Denied” 
have a clear representation in the tree. The easy interpretation of decision trees 
makes them a common formalism for implementing classification models.
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Figure 7.1. Rule-based Decision Tree

In this simple decision tree, a sequence of two tests for the borrower's annual 
income and the percentage of monthly income required to make the loan pay­

ment classify the applicants into the “deny” and “approve” categories.

Nevertheless, any implementation of a category is only interpretable to the ex­
tent that the properties and tests it uses in its definition and implementation 
can be understood. Because natural language is inherently ambiguous, it is not 
the optimal representational format for formally defined institutional categories. 
Categories defined using natural language can be incomplete, inconsistent, or 
ambiguous because words often have multiple meanings. This implementation 
of the bank’s procedure for evaluating loans would be hard to interpret reliably:

• If applicant is wealthy, and then if the monthly payment is an amount that 
the applicant can easily repay, then applicant is approved.

To ensure their interpretability, decision trees are sometimes specified using the 
controlled vocabularies and constrained syntax of “simplified writing” or “busi­
ness rule” systems.
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Artificial languages are a more ambitious way to enable precise specification of 
property-based categories. An artificial language expresses ideas concisely by 
introducing new terms or symbols that represent complex ideas along with syn­
tactic mechanisms for combining and operating on them. Mathematical nota­
tion, programming languages, schema languages that define valid document in­
stances (see §9.2.3.1), and regular expressions that define search and selection 
patterns (see §9.2.3.2) are familiar examples of artificial languages. It is certain­
ly easier to explain and understand the Pythagorean Theorem when it is effi­
ciently expressed as “H2 = A2 + B2” than with a more verbose natural language 
expression: “In all triangles with an angle such that the sides forming the angle 
are perpendicular, the product of the length of the side opposite the angle such 
that the sides forming the angle are perpendicular with itself is equal to the 
sum of the products of the lengths of the other two sides, each with itself.”
Artificial languages for defining categories have a long history in philosophy and 
science. (See the sidebar, Artificial Languages for Description and Classification 
(page 306)). However, the vast majority of institutional category systems are 
still specified with natural language, despite its ambiguities because people usu­
ally understand the languages they learned naturally better than artificial ones. 
Sometimes this is even intentional to allow institutional categories embodied in 
laws to evolve in the courts and to accommodate technological advances.
Data schemas that specify data entities, elements, identifiers, attributes, and re­
lationships in databases and XML document types on the transactional end of 
the Document Type Spectrum (§4.2.1) are implementations of the categories 
needed for the design, development and maintenance of information organiza­
tion systems. Data schemas tend to rigidly define categories of resources.
In object-oriented programming languages, classes are schemas that serve as 
templates for the creation of objects. A class in a programming language is 
analogous to a database schema that specifies the structure of its member in­
stances, in that the class definition specifies how instances of the class are con­
structed in terms of data types and possible values. Programming classes may 
also specify whether data in a member object can be accessed, and if so, how.
Unlike transactional document types, which can be prescriptively defined as 
classical categories because they are often produced and consumed by automa­
ted processes, narrative document types are usually descriptive in character. 
We do not classify something as a novel because it has some specific set of prop­
erties and content types. Instead, we have a notion of typical novels and their 
characteristic properties, and some things that are considered novels are far 
from typical in their structure and content.
Nevertheless, categories like narrative document types can sometimes be imple­
mented using document schemas that impose only a few constraints on struc­
ture and content. A schema for a purchase order is highly prescriptive; it uses 
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Artificial Languages for Description and Classification
John Wilkins was one of the founders of the British Royal Society. In 1668 
he published An Essay towards a Real Character and a Philosophical Lan­
guage in which he proposed an artificial language for describing a universal 
taxonomy of knowledge that used symbol composition to specify a location 
in the category hierarchy. There were forty top level genus categories, 
which were further subdivided into differences within the genus, which 
were then subdivided into species. Each genus was a monosyllable of two 
letters; each difference added a consonant, and each species added a vowel.
This artificial language conveys the meaning of categories directly from the 
composition of the category name. For instance, zi indicates the genus of 
beasts, zit would be “rapacious beasts of the dog kind” whereas zid would 
be “cloven-footed beast.” Adding for the fourth character an a for species, 
indicating the second species in the difference, would give zita for dog and 
zida for sheep.
In The Analytical Language of John Wilkins, Jorge Luis Borges remarks that 
Wilkins has many “ambiguities, redundancies and deficiencies” in the lan­
guage and presents as a foil and parody an imagined “Celestial Empire of 
Benevolent Knowledge.”

In its remote pages it is written that the animals are divided into: (a) belong­
ing to the emperor, (b) embalmed, (c) tame, (d) sucking pigs, (e) sirens, (f) 
fabulous, (g) stray dogs, (h) included in the present classification, (i) fren­
zied, (j) innumerable, (k) drawn with a very fine camel hair brush, (l) et ce­
tera, (m) having just broken the water pitcher, (n) that from a long way off 
look like flies.

Borges compliments Wilkins for inventing names that might signify in them­
selves some meaning to those who know the system, but notes that “it is 
clear that there is no classification of the Universe not being arbitrary and 
full of conjectures.”

regular expressions, strongly data typed content, and enumerated code lists to 
validate the value of required elements that must occur in a particular order. In 
contrast, a schema for a narrative document type would have much optionality, 
be flexible about order, and expect only text in its sections, paragraphs and 
headings. Even very lax document schemas can be useful in making content 
management, reuse, and formatting more efficient.
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7.5.3 Implementing Categories Defined by Probability and Similarity
Many categories cannot be defined in terms of required properties, and instead 
must be defined probabilistically, where category membership is determined by 
properties that resources are likely to share. Consider the category “friend.” 
You probably consider many people to be your friends, but you have longtime 
friends, school friends, workplace friends, friends you see only at the gym, and 
friends of your parents. Each of these types of friends represents a different 
cluster of common properties. If someone is described to you as a potential 
friend or date, how accurately can you predict that the person will become a 
friend?
Probabilistic categories can be challenging to define and use because it can be 
difficult to keep in mind the complex feature correlations and probabilities ex­
hibited by different clusters of instances from some domain. Furthermore, when 
the category being learned is broad with a large number of members, the sam­
ple from which you learn strongly shapes what you learn. For example, people 
who grow up in high-density and diverse urban areas may have less predictable 
ideas of what an acceptable potential date looks like than someone in a remote 
rural area with a more homogeneous population.
More generally, if you are organizing a domain where the resources are active, 
change their state, or are measurements of properties that vary and co-occur 
probabilistically, the sample you choose strongly affects the accuracy of models 
for classification or prediction. In The Signal and the Noise, statistician Nate 
Silver explains how many notable predictions failed because of poor sampling 
techniques. One common sampling mistake is to use too short a historical win­
dow to assemble the training dataset; this is often a corollary of a second mis­
take, an over reliance on recent data because it is more available. For example, 
the collapse of housing prices and the resulting financial crisis of 2008 can be 
explained in part because the models that lenders used to predict mortgage 
foreclosures were based on data from 1980-2005, when house prices tended to 
grow higher. As a result, when mortgage foreclosures increased rapidly, the re­
sults were “out of sample” and were initially misinterpreted, delaying responses 
to the crisis.
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7.5.3.1 Probabilistic Decision Trees
In §7.5.2, we showed how a rule-based decision tree could be used to implement 
a strict property-based classification in which a bank uses tests for the proper­
ties of “annual income” and “monthly loan payment” to classify applicants as ap­
proved or denied. We can adapt that example to illustrate probabilistic decision 
trees, which are better suited for implementing categories in which category 
membership is probabilistic rather than absolute.
Banks that are more flexible about making loans can be more profitable because 
they can make loans to people that a stricter bank would reject but who still are 
able to make loan payments. Instead of enforcing conservative and fixed cutoffs 
on income and monthly payments, these banks consider more properties and 
look at applications in a more probabilistic way. These banks recognize that not 
every loan applicant who is likely to repay the loan looks exactly the same; “an­
nual income” and “monthly loan payment” remain important properties, but oth­
er factors might also be useful predictors, and there is more than one configura­
tion of values that an applicant could satisfy to be approved for a loan.
Which properties of applicants best predict whether they will repay the loan or 
default? A property that predicts each at 50% isn’t helpful because the bank 
might as well flip a coin, but a property that splits the applicants into two sets, 
each with very different probabilities for repayment and defaulting, is very help­
ful in making a loan decision.
A data-driven bank relies upon historical data about loan repayment and de­
faults to train algorithms that create decision trees by repeatedly splitting the 
applicants into subsets that are most different in their predictions. Subsets of 
applicants with a high probability of repayment would be approved, and those 
with a high probability of default would be denied a loan. One method for select­
ing the property test for making each split is calculating the “information gain” . 
This measure captures the degree to which each subset contains a “pure” group 
in which every applicant is classified the same, as likely repayers or likely de­
faulters.
For example, consider the chart in Figure 7.2, Historical Data: Loan Repayment 
Based on Interest Rate which is a simplified representation of the bank’s histori­
cal data on loan defaults based on the initial interest rate. The chart represents 
loans that were repaid with “o” and those that defaulted with “x.” Is there an in­
terest rate that divides them into “pure” sets, one that contains only “o” loans 
and the other that contains only “x” loans?
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Figure 7.2. Historical Data: Loan Repayment Based on Interest Rate

The “o” symbol represents loans that were repaid by the borrower; “x” repre­
sents loans on which the borrower defaulted. A 6% rate (darker vertical line) 

best divides the loans into subsets that differ in the payment outcome.

You can see that no interest rate divides these into pure sets. So the best that 
can be done is to find the interest rate that divides them so that the proportions 
of defaulters are most different on each side of the line.
This dividing line at the 6% interest rate best divides those who defaulted from 
those who repaid their loan. Most people who borrowed at 6% or greater repaid 
the loan, while those who took out loans at a lower rate were more likely to de­
fault. This might seem counter-intuitive until you learn that the lower-interest 
rate loans had adjustable rates that increased after a few years, causing the 
monthly payments to increase substantially. More prudent borrowers were will­
ing to pay higher interest rates that were fixed rather than adjustable to avoid 
radical increases in their monthly payments.
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Figure 7.3. Probabilistic Decision Tree

In this probabilistic decision tree, the sequence of property tests and the thresh­
old values in each test divide the loan applicants into categories that differ in 

how likely they are to repay the loan.

This calculation is carried out for each of the attributes in the historical data set 
to identify the one that best divides the applicants into the repaid and defaulted 
categories. The attributes and the value that defines the decision rule can then 
be ordered to create a decision tree similar to the rule-based one we saw in 
§7.5.2. In our hypothetical case, it turns out that the best order in which to test 
the properties is Income, Monthly Payment, and Interest Rate, as shown in Fig­
ure 7.3, Probabilistic Decision Tree. The end result is still a set of rules, but be­
hind each decision in the tree are probabilities based on historical data that can 
more accurately predict whether an applicant will repay or default. Thus, in­
stead of the arbitrary cutoffs at $100,000 in income and 25% for monthly pay­
ment, the bank can offer loans to people with lower incomes and remain profita­
ble doing so, because it knows from historical data that $82,000 and 27% are 
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the optimal decision points. Using the interest rate in their decision process is 
an additional test to ensure that people can afford to make loan payments even 
if interest rates go up.

7.5.3.2 Naïve Bayes Classifiers
Another commonly used approach to implement a classifier for probabilistic cat­
egories is called Naïve Bayes. It employs Bayes’ Theorem for learning the im­
portance of a particular property for correct classification. There are some com­
mon sense ideas that are embodied in Bayes’ Theorem:

• When you have a hypothesis or prior belief about the relationship between a 
property and a classification, new evidence consistent with that belief should 
increase your confidence.

• Contradictory evidence should reduce confidence in your belief.
• If the base rate for some kind of event is low, do not forget that when you 

make a prediction or classification for a new specific instance. It is easy to 
be overly influenced by recent information.

Now we can translate these ideas into calculations about how learning takes 
place. For property A and classification B, Bayes’ Theorem says:
    P (A | B) = P (B|A) P(A) / P(B) 
The left hand side of the equation, P (A | B), is what we want to estimate but 
can’t measure directly: the probability that A is the correct classification for an 
item or observation that has property B. This is called the conditional or posteri­
or probability because it is estimated after seeing the evidence of property B.
P (B | A) is the probability that any item correctly classified as A has property B. 
This is called the likelihood function.
P (A) and P (B) are the independent or prior probabilities of A and B; what pro­
portion of the items are classified as A? How often does property B occur in 
some set of items?
Now let’s apply Bayes’ Theorem to implement email spam filtering. Messages 
are classified as SPAM or HAM (i.e., non-SPAM); the former are sent to a SPAM 
folder, while the latter head to your inbox.

1. Select Properties. We start with a set of properties, some from the message 
metadata like the sender’s email address or the number of recipients, and 
some from the message content. Every word that appears in messages can 
be treated as a separate property
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Using Bayes’ Theorem to Calculate Conditional Probability
Your personal library contains 60% fiction and 40% nonfiction books. All of 
the fiction books are in ebook format, and half of the nonfiction books are 
ebooks and half are in print format. If you pick a book at random and it is in 
ebook format, what is the probability that it is nonfiction?
Bayes’ Theorem tells us that:
    P (nonfiction | ebook) = P (ebook |nonfiction) x P (nonfiction) / P (ebook).
We know: P (ebook | nonfiction) = .5 and P (nonfiction) = .4
We compute P (ebook) using the law of total probability to compute the 
combined probability of all the independent ways in which an ebook might 
be sampled. In this example there are two ways:
    P (ebook) = P (ebook | nonfiction) x P (nonfiction) 
                       + P (ebook | fiction) x P (fiction)
                    = (.5 x .4) + (1 x .6) = .8
Therefore: P (nonfiction | ebook) = (.5 x .4) / .8 = .25

2. Assemble Training Data. We assemble a set of email message that have been 
correctly assigned to the SPAM and HAM categories. These labeled instan­
ces make up the training set.

3. Analyze the Training Data. For each message, does it contain a particular 
property? For each message, is it classified as SPAM? If a message is classi­
fied as SPAM, does it contain a particular property? (These are the three 
probabilities on the right side of the Bayes equation).

4. Learn. The conditional probability (the left side of the Bayes equation) is re­
calculated, adjusting the predictive value of each property. Taken together, 
all of the properties are now able to correctly assign (most of) the messages 
into the categories they belonged to in the training set.

5. Classify. The trained classifier is now ready to classify uncategorized mes­
sages to the SPAM or HAM categories.

6. Improve. The classifier can improve its accuracy if the user gives it feedback 
by reclassifying SPAM messages as HAM ones or vice versa. The most effi­
cient learning occurs when an algorithm uses “active learning” techniques 
to choose its own training data by soliciting user feedback only where it is 
uncertain about how to classify a message. For example, the algorithm 
might be confident that a message with “Cheap drugs” in the subject line is 
SPAM, but if the message comes from a longtime correspondent, the algo­
rithm might ask the user to confirm that the classification.
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7.5.3.3 Categories Created by Clustering
In the previous two sections we discussed how probabilistic decision trees and 
naïve Bayes classifiers implement categories that are defined by typically 
shared properties and similarity. Both are examples of supervised learning be­
cause they need correctly classified examples as training data, and they learn 
the categories they are taught.
In contrast, clustering techniques are unsupervised; they analyze a collection of 
uncategorized resources to discover statistical regularities or structure among 
the items, creating a set of categories without any labeled training data.
Clustering techniques share the goal of creating meaningful categories from a 
collection of items whose properties are hard to directly perceive and evaluate, 
which implies that category membership cannot easily be reduced to specific 
property tests and instead must be based on similarity. For example, with large 
sets of documents or behavioral data, clustering techniques can find categories 
of documents with the same topics, genre, or sentiment, or categories of people 
with similar habits and preferences.
Because clustering techniques are unsupervised, they create categories based 
on calculations of similarity between resources, maximizing the similarity of re­
sources within a category and maximizing the differences between them. These 
statistically-learned categories are not always meaningful ones that can be 
named and used by people, and the choice of properties and methods for calcu­
lating similarity can result in very different numbers and types of categories. 
Some clustering techniques for text resources suggest names for the clusters 
based on the important words in documents at the center of each cluster. How­
ever, unless there is a labeled set of resources from the same domain that can 
be used as a check to see if the clustering discovered the same categories, it is 
up to the data analyst or information scientist to make sense of the discovered 
clusters or topics.
There are many different distance-based clustering techniques, but they share 
three basic methods.

• The first shared method is that clustering techniques start with an initially 
uncategorized set of items or documents that are represented in ways that 
enable measures of inter-item similarity can be calculated. This representa­
tion is most often a vector of property values or the probabilities of different 
properties, so that items can be represented in a multidimensional space 
and similarity calculated using a distance function like those described in 
§7.3.6.2 Geometric Models of Similarity (page 295).

• The second shared method is that categories are created by putting items 
that are most similar into the same category. Hierarchical clustering ap­
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proaches start with every item in its own category. Other approaches, nota­
bly one called “K-means clustering,” start with a fixed number of K catego­
ries initialized with a randomly chosen item or document from the complete 
set.

• The third shared method is refining the system of categories by iterative 
similarity recalculation each time an item is added to a category. Approaches 
that start with every item in its own category create a hierarchical system of 
categories by merging the two most similar categories, recomputing the sim­
ilarity between the new category and the remaining ones, and repeating this 
process until all the categories are merged into a single category at the root 
of a category tree. Techniques that start with a fixed number of categories 
do not create new ones but instead repeatedly recalculate the “centroid” of 
the category by adjusting its property representation to the average of all its 
members after a new member is added.

7.5.3.4 Neural networks
Among the best performing classifiers for categorizing by similarity and proba­
bilistic membership are those implemented using neural networks, and especial­
ly those employing deep learning techniques. Deep learning algorithms can 
learn categories from labeled training data or by using autoencoding, an unsu­
pervised learning technique that trains a neural network to reconstruct its input 
data. However, instead of using the properties that are defined in the data, deep 
learning algorithms devise a very large number of features in hidden hierarchi­
cal layers, which makes them uninterpretable by people. The key idea that 
made deep learning possible is the use of “backpropagation” to adjust the 
weights on features by working backwards from the output (the object classifi­
cation produced by the network) all the way back to the input. The use of deep 
learning to classify images was mentioned in §5.4.2.

7.5.4 Implementing Goal-Based Categories
Goal-based categories are highly individualized, and are often used just once in 
a very specific context. However, it is useful to consider that we could imple­
ment model goal-derived categories as rule-based decision trees by ordering the 
decisions to ensure that any sub-goals are satisfied according to their priority. 
We could understand the category “Things to take from a burning house” by 
first asking the question “Are there living things in the house?” because that 
might be the most important sub-goal. If the answer to that question is “yes,” 
we might proceed along a different path than if the answer is “no.” Similarly, we 
might put a higher priority on things that cannot be replaced (Grandma’s pho­
tos) than those that can (passport).
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7.5.5 Implementing Theory-Based Categories
Theory-based categories arise in domains in which the items to be categorized 
are characterized by abstract or complex relationships with their features and 
with each other. With this model an entity need not be understood as inherently 
possessing features shared in common with another entity. Rather, people 
project features from one thing to another in a search for congruities between 
things, much as clue receivers in the second round of the Pyramid game search 
for congruities between examples provided by the clue giver in order to guess 
the target category. For example, a clue like “screaming baby” can suggest 
many categories, as can “parking meter.” But the likely intersection of the inter­
actions one can have with babies and parking meters is that they are both 
“Things you need to feed.”
Theory-based categories are created as cognitive constructs when we use analo­
gies and classify, because things brought together by analogy have abstract 
rather than literal similarity. The most influential model of analogical processing 
is Structure Mapping, whose development and application has been guided by 
Dedre Gentner for over three decades.
The key insight in Structure Mapping is that an analogy “a T is like B” is cre­
ated by matching relational structures and not properties between the base do­
main B and a target domain T. We take any two things, analyze the relational 
structures they contain, and align them to find correspondences between them. 
The properties of objects in the two domains need not match, and in fact, if too 
many properties match, analogy goes away and we have literal similarity:

• Analogy: The hydrogen atom is like our solar system
• Literal Similarity: The X12 star system in the Andromeda galaxy is like our 

solar system

7.6 Key Points in Chapter Seven
• Categories are equivalence classes: sets or groups of things or abstract enti­

ties that we treat the same.
(See §7.2 The What and Why of Categories (page 269))

• The size of the equivalence class is determined by the properties or charac­
teristics we consider.
(See §7.2 The What and Why of Categories (page 269))
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• Cultural, individual, and institutional categorization share some core ideas 
but they emphasize different processes and purposes for creating catego­
ries.
(See §7.2 The What and Why of Categories (page 269))

• Individual categories are created by intentional activity that usually takes 
place in response to a specific situation.
(See §7.2.2 Individual Categories (page 273))

• Institutional categories are most often created in abstract and information-
intensive domains where unambiguous and precise categories are needed.
(See §7.2.3 Institutional Categories (page 274))

• The rigorous definition of institutional categories enables classification, the 
systematic assignment of resources to categories in an organizing system.
(See §7.2.3 Institutional Categories (page 274))

• Computational categories are created by computer programs when the num­
ber of resources, or when the number of descriptions or observations associ­
ated with each resource, are so large that people cannot think about them 
effectively.
(See §7.2.5 Computational Categories (page 277))

• In supervised learning, a machine learning program is trained by giving it 
sample items or documents that are labeled by category. In unsupervised 
learning, the program gets the samples but has to come up with the catego­
ries on its own.
(See Supervised and Unsupervised Learning (page 279))

• Any collection of resources with sortable identifiers (alphabetic or numeric) 
as an associated property can benefit from using sorting order as an organ­
izing principle.
(See §7.3.2 Single Properties (page 281))

• If only a single property is used to distinguish among some set of resources 
and to create the categories in an organizing system, the choice of property 
is critical because different properties often lead to different categories.
(See §7.3.2 Single Properties (page 281))

• A sequence of organizing decisions based on a fixed ordering of resource 
properties creates a hierarchy, a multi-level category system.
(See §7.3.3.1 Multi-Level or Hierarchical Categories (page 283))

• An important implication of necessary and sufficient category definition is 
that every member of the category is an equally good member or example of 
the category.
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(See §7.3.3.3 Necessary and Sufficient Properties (page 287))
• For most purposes, the most useful property of information resources for 

categorizing them is their aboutness, which is not directly perceivable and 
which is hard to characterize.
(See §7.3.4 The Limits of Property-Based Categorization (page 289))

• In domains where properties lack one or more of the characteristics of sepa­
rability, perceptibility, and necessity, a probabilistic or statistical view of 
properties is needed to define categories.
(See §7.3.5 Probabilistic Categories and “Family Resemblance” (page 291))

• Sharing some but not all properties is akin to family resemblances among 
the category members.
(See §7.3.5 Probabilistic Categories and “Family Resemblance” (page 291))

• Similarity is a measure of the resemblance between two things that share 
some characteristics but are not identical.
(See §7.3.6 Similarity (page 294))

• Feature- or property-based, geometry-based, transformational, and 
alignment- or analogy-based approaches are psychologically-motivated ap­
proaches that propose different functions for computing similarity.
(See §7.3.6 Similarity (page 294))

• Classical categories can be defined precisely with just a few necessary and 
sufficient properties.
(See §7.4.2 Basic or Natural Categories (page 300))

• Broader or coarse-grained categories increase recall, but lower precision.
(See §7.4.3 The Recall / Precision Tradeoff (page 300))

• A simple decision tree is an algorithm for determining a decision by making 
a sequence of logical or property tests.
(See §7.5.2 Implementing Categories Defined by Properties (page 303))

• The most conceptually simple and straightforward implementation of cate­
gories in technologies for organizing systems adopts the classical view of 
categories based on necessary and sufficient features.
(See §7.5.2 Implementing Categories Defined by Properties (page 303))

• An artificial language expresses ideas concisely by introducing new terms or 
symbols that represent complex ideas along with syntactic mechanisms for 
combining and operating on them.
(See §7.5.2 Implementing Categories Defined by Properties (page 303))
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• Naïve Bayes classifiers learn by revising the conditional probability of each 
property for making the correct classification after seeing the base rates of 
the class and property in the training data and how likely it is that a member 
of the class has the property.
(See §7.5.3.2 Naïve Bayes Classifiers (page 311))

• Because clustering techniques are unsupervised, they create categories 
based on calculations of similarity between resources, maximizing the simi­
larity of resources within a category and maximizing the differences be­
tween them.
(See §7.5.3.3 Categories Created by Clustering (page 313))
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