
Bloom’s Taxonomy for CS Assessment

Errol Thompson
2 Haven Grove, Naenae,

Lower Hutt
New Zealand

E.L.Thompson@massey.ac.nz

Andrew Luxton-Reilly
Computer Science

University of Auckland
Private Bag 92019, Auckland,

New Zealand
andrew@cs.auckland.ac.nz

Jacqueline L. Whalley
Computer and Information Sciences
Auckland University of Technology
Private Bag 92006, Auckland 1020,

New Zealand
jacqueline.whalley@aut.ac.nz

Minjie Hu
Tairawhiti Polytechnic

PO Box 640,
Gisborne,

New Zealand
min@tairawhiti.ac.nz

Phil Robbins
Computer and Information Sciences
Auckland University of Technology
Private Bag 92006, Auckland 1020,

New Zealand
phil.robbins@aut.ac.nz

Abstract
Bloom’s Taxonomy is difficult to apply consistently to
assessment tasks in introductory programming courses.
The Bloom taxonomy is a valuable tool that could enable
analysis and discussion of programming assessment if it
could be interpreted consistently. We discuss each of the
Bloom classification categories and provide a consistent
interpretation with concrete exemplars that will allow
computer science educators to utilise Bloom’s Taxonomy
for programming assessment. Using Bloom’s Taxonomy
to help design examinations could greatly improve the
quality of assessment in introductory programming
courses.

Keywords: Bloom’s taxonomy, multi-institutional, novice
programmers

1 Introduction
Bloom’s taxonomy was first described as a hierarchical
model for the cognitive domain in 1956 (Bloom et al.
1956). The model was revisited in 2001 by Anderson and
a team of cognitive psychologists. As a result, a number
of significant changes were made to the terminology and
structure of the taxonomy (Anderson et al. 2001). These
two versions of the taxonomy of educational objectives
are often referred to as Bloom’s taxonomy (Bloom et al.
1956) and the revised Bloom’s taxonomy (Anderson et al.
2001).

Bloom’s taxonomy has been applied to the education
domain of computer science for course design and
evaluation (Scott 2003), structuring assessments (Lister et
al. 2003) and comparing the cognitive difficulty level of
computer science courses (Oliver et al. 2004).

Some attempts have been made to relate Bloom to
specific computer programming tasks. Abran et al. (2004)
used Bloom’s taxonomy to classify typical programming
and software engineering tasks. Schneider and Gladkikh
(2006) used the revised Bloom’s taxonomy for planning
diagnostic assessments for programming, systems
analysis and systems design.

Johnson and Fuller (2006) and a team of academic
colleagues examined the question ‘Is Bloom’s Taxonomy
Appropriate for Computer Science?’ They attempted to
determine which cognitive process, in the revised Bloom
taxonomy, was targeted by different assessment tasks.
They noted significant disagreement between academics
who had been involved in the teaching of the course and
those who had not. They suggested that the disagreement
was due to two factors. Firstly, intimate knowledge of
the way a course is taught is required in order to
accurately determine the cognitive process targeted by
some assessments; and secondly, there was no general
agreement about how to apply the Bloom taxonomy to
tasks in computer science.

Previously we reported on work that aimed to add new
problems (Whalley et al. 2006) to the Leeds
programming comprehension research toolkit (Lister et
al. 2004). Initially we focused on developing a research
instrument that would allow us to duplicate and extend
the Leeds toolkit. Because we were aiming to measure
student comprehension of code, we set out to design a set
of questions that lay within the Understand sub-categories
of the cognitive dimension of the revised Bloom’s
taxonomy.

Although the revised Bloom’s taxonomy was useful in
formulating ideas for writing program comprehension
questions, we found that it was often difficult to formally
categorise a completed question within the cognitive
dimension. Moreover we found it easier to categorise
questions at the category level than at the subcategory
level within the cognitive dimension.

We believe that it is important to develop a common
understanding of how the revised Bloom’s taxonomy is
interpreted in the domain of computer science. In this

Copyright © 2008, Australian Computer Society, Inc. This
paper appeared at the Tenth Australasian Computing Education
Conference (ACE2008), Wollongong, Australia, January 2008.
Conferences in Research and Practice in Information
Technology, Vol. 78. Simon and Margaret Hamilton, Eds.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

Proc. Tenth Australasian Computing Education Conference (ACE2008), Wollongong, Australia

155

paper we provide an interpretation of the taxonomy as it
applies to introductory programming exams. We have
chosen to base our categories on the two-dimensional
matrix of the revised taxonomy that relates the cognitive
process dimension to a knowledge dimension. In this
paper we will limit the discussion to the top level of the
cognitive process dimension. The analysis of the
knowledge dimension will be discussed in a future paper.

2 Methodology
For this study, exam scripts from first-year programming
courses were supplied by 6 institutions from Australasia
and the USA. The questions in the exams varied in
nature and included true or false, multiple-choice, short
and long answer questions. Each exam script was
independently analysed by the 5 authors, and its questions
classified according to the revised Bloom’s taxonomy.
The exams were all written final exams, and each
individual question was classified in both the cognitive
and knowledge dimensions.

Following this first classification phase the analysers met
to discuss the application of the revised Bloom’s
taxonomy. Differences in the way that each academic
applied the taxonomy were noted and discussed in detail
in order to determine the cause of the discrepancy and to
come to a common understanding.

Initially we discovered significant differences between
the categories that we had assigned to many questions.
This was primarily due to difficulty mapping the
cognitive tasks described by the taxonomy’s authors into
the programming domain, for which there are no
examples.

In some cases, differences in categorisation were due to
an academic being involved with a course and therefore
able to provide the teaching context for the assessment
task in question. Once the teaching context was
elucidated, we were able to agree on an appropriate
cognitive category for the assessment task in question.

The following question provides an example of this
process.

Given the following class:

public class Circle

{

 private int diameter;

 private int xPosition;

 private int yPosition;

 private String color;

 private boolean isVisible;

 public Circle()

 {

 diameter = 30;

 xPosition = 20;

 yPosition = 60;

 color = “blue”;

 isVisible = false;

 }

 //code removed for bevity

}

Write a constructor that would allow the location,
colour, and diameter of the circle to be set. Show how
this constructor would be used to create a circle at x =
200 and y = 400, with colour blue, and diameter = 90.

The authors who were not involved in the teaching of the
course categorised this question either as Understand (on
the basis that this question required students to provide an
example of a familiar concept), or Create (on the basis
that it asked students to combine code in a way that they
had not seen before).

The person who had taught the course classified the
question as Apply. The course material explicitly taught
a process for writing constructors that accepted
parameters. The lecturer of the course felt that this
question asked students to apply a known process to a
familiar situation (i.e. the students had been taught a
process for handling this sort of question and had seen
similar examples, but had not seen this particular code).

Once the teaching context had been explained, the
authors agreed unanimously that Apply was the
appropriate classification in this case. We concluded that
in order to effectively analyse a question the person
undertaking the analysis should have an in-depth
knowledge of the course as a whole. This belief is
supported by Bloom et al. (1956), Anderson et al. (2001),
and Johnson and Fuller (2006).

Using the analysis as a talking and reference point, the
authors developed an agreed understanding of the Bloom
categories and subcategories and developed new
descriptors. Using these new descriptors each author re-
analysed their own exam papers, for which they had an
intimate knowledge of the course content.

3 Cognitive Categories
Anderson et al. (2001) provide vignettes of how the
knowledge and cognitive categories apply in a number of
different subject area domains. Computer science and
programming are not among the subject areas covered.
Here we endeavour to describe the categories using
examples specific to programming.

One of the difficulties with using the cognitive hierarchy
in a programming context is clarifying what it means to
apply a process and/or to create a process. For the
purposes of this paper, the following distinction is made.

Process: This is the procedure that a person might learn
or create in order to be able to write a code segment.
Examples of processes are code tracing, desk checking,
translation from design to code, and implementing a
known algorithm. In terms of the knowledge dimensions
of the taxonomy this is process knowledge.

CRPIT Volume 78 - Computing Education 2008

156

Algorithm: This is used in the computer science sense as
a portion of program code or a code pattern designed to
achieve a particular task within a program. From an
object-oriented perspective, a design pattern would be the
equivalent of an algorithm. This is also regarded as
process knowledge within the taxonomy (Anderson et al.
2001).

3.1 Remember
Remember is defined as ‘retrieving relevant knowledge
from long-term memory’ (Anderson et al. 2001). In the
revised taxonomy, this category includes recognising and
recalling. We interpret this in programming assessment
terms to mean:

1. identifying a particular construct in a piece of code;

2. recognising the implementation of a subject area
concept;

3. recognising the appropriate description for a subject
area concept or term;

4. recalling any material explicitly covered in the
teaching programme. This might be factual
knowledge, the recall of a conceptual definition, the
recall of a process, the recall of an algorithm, the
recall of a design pattern, or the recall of a particular
algorithm or design pattern implemented as a
solution to a specific problem in exactly the same
context as a classroom based exercise.

Examples
a) List the arithmetic operators in increasing order of

precedence.

b) Define the purpose of a constructor.

c) Describe the state pattern.

Discussion
In these instances students are asked to perform tasks
requiring knowledge that they could have rote-learned.
The use of verbs such as list and describe are regarded as
synonyms for recall. In the second example above, the
task would belong to the Remember category if the
course materials included a definition of the purpose of a
constructor (for example, on an overhead slide).

Determining if a task belongs to this category often
requires detailed knowledge of the course materials, since
the most significant factor for this category is whether the
student has seen the solution to the task before. If the
task can be completed simply by remembering
something, the assessment task belongs to this category;
otherwise it must belong to one of the following 5
categories.

3.2 Understand
Understand is defined as ‘constructing meaning from
instructional messages, including oral, written, and
graphical communications’. In the revised taxonomy, this
category includes Interpreting, Exemplifying,

Classifying, Summarising, Inferring, Comparing, and
Explaining. We interpret this in programming assessment
terms to mean:

1. translating an algorithm from one form of
representation to another form;

2. explaining a concept or an algorithm or design
pattern;

3. presenting an example of concept or an algorithm or
design pattern.

Example one
Look at this section of code and explain in plain English
what it does.
public static int mystery(int[] x, int a, int b)

{

 int z = 0;

 for (int i = a; i <=b; i++)

 {

 z = z + x[i];

 }

 return (z / (b-a+1));

}

Discussion
The students are provided with a segment of code and
asked to explain what the code does. Explain is one of
the subcategories of the Understand category.

Example two
The students have been provided with the source code for
a class. They are asked to:

a) Identify the constructor(s) defined in this class by
writing constructor signatures in the answer book.

b) Write a statement that would instantiate (create) an
object using the constructor(s) that they have
identified. Write any additional Java code that would
help clarify the data type of any variables involved.

Discussion
This example targets two distinct cognitive process
categories. Before students are able to identify a given
programming construct (such as a constructor), they must
recall the syntax rules for that construct and use those
rules to recognise that construct in the provided code.
This portion of the question belongs in the Remember
category.

Having identified the constructor, the students are then
asked to “write” a statement that instantiates an object.
Write is not directly mapped to any of the cognitive
process categories, so we need to look at what is involved
in this activity. In this case, the students must infer what
an appropriate calling sequence is, based on the signature
of the identified constructor. Inferring is a subcategory of
the Understand cognitive process category.

Proc. Tenth Australasian Computing Education Conference (ACE2008), Wollongong, Australia

157

3.3 Apply
Apply is defined as ‘carrying out or using a procedure in
a given situation’. In the revised taxonomy, this category
includes Executing and Implementing. We interpret this
in programming terms to mean:

1. that the process and algorithm or design pattern is
known to the learner and both are applied to a
problem that is familiar, but that has not been solved
previously in the same context or with the same data
or with the same tools; or

2. that the process and algorithm or design pattern is
known to the learner, and both are applied to an
unfamiliar problem

Example one
Evaluate the expression: 2 + 4 / 7 * 5 % 3 == 7

Discussion
This example requires a student to follow a known
process and to apply the rules of precedence in order to
evaluate the expression shown. If the expression was
extremely simple, such as “1 + 2”, then we would expect
the student to evaluate the expression using recall, so the
Remember category would be most appropriate. In this
less simple case, the complexity of the expression
requires students to follow an algorithm in order to
compute the results. The process requires students to
understand the rules dictating the order of precedence and
evaluate the expression by performing the operations in
the correct order. The critical part of the question that
results in the Apply categorisation is that students are
applying a process in order to solve the problem (in this
case, applying a known process to a familiar problem,
although with unfamiliar data).

Although the word “Evaluate” is used in this question,
the meaning is not the same as the meaning of the
cognitive process category Evaluate which is “making
judgements based on criteria and standards” (Anderson et
al. 2001). This isn’t what the students are being asked to
do in this example. “Evaluate” in this context means to
apply the process for expression evaluation to determine
the end result of using the given expression. This
example is therefore in the Apply cognitive process
category.

Example two
The students have been given the code for a Circle class.
The code is similar to an example used in the textbook
but modified to reduce the amount of code and change
some features.

As well as the Circle class, the project includes Square
and Triangle classes. Each class has the same code
structure. Students are asked to:

a) Create a Shape class as a superclass of these three
classes that includes all the common methods.

b) Rewrite the Circle class to inherit from the new Shape
class.

Discussion
This example belongs to the Apply category because the
students have been introduced to the process of
refactoring. They are expected to apply the refactoring
process to develop (create) a shape class and then a
revised (rewrite) Circle class. The use of the verbs create
and rewrite in this context does not imply being creative
in the sense of the Create category: students are not
being expected to develop a new process or a new
algorithm.

3.4 Analyse
Analyse is defined as ‘breaking material into its
constituent parts and determining how the parts relate to
one another and to an overall structure or purpose’. In the
revised taxonomy, this category includes Differentiating,
Organising, and Attributing. We interpret this in
programming assessment terms to mean:

1. breaking a programming task into its component
parts (classes, components, etc.);

2. organising component parts to achieve an overall
objective;

3. identifying critical components of a development;

4. identifying unimportant components or requirements.

Example
Given the code for a Circle class, the students are asked:

a) What is the method Circle in this class?

b) How does it differ from other methods in the class?

Discussion
In the example above, students were expected to provide
answers such as a) “It’s a constructor”, and b) “It is
invoked when a new objected is created”. This is the
reverse of the question used as example two for the
Understand category. Given the name of the method, the
students have to identify what type of method it is, and
then identify the difference between it and other methods.
The first part of the question (what is) involves recalling
that a method with the same name as the class is a
constructor, and concluding that the named method is
therefore a constructor. In the second half of the question
(how does) the students are being asked to differentiate
between a constructor and other methods of the class.
Differentiating is one of the subcategories of the Analyse
cognitive process category.

3.5 Evaluate
Evaluate is defined as ‘making judgements based on
criteria and standards’. In the revised taxonomy, this
category includes Checking and Critiquing. We interpret
this in programming assessment terms to mean:

1. determining whether a piece of code satisfies the
requirements through defining an appropriate testing
strategy;

2. critiquing the quality of a piece of code based on
coding standards or performance criteria.

CRPIT Volume 78 - Computing Education 2008

158

Example
The students have been given a class that has the
following declaration.

private double numbers[] = new double[10];

private int used = 0;

In that class, there is an existing method that calculates
the minimum using the following for loop.

for (int i = 0; i < used; i++) {

 min = Math.min(min, numbers[i]);

The question reads:

It has been proposed that a better solution for the min
method would be

public double min() {

 double min = numbers[0];

 for (double number : numbers) {

 min = Math.min(min, number);

 }

 return min;

}

Discuss the differences between these solutions using the
current collection type of the numbers variable and
discuss which method is more appropriate for the current
collection type.

Discussion
Discussing the differences involves comparing the two
loop constructs and contrasting their usage. This belongs
in the Understand category. The students are asked to go
further and to discuss which method is more appropriate.
This involves evaluating the use of two different loop
constructs that are used for the same purpose. The second
option fails because all cells in the array will be used in
finding the minimum even if some of the cells of the
array have not been given values. The students must use
this knowledge to evaluate the preferred loop construct
for the given collection type. This question is therefore in
the Evaluate cognitive process category.

3.6 Create
Create is defined as ‘putting elements together to form a
coherent or functional whole; reorganising elements into
a new pattern or structure’. In the revised taxonomy, this
category includes Generating, Planning, and Producing.
We interpret this in programming assessment terms to
mean:

1. coming up with a new alternative algorithm or
hypothesising that a new combination of algorithms
will solve a problem;

2. devising an alternative process or strategy for solving
a problem; or complex programming tasks, this
might include dividing the task into smaller chunks
to which they can apply known algorithms and
processes;

3. constructing a code segment or program either from
an invented algorithm or through the application of
known algorithms in a combination that is new to the
students..

Example
Write a method get24HourTime() which accepts
three parameters and returns a String. The three
parameters are an int representing the hour value, an
int representing the minute value and a String
which is either “am” or “pm”. The method returns a
String representing the time as a 24-hour time value.
For example, 2:35pm is “14:35” in 24-hour time.

Note: 12:0pm is “12:0” in 24-hour time and 12.0am is
“0:0” in 24-hour time.

For example, executing the Q4 program with the
completed get24HourTime() method produces the
following output:

> java Q4App

20:23

12:0

0:0

7:15

Discussion
The difficulty with questions of this type is to determine
whether they are Apply or Create. The size of the
problem does influence the difficulty of the problem, but
it doesn’t determine whether it is Apply or Create. The
Create category should require creative thinking and the
formation of a “coherent or functional whole” (Anderson
et al. 2001). If the students are familiar with the algorithm
and process then the cognitive load is lower and therefore
the question should be categorised as Apply. To answer
this type of question, the students should be familiar with
the process for designing an algorithm.

The cognitive category of Create applies where the
student has no familiarity with completed functional
whole. While they haven’t seen the algorithm before, they
might have seen background material or bits and pieces,
but not the completed whole.

The cognitive category of Apply requires knowledge of
an algorithm and/or process and its application to a given
situation. In programming terms this is where students
have seen the same or a very similar algorithm working
with different data or presented in a different
implementation language.

The cognitive category of Remember could apply to this
type of question if the students had already seen the exact
problem solution in the same language, algorithm and
process. That is, they have seen the exact same thing in
the same context.

In a large program there may be parts that are Apply (i.e.
applying a design pattern) but the whole could be Create
since there may be a need to use novel strategies and
coding as a link between the component parts.

Proc. Tenth Australasian Computing Education Conference (ACE2008), Wollongong, Australia

159

With this example, the authors were informed by the
teacher that the students had seen other reformatting
exercises but not this specific exercise. They were
familiar with the concepts of reformatting but not of the
specific algorithm or process. The question was therefore
categorised as Create.

4 Analysis and Discussion
Using the revised Bloom’s taxonomy forced us to review
the exam questions in terms of how the paper/subject was
taught. Simply reading the questions did not always give
a clear indication of the cognitive skill involved in
addressing the question. In part, this is caused by the use
of verbs like write, create, and evaluate in writing
programming exam questions. Once staff involved in the
teaching of a course were consulted, we found
considerable agreement in the categorisation of questions
according to the Bloom taxonomy. We consider this to
be a positive outcome which suggests that the revised
Bloom’s taxonomy can be effectively used to discuss
examination questions in the programming domain.

In determining the cognitive skill level required for a
question, the level of difficulty of the question is not a
factor. For example, some questions requiring students to
recall something covered in class would be extremely
easy (such as “What language do we use to program in
this course?”), while others would be extremely difficult
(such as “What is the 3rd word that appears on slide 3 of
the second lecture?”).

It should also be recognised that the actual cognitive
process that is applied to a specific task will depend on
the individual solving that task. A given task might
require nothing more than recall (the lowest level of
cognitive process) for one individual, but may require
another individual to generate a new solution to a
situation that they find novel (using the highest level of
cognitive process). The context is critical for assessing
the level of process that we think most students will
require in order to answer a given question.

During the analysis of the examinations, we found
examples of questions that could be reworded in such a
way that the cognitive level is altered. For example, a
question that was considered to be operating at the
Remember cognitive level could be reworded so that it
required an answer that involved understanding or
analysis. We felt that a shared understanding of the
interpretation of the revised Bloom’s taxonomy to the
programming domain would prove valuable to teaching
staff developing examination questions, particularly in
courses that involve multiple staff members.

5 FUTURE WORK

The Bloom taxonomy focuses on knowledge categories
and the cognitive skills utilised. This gives one approach
to analysing the difficulty of question sets. In this
analysis we focused on the categories and not the
subcategories. We are currently refining these definitions
to cover the subcategories. The revised Bloom taxonomy
provides a two-dimensional matrix in which an
assessment task is mapped to a category in both a

cognitive process dimension and a knowledge dimension.
We intend to look more closely at the applicability of the
knowledge dimension to the programming domain and
identify how a common understanding of the knowledge
dimension can contribute to the development and analysis
of assessment tasks in computer science education.

An alternative approach is the structural approach
proposed by Biggs and Collis (1982) for the analysis of
student responses to questions. A question that has been
classified as Understand (e.g. explain in plain English a
segment of code) can be aimed at a number of the
categories of the SOLO taxonomy. We are presently
undertaking further investigation to see how this
taxonomy might be applied to the writing of exam
questions.

6 Conclusion
We have provided an interpretation of the revised
Bloom’s taxonomy for computer science. We feel that it
is important for the discipline of computer science to look
carefully at the cognitive processes that programming
requires. The use of Bloom’s taxonomy provides some
insight into these processes. The provision of a common
understanding of the taxonomy for programming enables
discussion around assessment and cognitive processes.
We hope that this paper generates discussion and more
critical analysis of our assessment tasks in programming.

7 Acknowledgments
Thanks to Raymond Lister (UTS, Sydney, Australia) and
Beth Simon (UBC, Vancouver Canada) for generously
providing their exam scripts for this analysis.

References
Abran, A., Moore, J., Bourque, P., DuPuis, R. and Tripp,

L. (2004) Guide to the Software Engineering Body of
Knowledge - 2004 Version SWEBOK®, Los Alamitos,
CA , IEEE-CS - Professional Practices Committee.

Anderson, L.W., Krathwohl, D.R., Airasian, P.W.,
Cruikshank, K.A., Mayer, R.E., Pintrich, P.R., Raths, J.
and Wittrock, M.C. (eds.) (2001). A taxonomy for
learning and teaching and assessing: A revision of
Bloom’s taxonomy of educational objectives. Addison
Wesley Longman.

Biggs, J.B. and Collis, K.F. (1982) Evaluating the quality
of learning: The SOLO taxonomy (Structure of the
Observed Learning Outcome). New York, Academic
Press.

Bloom, B.S., Engelhart, M.D., Furst, E.J., Hill, W.H. and
Krathwohl, D.R. (1956) Taxonomy of educational
objectives Handbook 1: cognitive domain. London,
Longman Group Ltd.

Johnson, C.G. and Fuller, U. (2006) Is Bloom’s
taxonomy appropriate for computer science. Berglund,
A. ed. 6th Baltic Sea Conference on Computing
Education Research (Koli Calling 2006), Koli National
Park, Finland, 115-118.

CRPIT Volume 78 - Computing Education 2008

160

Lister, R., Adams, E.S., Fitzgerald, S., Fone, W., Hamer,
J., Lindholm, M., McCartney, R., Moström, J.E.,
Sanders, K., Seppälä, O., Simon, B. and Thomas, L.
(2004) A multi-national study of reading and tracing
skills in novice programmers. Inroads - The SIGCSE
Bulletin, 36 (4). 119-150.

Lister, R. and Leaney, J. Introductory programming,
criterion-referencing (2003) SIGCSE ‘03: Proceedings
of the 34th SIGCSE technical symposium on Computer
science education, 143-147, ACM Press.

Oliver, D., Dobele, T., Greber, M. and Roberts, T.
(2004), This course has a Bloom Rating of 3.9. in
Proceedings of the sixth conference on Australasian
computing education - Volume 30, Dunedin, New
Zealand, 227-231, Australian Computer Society Inc.

Scott, T. (2003) Bloom’s taxonomy applied to testing in
computer science classes. Journal of Computing in
Small Colleges, 19 (1). 267-274.

Shneider, E. and Gladkikh, O. (2006) Designing
questioning strategies for information technology
courses. Mann, S. and Bridgeman, N. eds. The 19th
Annual Conference of the National Advisory
Committee on Computing Qualifications: Preparing
for the Future — Capitalising on IT, Wellington, 243-
248, National Advisory Committee on Computing
Qualifications.

Whalley, J., Lister, R., Thompson, E., Clear, T., Robbins,
P., Kumar, A. and Prasard, C. (2006), An Australasian
study of reading and comprehension skills in novice
programmers, using the Bloom and SOLO taxonomies.
in Eighth Australasian Computing Education
Conference (ACE2006), Hobart, Tasmania, Australia,
CRIPT, 52, 243-252., Australian Computer Society
Inc.

Proc. Tenth Australasian Computing Education Conference (ACE2008), Wollongong, Australia

161

CRPIT Volume 78 - Computing Education 2008

162

