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7.1. Introduction 
Many texts in library science introduce categorization via cataloging rules, a set of highly 
prescriptive principles for assigning resources to categories.  Many texts in computer science 
discuss the process of defining the categories needed to create, process, and store information in 
terms of programming language constructs: "here's how to define an abstract type, and here's the 
data type system." Machine learning and data science texts explain how categories are created 
through statistical analysis of the correlations among the values of features in a collection or 
dataset. We take a very different approach in this chapter, but all of these different perspectives 
have a place in it.  

Navigating This Chapter 

In the following sections, we discuss how and why we create categories, reviewing some 
important work in philosophy, linguistics, and cognitive psychology to better understand how 
categories are created and used in organizing systems. We discuss how the way we organize 
differs when we act as individuals or as members of social, cultural, or institutional groups 
(§7.2); later we share principles for creating categories(§7.3), design choices (§7.4), and 
implementation experience (§7.5). Throughout the chapter, we will compare how categories 
created by people compare with those created by computer algorithms. As usual, we close the 
chapter with a summary of the key points (§7.6).  

7.2. The What and Why of Categories 
Categories are equivalence classes, groups of things or abstract entities that we treat the same. 
Equivalence does not mean that every instance of a category is identical.  It only means that from 
some perspective, or for some purpose, we treat the members of a category as equivalent. When 
we consider something as a member of a category, we are making choices about which of its 
properties we are focusing on and which ones we are ignoring. We do this automatically and 
unconsciously most of the time, but we can also do it in an explicit and self-aware way. When 
we create categories with conscious effort, we often say that we are creating a model. You 
should be familiar with the idea that a model is a set of simplified descriptions or a physical 
representation that removes some complexity to emphasize some features or characteristics and 
to de-emphasize others. 



When we encounter objects or situations, recognizing them as members of a category helps us to 
interact with them. For example, when we enter an unfamiliar building, we might need to open 
or pass through an entryway that we recognize as a door. We might never have seen that 
particular door before, but it has properties and affordances that we know that all doors have; it 
has a doorknob or a handle; it allows access to a larger space; it opens and closes. By mentally 
assigning this particular door to the “doors” category we distinguish it from the “windows” 
category.   The windows category also contains objects that sometimes have handles and that 
open and close, but which we do not normally pass through to enter another space. 
Categorization judgments are therefore not just about what is included in a class, but also about 
what is excluded from a class. Nevertheless, the category boundaries are not sharp; a “Dutch 
door” is divided horizontally in half so that the bottom can be closed like a door while the top 
can stay open like a window. 

Creating and using categories are essential human activities. .Categories are cognitive and 
linguistic models for applying prior knowledge whenever we perceive, communicate, analyze, 
predict, or classify. Without categories, we would perceive the world as an unorganized blur of 
things with no obvious or memorable relation to each other. Every wall-entry we encounter 
would be new to us, and we would have to discover its properties and supported interactions as 
though we had never before encountered a door.   

Even before they can talk, children behave in ways that suggest they have formed categories 
based on shape, color, and other properties they can directly perceive in physical objects. People 
almost effortlessly learn tens of thousands of categories embodied in the culture and language in 
which they grow up. People also rely on their own experiences, preferences, and goals to adapt 
these cultural categories or to create entirely individual ones that they use to organize their 
personal resources. Later on, through training and formal education, people learn to apply careful 
and logical thinking processes so that they can create and understand institutional categories in 
engineering, logistics, transport, science, law, business, and other systematized contexts. 

These three contexts of cultural, individual, and institutional categorization share some core 
ideas, but they emphasize different processes and purposes for creating categories. Cultural 
categorization is a natural human cognitive ability that serves as a foundation for both informal 
and formal organizing systems. Individual categorization tends to grow spontaneously out of our 
personal activities. Institutional categorization responds to the need for formal coordination and 
cooperation within and between companies, governments, and other goal-oriented enterprises.   

In contrast to these three categorization contexts in which people create categories, 
computational categories are created by computer programs for information retrieval, machine 
learning, predictive analytics, and other applications. Computational categories are similar to 
those created by people in some ways but differ substantially in other ways.  

7.2.1. Cultural Categories 

Cultural categories are the archetypical form of categories on which individual and institutional 
categories are usually based. Cultural categories tend to describe our everyday experiences of the 
world and our accumulated cultural knowledge. Such categories describe objects, events, 



settings, internal experiences, physical orientation, relationships between entities, and many 
other aspects of human experience. Cultural categories are learned primarily, with little explicit 
instruction, through normal exposure of children with their caregivers as they learn a language. 

Languages differ a great deal in the words they contain and also in more fundamental ways that 
they require speakers or writers to attend to details about the world or aspects of experience that 
another language allows them to ignore. This idea is described as linguistic relativity. 

Linguistic Relativity 

The diversity of languages led Benjamin Whorf, in the mid-20th century, to propose an overly 
strong statement of the relationships among language, culture, and thought. Whorf argued that 
the particularities of one's native language determine how we think and what we can think about. 
Among his controversial ideas was the suggestion that, because some Native American 
languages lacked words or grammatical forms that refer to what we call "time" in English, they 
could not understand the concept. More careful language study showed both parts of the claim to 
be completely false. 

Nevertheless, even though academic linguists have discredited strong versions of Whorf’s ideas, 
more moderate versions of linguistic relativity have become influential and help us understand 
cultural categorization. Roman Jakobson said it this way: "Languages differ essentially in what 
they must convey and not in what they may convey.” In English one can say “I spent yesterday 
with a neighbor.” In languages with grammatical gender, one must choose a word that identifies 
the neighbor as male or female. 

For example, speakers of the Australian Aboriginal language Guugu Yimithirr do not use 
concepts of left and right but instead, speakers use cardinal directions. In English, we might say 
to a person facing north, "Take a step to your left." In contrast, a speaker of Guugu Yimithirr 
would use their term for west. If the person faced south, we would change our instruction to 
"right," but they would still use their term for west. Imagine how difficult it would be for a 
speaker of Guugu Yimithirr and a speaker of English to collaborate in organizing a storage room 
or a closet. 

It is not controversial to notice that different cultures and language communities have different 
experiences and activities that give them contrasting knowledge about particular domains. No 
one would doubt that university undergraduates in Chicago would think differently about 
animals than inhabitants of Guatemalan rainforests, or even that different types of "tree experts" 
(taxonomists, landscape workers, foresters, and tree maintenance personnel) would describe and 
categorize trees differently. 

 7.2.2. Individual Categories 

Individual categories are created in an organizing system to satisfy the ad hoc requirements that 
arise from a person’s unique experiences, preferences, and resource collections. Unlike cultural 
categories, which usually develop slowly and last a long time, individual categories are created 
in response to a specific situation, or to solve an emerging organizational challenge. As a 



consequence, the categories in individual organizing systems generally have short lifetimes and 
rarely outlive the person who created them. 

Individual categories draw from cultural categories but differ in two critical ways. First, 
individual categories sometimes have an imaginative or metaphorical basis that is meaningful to 
the person who created them but which might distort or misinterpret cultural categories. Second, 
individual categories are often specialized or synthesized versions of cultural categories that 
capture particular experiences or personal history. For example, a person who has lived in China 
and Mexico might have highly individualized categories for foods they like and dislike that 
incorporate characteristics of both Chinese and Mexican cuisine. 

Individual categories in organizing systems also reflect the idiosyncratic set of household goods, 
music, books, website bookmarks, or other resources that a person might have collected over 
time. The organizing systems for financial records, personal papers, or email messages often use 
highly specialized categories that are shaped by specific tasks, relationships with other people, 
events of personal history, and other highly individualized considerations. Put another way, 
individual categories are used to organize resource collections that are likely not representative 
samples of all resources of the type being collected. If everyone had the same collection of 
music, books, clothes, or toys, the world would be a boring place. 

For most of human history, individual categorization systems were usually not visible to or 
shared with others. But now individual categories can be easily seen when people use web-based 
organizing system for pictures, music, or other personal resources. With Instagram, YouTube, 
Pinterest, or similar applications for organizing photos and videos, people typically use existing 
cultural categories to tag their content as well as new individual categories that they invent and 
name with a hashtag. 

7.2.3. Institutional Categories 

In contrast to cultural categories that are created and used implicitly, and to individual categories 
that are used by people acting alone, institutional categories are created and used explicitly, and 
most often by many people working together. Institutional categories are most often created in 
abstract and information-intensive domains where unambiguous and precise categories are 
needed to regulate and systematize activity, to enable information sharing and reuse, and to 
reduce transaction costs. Furthermore, instead of describing the world as it is, institutional 
categories are usually defined to change or control the world by imposing semantic models that 
are more formal and arbitrary than those in cultural categories. Laws, regulations, and standards 
often specify institutional categories, along with decision rules for assigning resources to new 
categories, and behavior rules that prescribe how people must interact with them. The rigorous 
definition of institutional categories enables classification: the systematic assignment of 
resources to categories in an organizing system. 

Creating institutional categories by more systematic processes than cultural or individual 
categories does not ensure that people will use them in systematic and rational ways. The 
reasoning and rationale behind institutional categories might be unknown to, or ignored by, the 
people who use them. Likewise, this way of creating categories does not prevent them from 



being biased. Indeed, the goal of institutional categories is often to impose or incentivize biases 
in interpretation or behavior. There is no better example of this than the practice of 
gerrymandering, designing the boundaries of election districts to give one political party or 
ethnic group an advantage. 

Institutional categories overcome the vagueness and inconsistency of cultural categories because 
the former typically conform to stricter logical standards to support inference and meet legal 
requirements. As requirements change over time, institutional categories must often change as 
well, implying version control, compliance testing, and other formal maintenance and 
governance processes. 

Some institutional categories that initially had narrow or focused applicability have found their 
way into more popular use and are now considered cultural categories. A good example is the 
periodic table in chemistry, which Mendeleev developed in 1869 as a new system of categories 
for the chemical elements. The periodic table proved essential to scientists in understanding their 
properties and in predicting undiscovered ones. Today the periodic table is taught in elementary 
schools, and many things other than elements are commonly arranged using a graphical structure 
that resembles the periodic table of elements in chemistry, including sci-fi films and movies, 
desserts, and superheroes. 

7.2.4. A “Categorization Continuum” 

As we have seen, the concepts of cultural, individual, and institutional categorization usefully 
distinguish the primary processes and purposes when people create categories. However, these 
three kinds of categories can fuse, clash, and recombine with each other. Rather than viewing 
them as having precise boundaries, we might view them as regions on a continuum of 
categorization activities and methods. 

Consider a few different perspectives on categorizing animals. Scientific institutions categorize 
animals according to explicit, principled classification systems, such as the Linnaean taxonomy 
that assigns animals to a phylum, class, order, family, genus, and species. Cultural categories are 
more fluid, sometimes converging with principled taxonomies, and at other times diverging from 
them. Human beings are classified within the animal kingdom in biological classification 
systems, but people are usually not considered animals in most cultural contexts.  Animals are 
also often culturally categorized as pets or non-pets. The category "pets" commonly includes 
dogs, cats, and fish. A pet cat might be categorized at multiple levels that incorporate individual, 
cultural, and institutional perspectives on categorization—as an "animal" (cultural/institutional), 
as a "mammal" (institutional), as a "domestic short-hair" (institutional) as a "cat" (cultural), and 
as a "troublemaker" or a "favorite" (individual), among other possibilities, in addition to being 
identified individually by one or more pet names.  

Categorization skewed toward cultural perspectives incorporate traditional categories, such as 
those learned implicitly from social interactions.  Categorization skewed toward institutional 
perspectives emphasizes explicit, formal categories, like the categories employed in biological 
classification systems. 



7.2.5. Computational Categories 

Computational categories are created by computer programs when the number of resources, or 
when the number of descriptions or observations associated with each resource, are so large that 
people cannot think about them effectively. Computational categories are created for information 
retrieval, predictive analytics, and other applications where information scale or speed 
requirements are critical. The resulting categories are similar to those created by people in some 
ways but differ substantially in other ways.  

The simplest kind of computational categories can be created using descriptive statistics. 
Descriptive statistics do not identify the categories they create by giving them familiar cultural or 
institutional labels. Instead, they create implicit categories of items according to how much they 
differ from the most typical or frequent ones. For example, in any dataset where the values 
follow the normal distribution, statistics of central tendency and dispersion serve as standard 
reference measures for any observation. These statistics identify categories of items that are very 
different or statistically unlikely outliers, which could be signals of measurement errors, poorly 
calibrated equipment, employees who are inadequately trained or committing fraud, or other 
problems.  

Many text processing methods and applications use simple statistics to categorize words by their 
frequency in a language, in a collection of documents, or in individual documents, and these 
categories are exploited in many information retrieval applications. 

The subfield of computer science known as machine learning contains many techniques that are 
relevant to organizing systems. In “supervised” learning, a machine learning program is trained 
with sample items or documents that are labeled by category, and the program learns to assign 
new items to the correct categories. Over time the program, which is called a classifier, improves 
its performance by adjusting the weights for features that distinguish the categories. In contrast, 
“unsupervised” learning techniques in machine learning analyze a collection of resources to 
discover statistical regularities or correlations among the items, creating a set of categories 
without any labeled training data. Unsupervised learning is also called statistical pattern 
recognition.  

Many computational categories resemble individual categories because they are tied to specific 
collections of resources or data and are designed to satisfy narrow goals. The individual 
categories you use to organize your email inbox or the files on your computer reflect your 
specific interests, activities, and personal network and are certainly different than those of 
anyone else. Similarly, your credit card company analyzes your specific transactions to create 
computational categories of "likely good" and "likely fraudulent" that are different for every 
cardholder. 

This focused scope is apparent when we consider how we might describe a computational 
category. "Fraudulent transaction for cardholder 4264123456780123" is not lexicalized with a 
one-word label as familiar cultural categories are. "Door" and "window" have broad scopes that 
are not tied to a single purpose. Put another way, the "door" and "window" cultural categories are 
highly reusable, as are institutional categories like those used to collect economic or health data 



that can be analyzed for many different purposes. The definitions of "door" and "window" might 
be a little fuzzy, but institutional categories are more precisely defined, often by law or 
regulation. Examples are the North American Industry Classification System (NAICS) from the 
US Census Bureau and the United Nations Standard Products and Services Code (UNSPC). 

A final contrast between categories created by people and those created computationally is that 
the former can almost always be inspected and reasoned about by other people, but only some of 
the latter can. A computational model that categorizes loan applicants as excellent or poor credit 
risks probably uses properties like age, income, home address, and marital status, so that a 
banker can understand and explain a credit decision. However, many other computational 
categories, especially those that created by clustering and deep learning techniques, are 
uninterpretable by people. 

7.3. Principles for Creating Categories 
We now take a systematic look at principles for creating categories, including enumeration, 
single properties, multiple properties and hierarchy, probabilistic, similarity, and theory- and 
goal-based categorization. These ways of creating categories differ in the information and 
mechanisms they use to determine category membership. 

7.3.1. Enumeration 

The simplest principle for creating a category is enumeration; any resource in a finite or 
countable set can be deemed a category member by that fact alone. This principle is also known 
as extensional definition, and the members of the set are called the extension. Many institutional 
categories are defined by enumeration as a set of possible or legal values, like the 50 United 
States or the ISO currency codes (ISO 4217). 

Enumerative categories enable membership to be unambiguously determined because a value 
like a currency code is either a member of the category or it is not. However, this clarity has a 
downside; it makes it hard to argue that something not explicitly mentioned in an enumeration 
should be considered a member of the category, which can make laws or regulations inflexible. 
Moreover, there comes a size when enumerative definition is impractical or inefficient, and the 
category either must be sub-divided or be given a definition based on principles other than 
enumeration. 

For example, for millennia we earthlings have had a cultural category of “planet” as a 
“wandering” celestial object, and because we only knew of planets in our own solar system, the 
planet category was defined by enumeration: Mercury, Venus, Earth, Mars, Jupiter, and Saturn. 
When the outer planets of Uranus, Neptune, and Pluto were identified as planets in the 18th-20th 
centuries, they were added to this list of planets without any changes in the cultural category. But 
in the last couple of decades many previously unknown planets outside our solar system have 
been detected, making the set of planets unbounded, and it is impossible to define the planet 
category by enumeration. 
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The International Astronomical Union (IAU) thought it solved this category crisis by proposing a 
definition of planet as “a celestial body that is (a) in orbit around a star, (b) has sufficient mass 
for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium 
(nearly round) shape, and (c) has cleared the neighborhood around its orbit.” Unfortunately, 
Pluto does not satisfy the third requirement, so it no longer is a member of the planet category, 
and instead is now called an “inferior planet.” 

Changing the definition of a significant cultural category generated a great deal of controversy 
and anxiety among ordinary non-scientific people. A typical headline was “Pluto’s demotion has 
schools spinning,” describing the outcry from elementary school students and teachers about the 
injustice done to Pluto and the disruption on the curriculum.  

7.3.2. Single Properties 

It is intuitive and useful to think in terms of properties when we identify instances and when we 
are describing instances. Therefore, it should also be intuitive and useful to consider properties 
when we analyze more than one instance to compare and contrast them so we can determine 
which sets of instances can be treated as a category or equivalence class. Categories whose 
members are determined by one or more properties or rules follow the principle of intensional 
definition, and the defining properties are called the intension. 

You might be thinking here that enumeration or extensional definition of a category is also a 
property test; is not “being a state” a property of California? But statehood is not a property 
precisely because “state” is defined by extension, which means the only way to test California 
for statehood is to see if it is in the list of states. 

Any single property of a resource can be used to create categories, and the easiest ones to use are 
often the intrinsic static properties. As we discussed in Chapter 5, intrinsic static properties are 
those inherent in a resource that never change. The material of composition of natural or 
manufactured objects is an intrinsic and static property that can be used to arrange physical 
resources. For example, an organizing system for a personal collection of music that is based on 
the intrinsic static property of physical format might use categories for CDs, DVDs, vinyl 
albums, 8-track cartridges, reel-to-reel tape and tape cassettes. 

Using a single property is natural and easy when the properties can take on only a small set of 
discrete values like music formats, and especially when the property is closely related to how the 
resources are used, as they are with the music collection where each format requires different 
equipment to listen to the music. Each value then becomes a subcategory of the music category. 

The author, date, and location of creation of an intellectual resource cannot be directly perceived, 
but they are also intrinsic static properties. The subject matter or purpose of a resource, its “what 
it is about” or “what it was originally for,” are also intrinsic static properties that are not directly 
perceivable, especially for information resources. 

The name or identifier of a resource is often arbitrary but once assigned usually does not change, 
making it an extrinsic static property. Any collection of resources with alphabetic or numeric 



identifiers as an associated property can use sorting order as an organizing principle in a 
completely reliable way. 

Some resource properties are both extrinsic and dynamic because they are based on usage or 
behaviors that can be highly context-dependent. The current owner or location of a resource, its 
frequency of access, the joint frequency of access with other resources, or its current rating or 
preference with respect to alternative resources are typical extrinsic and dynamic properties that 
can be the basis for arranging resources and defining categories. 

Some properties can have a large number of values or are continuous measures, but if there are 
explicit rules for using property values to determine category assignment the resulting categories 
are still easy to understand and use. For example, we naturally categorize people we know by 
their current profession, the city where they live, their hobbies, or their age. Properties with a 
numerical dimension like “frequency of use” are often transformed into a small set of categories 
like “frequently used,” “occasionally used,” and “rarely used” based on the numerical property 
values. 

While there is an infinite number of logically expressible properties for any resource, most of 
them would not lead to categories that would be interpretable and useful for people. If people are 
going to use the categories, it is essential to base them on properties that are psychologically or 
pragmatically relevant. Whether something weighs more or less than 5000 pounds is not a useful 
property to apply to things in general, because it puts cats and chairs in one category, and buses 
and elephants in another. 

To summarize: The most useful single properties to use for creating categories for an organizing 
system used by people are those that are formally assigned, objectively measurable and 
orderable, or tied to well-established cultural categories because the resulting categories will be 
easier to understand and describe. 

If only a single property is used to distinguish among some set of resources and to create the 
categories in an organizing system, the choice of property is critical because different properties 
often lead to different categories. If we categorize using the age property,  Bill Gates and Mark 
Zuckerberg are unlikely to end up in the same category of people. Using the wealth property, 
they most certainly would. Furthermore, if only one property is used to create a system of 
categories, any category with a large number of items in it lacks coherence because differences 
on other properties are too apparent, and some category members do not fit as well as the others.  

7.3.3. Multiple Properties 

Organizing systems often use multiple properties to define categories. There are three different 
ways in which to do this that differ in the scope of the properties and how essential they are in 
defining the categories. 



7.3.3.1. Multi-Level or Hierarchical Categories 

If you have many shirts in your closet (and you are a bit compulsive), instead of just separating 
your shirts from your pants using a single property (the part of body on which the clothes are 
worn) you might arrange the shirts by style, and then by sleeve length, and finally by color. 
When all of the resources in an organizing system are arranged using the same sequence of 
resource properties, this creates a logical hierarchy, a multi-level category system. 

If we treat all the shirts as the collection being organized,  the broad category of shirts is first 
divided by style into categories like “dress shirts,” “work shirts,” “party shirts,” and “athletic or 
sweatshirts.” Each of these style categories is further divided until the categories are very narrow 
ones, like the “white long-sleeve dress shirts” category. A particular shirt ends up in this last 
category only after passing a series of property tests along the way: it is a dress shirt, it has long 
sleeves, and it is white. Each test creates more precise categories in the intersections of the 
categories whose members passed the previous property tests.  

Put another way, each subdivision of a category takes place when we identify or choose a 
property that differentiates the members of the category in a way that is important or useful for 
some intent or purpose. Shirts differ from pants in the value of the “part of body” property, and 
all the shirt subcategories share this “top part” value of that property. However, shirts differ on 
other properties that determine the subcategory to which they belong. Even as we pay attention 
to these differentiating properties, it is important to remember the other properties, the ones that 
members of a category at any level in the hierarchy have in common with the members of the 
categories that contain it. These properties are often described as “inherited” or “inferred” from 
the broader category. For example, just as every shirt shares the "worn on the top part of body" 
property, every item of clothing shares the “can be worn on the body” property, and every 
resource in the “shirts” and “pants” category inherits that property. 

Each differentiating property creates another level in the category hierarchy, which raises an 
obvious question: How many properties and levels do we need? To answer this question, we 
must reflect upon the shirt categories in our closet. Our organizing system for shirts arranges 
them with the three properties of style, sleeve length, and color; some of the categories at the 
lowest level of the resulting hierarchy might have only one member or no members at all. You 
might have yellow or red short-sleeved party shirts, but probably do not have yellow or red long-
sleeved dress shirts, making them empty categories. Any category with only one member does 
not need any additional properties to tell the members apart, so a category hierarchy is logically 
complete if every resource is in a category by itself. 

However, even when the lowest level categories of our shirt organizing system have more than 
one member, we might choose not to use additional properties to subdivide it because the 
differences that remain among the members do not matter to us for the interactions the 
organizing system needs to support. Suppose we have two long-sleeve white dress shirts from 
different shirt makers, but whenever we need to wear one of them, we ignore this property. 
Instead, we pick one or the other, treating the shirts as completely equivalent or substitutable. 
When the remaining differences between members of a category do not make a difference to the 
users of the category, we can say that the organizing system is pragmatically or practically 



complete even if it is not yet logically complete. We might say it is complete “for all intents and 
purposes.” Indeed, we might argue that it is desirable to stop subdividing a system of categories 
while small differences remain among the items in each category because this leaves some 
flexibility or logical space in which to organize new items. On the other hand, consider the shirt 
section of a big department store. Shirts there might be organized by style, sleeve length, and 
color as they are in our home closet, but would most likely be further organized by shirt maker 
and by size to enable a shopper to find a Marc Jacobs long-sleeve blue dress shirt of size 15/35. 
The department store organizing system needs more properties and a deeper hierarchy for the 
shirt domain because it has many more shirt instances to organize and because it needs to support 
many shirt shoppers, not just one person whose shirts are all the same size.  

7.3.3.2. Different Properties for Subsets of Resources 

Another way to create categories is to employ different properties for distinct subsets of the 
resources being organized. This contrasts with the strict multi-level approach in which every 
resource is evaluated with respect to every property. Alternatively, we could view this principle 
as a way of organizing multiple domains that are conceptually or physically adjacent, each of 
which has a separate set of categories based on properties of the resources in that domain. This 
principle is used for most folder structures in computer file systems and by many email 
applications; you can create as many folder categories as you want, but any resource can only be 
placed in one folder. 

The contrasts between intrinsic and extrinsic properties, and between static and dynamic ones, 
are helpful in explaining this method of creating organizing categories. For example, you might 
organize all of your clothes using intrinsic static properties if you keep your shirts, socks, and 
sweaters in different drawers and arrange them by color; extrinsic static properties if you share 
your front hall closet with a roommate, so you each use only one side of that closet space; 
intrinsic dynamic properties if you arrange your clothes for ready access according to the season; 
and, extrinsic dynamic properties if you keep your most frequently used jacket and hat on a hook 
by the front door. 

A typical supermarket embodies a surprisingly complex classification system. Each section of 
the store employs a different set of properties to arrange its resources, and some properties such 
as perishability and onsite preparation are important in more than one section.  

If we relax the requirement that different subsets of resources use different organizing properties 
and allow any property to be used to describe any resource, the loose organizing principle we 
now have is often called tagging. Using any property of a resource to create a description is an 
uncontrolled and often unprincipled principle for creating categories, but it is increasingly 
popular for organizing photos, websites, email messages in Gmail, or other web-based resources.  

 



 7.3.3.3. Necessary and Sufficient Properties 

A large set of resources does not always require many properties and categories to organize it. 
Some types of categories can be defined precisely with just a few essential properties. For 
example, a prime number is a positive integer that has no divisors other than 1 and itself, and this 
category definition perfectly distinguishes prime and not-prime numbers no matter how many 
numbers are being categorized. “Positive integer” and “divisible only by 1 and itself” are 
necessary or defining properties for the prime number category; every prime number must satisfy 
these properties. These properties are also sufficient to establish membership in the prime 
number category; any number that satisfies the necessary properties is a prime number. 
Categories defined by necessary and sufficient properties are also called monothetic. They are 
also sometimes called classical categories because they conform to Aristotle’s theory of how 
categories are used in logical deduction using syllogisms.  

The Classical View of Categories 

The classical view is that categories are defined by necessary and sufficient properties. This 
theory has been enormously influential in Western thought and is embodied in many organizing 
systems, especially those for information resources. However, we cannot rely on this principle to 
create categories in many domains and contexts because there are not necessary and sufficient 
properties. As a result, many psychologists, cognitive scientists, and computer scientists who 
think about categorization have criticized the classical theory.  

We think this is unfair to Aristotle, who proposed what we now call the classical theory 
primarily to explain how categories underlie the logic of deductive reasoning: All men are 
mortal; Socrates is a man; Therefore, Socrates is mortal. People are wrong to turn Aristotle's 
thinking around and apply it to the problem of inductive reasoning, how categories are created 
from examples. But this is not Aristotle’s fault; he was not trying to explain how cultural 
categories arise. 

Theories of categorization have evolved a great deal since Plato and Aristotle proposed them 
over two thousand years ago, but in many ways, we still adhere to the classical view of 
categories when we create organizing systems because they can be easier to implement and 
maintain that way. 

"Necessary and sufficient" category definition implies is that every member of the category is an 
equally good member or example of the category; every prime number is equally prime. 
Institutional category systems often employ necessary and sufficient properties for their 
conceptual simplicity and straightforward implementation in decision trees, database schemas, 
and programming language classes. 

Consider the definition of an address as requiring a street, city, administrative region, and postal 
code. Anything that has all of these information components is a valid address, and anything that 
lacks any of them is not a valid address.   

 



7.3.4. The Limits of Property-Based Categorization 

Property-based categorization works well by definition for categories like “prime number” where 
the category is defined by necessary and sufficient properties. Property-based categorization also 
works well when properties are conceptually distinct and when the value of a property is easy to 
perceive and examine, as they are with human-made physical resources like shirts. 

However, for organizing systems that need to categorize information resources,  categories 
defined using easily perceived properties are often not effective. There might be indications “on 
the surface” that suggest boundaries between types of information resources, but these are often 
just presentation or packaging choices. That is to say, neither the size of a book nor the color of 
its cover are reliable cues for what it contains. Information resources have numerous descriptive 
properties like their title, author, and publisher that can be used more effectively to define 
categories, and these are certainly useful for some kinds of interactions, like finding all of the 
books written by a particular author or published by the same publisher. However, for practical 
purposes, the most useful property of an information resource is its aboutness, which may not be 
objectively perceivable and which is often hard to describe. Any collection of information 
resources in a library or document filing system is likely to be about many subjects and topics, 
and when an individual resource is categorized according to a limited number of its content 
properties, it is at the same time not being categorized using the others. 

When the web first started, there were many attempts to create categories of websites, most 
notably by Yahoo! As the web grew, it became obvious that search engines would be vastly 
more useful because their near real-time text indexes obviate the need for a priori assignment of 
web pages to categories. Rather, web search engines represent each web page or document in a 
way that treats each word or term they contain as a separate property. 

Considering every distinct word in a document stretches our notion of property to make it very 
different from the kinds of properties we have discussed so far, where properties are explicitly 
used by people to make decisions about category membership and resource organization. Human 
perceptual and cognitive limitations make it impossible for people to pay attention to more than a 
few properties at the same time. But computers have no such limitations, and algorithms for 
information retrieval and machine learning can use huge numbers of properties. 

7.3.5. Probabilistic Categories and “Family Resemblance” 

As we have seen, some categories can be precisely defined using necessary and sufficient 
features, especially when the properties that determine category membership are easy to observe 
and evaluate. A number is either a prime number or it isn't. A person cannot be a registered 
student and not registered at the same time. 

However, categorization based on explicit and logical consideration of properties is much less 
effective and sometimes not even possible for domains where properties lack one or more of the 
characteristics of separability, perceptibility, and necessity. Instead, we need to categorize using 
properties in a probabilistic or statistical way to yield some measure of similarity between the 
resource to be categorized and the other members of the category. 



Consider a familiar category like “bird.” All birds have feathers, wings, beaks, and two legs. But 
there are thousands of types of birds, and they are distinguished by properties that some birds 
have that other birds lack: most birds can fly, most are active in the daytime, some swim, some 
swim underwater; some have webbed feet. These properties are correlated or clustered, a 
consequence of natural selection that conveys advantages to particular configurations of 
characteristics.   There are many different clusters of properties; birds that live in trees have 
different wings and feet than those that swim, and birds that live in deserts have different 
colorations and metabolisms that those that live near water. So instead of being defined by a 
single set of properties that are both necessary and sufficient, the bird category is defined 
probabilistically. Decisions about category membership are made by accumulating evidence 
from the properties that are more or less characteristic of the category. 

Family Resemblance and Typicality 

These six animals have some physical features in common but not all of them, yet they resemble 
each other enough to be easily recognizable as birds. Most people consider a pigeon to be a more 
typical bird than a penguin. 

 

Categories of information resources often have the same probabilistic character. Some words 
(beneficiary, pharmaceutical, offer) occur often in spam messages, but these words also occur in 
messages that are not spam. A spam classifier uses the probabilities of each word in a message in 
spam and non-spam contexts to calculate an overall likelihood that the message belongs in the 
spam category. 



There are three related consequences for categories when their characteristic properties have a 
probabilistic distribution: 

• The first is an effect of typicality or centrality that makes some members of the category 
better examples than others. Membership in probabilistic categories is not all or none, so 
even if they share many properties, an instance that has more of the characteristic 
properties will be judged as better or more typical. Try to define “bird” and then ask 
yourself if all of the things you classify as birds are equally good examples of the 
category (look at the six birds above in Family Resemblance and Typicality). This effect 
is also described as gradience in category membership and reflects the extent to which the 
most characteristic properties are shared. 

• A second consequence is that the sharing of some but not all properties creates what we 
call family resemblances among the category members; just as biological family 
members do not necessarily all share a single set of physical features but still are 
recognizable as members of the same family. This idea was first proposed by the 20th-
century philosopher Ludwig Wittgenstein, who used “games” as an example of a 
category whose members resemble each other according to shifting property subsets. 

• The third consequence, when categories do not have necessary features for membership, 
is that the boundaries of the category are not fixed; the category can be stretched and new 
members assigned as long as they resemble incumbent members. Personal video games 
and multiplayer online games like World of Warcraft did not exist in Wittgenstein’s time 
but we have no trouble recognizing them as games and neither would Wittgenstein, were 
he alive. Categories defined by family resemblance or multiple and shifting property sets 
are called polythetic. 

We conclude that instead of using properties one at a time to assign category membership, we 
can use them in a composite or integrated way where together a co-occurring cluster of 
properties provides evidence that contributes to a similarity calculation. Something is categorized 
as an A and not a B if it is more similar to A’s best or most typical member rather than it is to 
B’s. 

7.3.6. Similarity 

Similarity is a measure of the resemblance between two things that share some characteristics but 
are not identical. It is a very flexible notion whose meaning depends on the domain within which 
we apply it. Some people consider that the concept of similarity is itself meaningless because 
there must always be some basis, some unstated set of properties, for determining whether two 
things are similar. If we identify those properties and how they are used, there is no work for a 
similarity mechanism to do. 

To make similarity a useful mechanism for categorization we have to specify how the similarity 
measure is determined. Four psychologically-motivated approaches propose different functions 
for computing similarity: feature- or property-based, geometry-based, transformational, and 
alignment- or analogy-based.  



7.3.6.1. Feature-based Models of Similarity 

An influential model of feature-based similarity calculation is Amos Tversky’s contrast model, 
which matches the features or properties of two things and computes a similarity measure 
according to three sets of features:  

• those features they share, 
• those features that the first has that the second lacks, and 
• those features that the second has that the first lacks. 

The similarity based on the shared features is reduced by the two sets of distinctive ones. The 
weights assigned to each set can be adjusted to explain judgments of category membership. 

 Another commonly feature-based similarity measure is the Jaccard coefficient, the ratio of the 
common features to the total number of them. This simple calculation equals zero if there are no 
overlapping features and one if all features overlap. Jaccard's measure is often used to calculate 
document similarity by treating each word as a feature. 

We often use a heuristic version of feature-based similarity calculation when we create multi-
level or hierarchical category systems to ensure that the categories at each level are at the same 
level of abstraction. For example, if we were organizing a collection of musical instruments, it 
would not seem correct to have subcategories of “woodwind instruments,” “violins,” and 
“cellos” because the feature-based similarity among the categories is not the same for all 
pairwise comparisons among the categories; violins and cellos are simply too similar to each 
other to be separate categories given the much broader category of woodwinds. 

7.3.6.2. Geometric Models of Similarity 

Geometric models are a similarity framework in which items whose property values are metric 
are represented as points in a multi-dimensional feature- or property-space. The property values 
are the coordinates, and similarity is calculated by measuring the distance between the items. 

Document Similarity 

 

Geometric similarity functions are commonly used by search engines; if a query and document 
are each represented as a vector of search terms, relevance is determined by the distance between 

Documents represented as vectors in 
term space, with the angles between 
them as a measure of their similarity. 



the vectors in the “term space.” The simplified diagram titled "Document Similarity" depicts four 
documents whose locations in the term space are determined by how many of each of three terms 
they contain. The document vectors are normalized to length 1, which makes it possible to use 
the cosine of the angle between any two documents as a measure of their similarity. Documents 
d1 and d2 are more similar to each other than documents d3 and d4 because the angle between 
the former pair (Θ) is smaller than the angle between the latter (Φ).  

If the vectors that represent items in a multi-dimensional property space are of different lengths, 
instead of calculating similarity using cosines we need to calculate similarity in a way that more 
explicitly considers the differences on each dimension. 

Geometric Distance Functions 

 

The diagram "Geometric Distance Functions" shows two different ways of calculating the 
distance between points 1 and 2 using the differences A and B. The Euclidean distance function 
takes the square root of the sum of the squared differences on each dimension; in two 
dimensions, this is the familiar Pythagorean Theorem to calculate the length of the hypotenuse of 
a right triangle, where the exponent applied to the differences is 2. In contrast, the City Block 
distance function, so-named because it is the natural way to measure distances in cities with 
“gridlike” street plans, adds up the differences on each dimension, which is equivalent to an 
exponent of 1.  

We can interpret the exponent as a weighting function that determines the relative contribution of 
each property to the overall distance or similarity calculation. The choice of exponent depends 
on the type of properties that characterize a domain and how people make category judgments 
within it. The exponent of 1 in the City Block function ensures that each property contributes its 
full amount. As the exponent grows larger, it magnifies the impact of the properties on which 
differences are the largest.  

The distance between points 1 and 2 
depends on how the distance 
function combines the differences in 
values (A and B) on each dimension. 



7.3.6.3.  Transformational Models of Similarity 

Transformational models assume that the similarity between two things is inversely proportional 
to the complexity of the transformation required to turn one into the other. The simplest 
transformational model of similarity counts the number of properties that would need to change 
their values. More generally, one way to perform the name matching task of determining when 
two different strings denote the same person, object, or other named entity is to calculate the 
“edit distance” between them; the number of changes required to transform one into the other.  

7.3.6.4. Alignment or Analogy Models of Similarity 

None of the previous types of similarity models works very well when comparing things that 
have lots of internal or relational structure. In these cases, calculations based on matching 
features is insufficient; you need to compare features that align because they have the same role 
in structures or relationships. For example, a car with a green wheel and a truck with a green 
hood both share the feature green, but this matching feature does not increase their similarity 
much because the car's wheel does not align with the truck's hood. On the other hand, analogy 
lets us say that an atom is like the solar system. They have no common properties, but they share 
the relationship of having smaller objects revolving around a large one. 

7.3.7. Goal-Derived Categories 

Another psychological principle for creating categories is to organize resources that go together 
to satisfy a goal. Consider the category “Things to take from a burning house,” an example that 
cognitive scientist Lawrence Barsalou termed an ad hoc or goal-derived category.  

What things would you take from your house if a fire threatened it?? Possibly your cat, your 
wallet and checkbook, important papers like birth certificates and passports, and grandma’s old 
photo album, and anything else you think is important, priceless, or irreplaceable—as long as 
you can carry it. These items have no discernible properties in common, except for being your 
most precious possessions. The category is derived or induced by a particular goal in some 
specified context. 

A similar goal-derived category is "Things used at the gym," which might contain a hand towel, 
a music player with headphones, and a bottle of water.   

7.3.8. Theory-Based Categories 

A final psychological principle for creating categories is organizing things in ways that fit a 
theory or story that makes a particular categorization sensible. A theory-based category can win 
out even if probabilistic categorization, on the basis of family resemblance or similarity with 
respect to visible properties, would lead to a different category assignment. For example, a 
theory of phase change explains why liquid water, ice, and steam are all the same chemical 
compound even though they share few visible properties.  



Theory-based categories based on origin or causation are especially important with highly 
inventive and computational resources because unlike natural kinds of physical resources, little 
or none of what they can do or how they behave is visible on the surface. Consider all of the 
different appearances and form factors of the resources that we categorize as “computers” —
their essence is that they all compute, an invisible or theory-like principle that does not depend 
on their visible properties. 

7.4. Category Design Issues and Implications 
We have previously discussed resource properties, similarity, and goals as principles for defining 
categories. When we use these principles to develop a system of categories, we must make 
decisions about the system's depth and breadth. Here, we examine the idea that some levels of 
abstraction in a system of categories are more basic or natural than others. We also consider how 
the choices we make shape our interactions when we need to find some resources.  

7.4.1. Category Abstraction and Granularity 

We can identify any resource as a unique instance or as a member of a class of resources. The 
size of this class—the number of resources that we treat as equivalent—is determined by the 
properties or characteristics we consider. The context and our intent influence how we think of a 
resource domain.  The same resource can be thought of abstractly in some situations and very 
concretely in others.  

Consider the regular chore of putting away clean clothes. When we consider something to be an 
item of clothing, we are putting it in a broad category whose members are any type of garment 
that a person might wear. However, using only one category for all clothing and never 
distinguishing the various items in any useful or practical way would mean that we keep our 
clothes in a big unorganized pile. 

However, we cannot wear any random combination of items of clothing—we need a shirt, a pair 
of pants, socks, and so on. A single clothing category is too broad for most purposes. Instead, 
most people organize their clothes in more fine-grained categories that align better with how they 
select clothes to wear. 

In §7.3.2, “Single Properties” we described an organizing system for the shirts in our closet, so 
let us talk about socks instead. Most people wear two socks at a time. If you wear socks in pairs, 
it seems sensible to organize them as pairs when you are putting them away. Some people might 
further separate their dress socks from athletic ones, and then sort these socks by color or 
material, creating a hierarchy of sock categories analogous to the shirt categories in our previous 
example. 

Questions of resource abstraction and granularity also emerge whenever the information systems 
of different firms, or different parts of a firm, need to exchange information or be combined to 
create a single system. All parties must define the identity of each thing in the same way, or in 
ways that can be related to each other either manually or electronically.  



For example, how should a business system deal with a customer’s address? Printed on an 
envelope, “an address” looks like a multi-line text object. Inside an information system, 
however, an address is best stored as a set of  separate information components. This fine-
grained organization makes it easier to sort customers by city or postal codes for sales and 
marketing purposes. Incompatibilities in the abstraction and granularity of these information 
components can cause interoperability problems when businesses need to share information. 

7.4.2. Basic or Natural Categories 

Categories are often described in terms of where they fit in a hierarchy of superordinate, basic, 
and subordinate category levels. “Clothing,” for example, is a superordinate category, “shirts” 
and “socks” are basic categories, and “white long-sleeve dress shirts” and “white wool hiking 
socks” are subordinate categories. Members of basic level categories like “shirts” and “socks” 
share many perceivable properties. In contrast, members of superordinate categories have fewer 
common properties.  Finally, members of subordinate categories have many common properties, 
but these properties are also shared by members of other subordinate categories at the same level 
of abstraction in the category hierarchy. That is, while we can identify many properties shared by 
all “white long-sleeve dress shirts,” many of them are also properties of “blue long-sleeve dress 
shirts” and “black long-sleeve pullover shirts.” 

7.4.3. The Recall / Precision Tradeoff 

The abstraction level we choose when we define a category determines how precisely we 
identify the resources contained in the category. When we want to make a general claim or 
communicate a broad interest, we use superordinate categories, as when we ask, “How many 
animals are in the San Diego Zoo?” In contrast, we use precise subordinate categories when we 
need to be specific: “How many adult emus are in the San Diego Zoo today?” 

If we return to our clothing example, it is easy to find a pair of white wool hiking socks if the 
organizing system for socks has fine-grained categories. When resources are described and 
arranged with this level of detail, a similarly detailed specification of the resources you are 
looking for yields precisely what you want. When you get to the place where you keep white 
wool hiking socks, you find all of them and nothing else. On the other hand, if all your socks are 
tossed unsorted into a sock drawer, you might not be able to find the socks you want, and you 
encounter many socks you do not want. However, you would not have put time into sorting 
them, which many people do not enjoy doing; you can spend time sorting or searching depending 
on your preferences. 

If we translate this example into the jargon of information retrieval, we say that more fine-
grained organization reduces recall. the number of resources you find or retrieve in response to a 
query.  At the sane tine, fine-grained organization increases the precision of the recalled set, the 
proportion of recalled items that are relevant. Broader or coarse-grained categories increase 
recall, but lower precision. We are all too familiar with this hard bargain when we use a web 
search engine; a quick one-word query results in many pages of mostly irrelevant sites, whereas 
a carefully crafted multi-word query pinpoints sites with the information we seek.  



This tradeoff between the investment in organization and the investment in retrieval persists in 
nearly every organizing system. The more effort we put into organizing resources, the more 
effectively they can be retrieved. The more effort we are willing to put into retrieving resources, 
the less they need to be organized first. The allocation of costs and benefits between the 
organizer and retriever differs according to the relationship between them. Are they the same 
person? Who does the work and who gets the benefit? 

7.5. Implementing Categories 
Categories are conceptual constructs that we use in a mostly invisible way when we talk or think 
about them. When we organize our kitchens, closets, or file cabinets using shelves, drawers, and 
folders, these physical locations and containers are the visible implementations of our category 
system, but they are not the categories. This distinction between category design and 
implementation is obvious when we follow signs and labels in libraries or grocery stores to find 
things, search a product catalog or company personnel directory, or analyze a set of economic 
data assembled by the government from income tax forms. These categories were designed by 
people prior to the assignment of resources to them.  

This separation between category creation and category implementation prompts us to ask how a 
system of categories can be implemented. We do not discuss the implementation of categories in 
the technical sense of building physical or software systems that organize resources. Instead, we 
take a higher-level perspective that analyzes the implementation problem to be solved for the 
different types of categories discussed in §7.3, and then explain the logic we follow to assign 
resources correctly to them. 

7.5.1. Implementing Enumerated Categories 

Enumerated categories are easy to implement. The members in a set define the category, and 
testing an item for membership means looking in the set for it. Enumerated category definitions 
are familiar in drop-down menus and form-filling. You scroll through a list of countries in the 
world to search for the one you want in an address, and whatever you select is a valid country 
name, because the list only changes if a new country comes into being. Enumerated categories 
can also be implemented with associative arrays (also known as hash tables or dictionaries). 
With these data structures, a test for set membership is even more efficient than searching, 
because it takes the same time for sets of any size. 

7.5.2. Implementing Categories Defined by Properties 

The most conceptually simple and straightforward implementation of categories adopts the 
classical view of categories based on necessary and sufficient features. Because such categories 
are prescriptive with explicit and clear boundaries, classifying items into the categories is 
objective and deterministic.   There is an unambiguous method of testing or validation to 
determine whether some instance is a member of the category.  The tests are rules that mention 
the required properties and property values: 

• If instance X has property P, then X is in category Y. 



• For a number to be classified as prime it must satisfy two rules: It must be greater than 1, 
and have no positive divisors other than 1 and itself. 

The results of these tests are unambiguous. The item is either a member of the category or it isn't. 

A system of hierarchical categories is defined by a sequence of property tests in a particular 
order. The most natural way to implement multi-level category systems is with a  decision tree, . 
an algorithm that makes a decision using a sequence of logical or property tests.  

Suppose a bank uses a sequential rule-based approach to decide whether to give someone a 
mortgage loan. 

• If applicant’s annual income exceeds $100,000, and if the monthly loan payment is less 
than 25% of monthly income, approve the mortgage application. 

• Otherwise, deny the loan application. 

This simple decision tree is depicted in Figure 7.1, “Rule-based Decision Tree”. The rules used 
by the bank to classify loan applications as “Approved” or “Denied” have a direct representation 
in the tree. The easy interpretation of decision trees makes them a common implementation for 
classification models.  

Figure 7.1. Rule-based Decision Tree 

 



In this simple decision tree,  a sequence of two tests - one for the borrower's annual income, and 
one for the percentage of monthly income required to make the loan payment - classify the 
applicants into the “deny” and “approve” categories. 

Any implementation of a category is only interpretable to the extent that the properties and tests 
it uses in its definition can be understood. Because natural language is inherently ambiguous, it is 
often not the optimal representational format for formally defined institutional categories. 
Categories defined using natural language can be incomplete, inconsistent, or ambiguous 
because words often have multiple meanings. For example, because the implementation uses 
words like "wealthy" and "easily" rather than precise values, this bank’s procedure for evaluating 
loans would be hard to interpret reliably: 

• If the applicant is wealthy, and then if the monthly payment is an amount that the 
applicant can easily repay, then the applicant is approved. 

Instead, decision trees are sometimes specified using the controlled vocabularies and constrained 
syntax of “simplified writing” or “business rule” systems to make them more interpretable. 

Even more than controlled vocabularies, artificial languages are a more ambitious way to enable 
precise specification of property-based categories. An artificial language expresses ideas 
concisely by introducing new terms or symbols that represent complex ideas along with syntactic 
mechanisms for combining and operating on them. Mathematical notation, programming 
languages, schema languages that define valid document instances, and regular expressions that 
define search and selection patterns are familiar examples of artificial languages.  

Artificial languages for defining categories have a long history in philosophy and science. 
However, the vast majority of institutional category systems are still specified with natural 
language, despite its ambiguities because people usually understand the languages they learned 
naturally better than artificial ones. Sometimes categories are defined using natural language to 
allow institutional categories embodied in laws to evolve in the courts and to accommodate 
technological advances. 

Data schemas that specify data entities, elements, identifiers, attributes, and relationships in 
databases and XML document types on the transactional end of the Document Type Spectrum 
(§4.2.1) are implementations of the categories needed for the design, development and 
maintenance of information organization systems. Data schemas tend to rigidly define categories 
of resources.  

In object-oriented programming languages, classes are templates for the creation of objects. A 
class in a programming language is analogous to a database schema that specifies the structure of 
its member instances, in that the class definition specifies how instances of the class are 
constructed in terms of data types and possible values. Programming classes may also specify 
whether data in a member object can be accessed, and if so, how. 

Unlike transactional document types, which can be prescriptively defined as classical categories 
because they are often produced and consumed by automated processes, narrative document 



types are usually descriptively defined. We do not classify something as a novel because it has 
some specific set of properties and content types. Instead, we have a notion of typical novels and 
their characteristic properties, and some things that are considered novels are far from typical in 
their structure and content. 

7.5.3. Implementing Categories Defined by Probability and Similarity 

Many categories cannot be defined using tests for required properties, and instead must be 
defined probabilistically;  category membership is determined by properties that resources are 
likely to have, not by properties they must have. Consider the category “friend.” You probably 
consider many people to be your friends, but you have longtime friends, school friends, 
workplace friends, friends you see only at the gym, and friends of your parents. Each of these 
types of friends represents a different cluster of common properties. If someone is described to 
you as a potential friend, how accurately can you predict that the person will become a friend?  

Probabilistic categories can be challenging to define and use because it can be difficult to keep in 
mind the complex feature correlations and probabilities exhibited by different clusters of 
instances. Furthermore, when the category being learned is broad with a large number of 
members, the sample from which you learn strongly shapes what you learn. For example, people 
who grow up in high-density and diverse urban areas may have less predictable ideas of who an 
acceptable friend might be than someone in a remote rural area with a more homogeneous 
population.  

More generally, if you are organizing a domain where the resources are active, change their state, 
or are measurements of properties that vary and co-occur probabilistically, the sample you 
choose strongly affects the accuracy of models for classification or prediction. In the book The 
Signal and the Noise, statistician Nate Silver explains how many notable predictions failed 
because of poor sampling techniques. One common sampling mistake is to use too short a 
historical window to assemble the training dataset; this is often a corollary of a second mistake, 
an over-reliance on recent data because it is more available. 

7.5.3.1. Probabilistic Decision Trees 

In §7.5.2, we showed how a rule-based decision tree could be used to implement a strict 
property-based classification in which a bank uses tests for the properties of “annual income” 
and “monthly loan payment” to classify applicants as approved or denied. We can adapt that 
example to illustrate probabilistic decision trees, which are better suited for implementing 
categories in which category membership is probabilistic rather than absolute. 

Banks that are more flexible about making loans can be more profitable because they can make 
loans to people that a stricter bank would reject. Instead of enforcing conservative and fixed 
cutoffs on income and monthly payments, these banks evaluate applications in a more 
probabilistic way. These banks recognize that not every loan applicant who is likely to repay the 
loan looks exactly the same; “annual income” and “monthly loan payment” remain important 
properties, but other factors might also be useful predictors, and there is more than one 
configuration of values that an applicant could satisfy to be approved for a loan. 



Which properties of applicants best predict whether they will repay the loan or default? A 
property that predicts each at 50% isn’t helpful, but a property that splits the applicants into two 
sets with very different probabilities for repayment and defaulting is very helpful in making a 
loan decision. 

A data-driven bank relies upon historical data about loan repayment and defaults to train 
algorithms that create decision trees by repeatedly splitting the applicants into subsets that are 
most different in their predictions. Subsets of applicants with a high probability of repayment 
would be approved, and those with a high probability of default would be denied a loan. One 
method for selecting the property test for making each split is calculating the “information gain”. 
This measure captures the degree to which each subset contains a “pure” group in which every 
applicant is classified the same, as likely repayers or likely defaulters. 

This calculation is carried out for each of the attributes in the historical data set to identify the 
one that best divides the applicants into the repaid and defaulted categories. The attributes and 
the value that defines the decision rule can then be ordered to create a decision tree similar to the 
rule-based one we saw in §7.5.2. In our hypothetical case, it turns out that the best order in which 
to test the properties is Income, Monthly Payment, and Interest Rate, as shown in Figure 7.2, 
“Probabilistic Decision Tree”.  

Figure 7.2 Probabilistic Decision Tree 

 

 



The end result is still a set of rules, but behind each decision in the tree are probabilities based on 
historical data that can more accurately predict whether an applicant will repay or default. Thus, 
instead of the arbitrary cutoffs at $100,000 in income and 25% for monthly payment, the bank 
can offer loans to people with lower incomes and remain profitable doing so, because it knows 
from historical data that $82,000 and 27% are the optimal decision points. Using the interest rate 
in their decision process is an additional test to ensure that people can afford to make loan 
payments even if interest rates go up. 

7.5.3.2. Naïve Bayes Classifiers 

Another commonly used approach to implement a classifier for probabilistic categories is called 
Naïve Bayes. It employs Bayes’ Theorem for learning the importance of a particular property for 
correct classification. There are some common sense ideas that are embodied in Bayes’ 
Theorem: 

• When you have a hypothesis or prior belief about the relationship between a property and 
a classification, new evidence that is consistent with that belief should increase your 
confidence.  

• Contradictory evidence should reduce confidence in your belief.  
• If the base rate for some kind of event is low, do not forget that when you make a 

prediction or classification for a new specific instance. It is easy to be overly influenced 
by recent information. 

We can translate these ideas into calculations about how learning takes place. For property A and 
classification B, Bayes’ Theorem says:  

    P (A | B) = P (B|A) P(A) / P(B)  

The left hand side of the equation, P (A | B), is what we want to estimate but can’t measure 
directly: the probability that A is the correct classification for an item or observation that has 
property B. This is called the conditional or posterior probability because it is estimated after 
seeing the evidence of property B. 

P (B | A) is the probability that any item correctly classified as A has property B. This is called 
the likelihood function. 

P (A) and P (B) are the independent or prior probabilities of A and B; what proportion of the 
items are classified as A? How often does property B occur in some set of items? 

 

 

 

 

 



Using Bayes’ Theorem to Calculate Conditional Probability 

Your personal library contains 60% fiction and 40% nonfiction books. All of the fiction books 
are in ebook format, and half of the nonfiction books are ebooks and half are in print format. If 
you pick a book at random and it is in ebook format, what is the probability that it is nonfiction? 

Bayes’ Theorem tells us that:  

    P (nonfiction | ebook) = P (ebook |nonfiction) x P (nonfiction) / P (ebook). 

We know: P (ebook | nonfiction) = .5 and P (nonfiction) = .4 

We compute P (ebook) using the law of total probability to compute the combined probability of 
all the independent ways in which an ebook might be sampled. In this example there are two 
ways: 

    P (ebook) = P (ebook | nonfiction) x P (nonfiction)  
                       + P (ebook | fiction) x P (fiction) 
                    = (.5 x .4) + (1 x .6) = .8 

Therefore: P (nonfiction | ebook) = (.5 x .4) / .8 = .25 

Now let’s apply Bayes’ Theorem to implement email spam filtering. Messages are classified as 
SPAM or HAM (i.e., non-SPAM); the former are sent to a SPAM folder, while the latter head to 
your inbox. 

1. Select Properties. We start with a set of properties, some from the message metadata like 
the sender’s email address or the number of recipients, and some from the message 
content. Every word that appears in messages can be treated as a separate property 

2. Assemble Training Data. We assemble a set of email message that have been correctly 
assigned to the SPAM and HAM categories. These labeled instances make up the training 
set.  

3. Analyze the Training Data. For each message, does it contain a particular property? For 
each message, is it classified as SPAM? If a message is classified as SPAM, does it 
contain a particular property? (These are the three probabilities on the right side of the 
Bayes equation).  

4. Learn. The conditional probability (the left side of the Bayes equation) is recalculated, 
adjusting the predictive value of each property. Taken together, all of the properties are 
now able to correctly assign (most of) the messages into the categories they belonged to 
in the training set.  

5. Classify. The trained classifier is now ready to classify uncategorized messages to the 
SPAM or HAM categories.  

6. Improve. The classifier can improve its accuracy if the user gives it feedback by 
reclassifying SPAM messages as HAM ones or vice versa.. 



7.5.3.3. Categories Created by Clustering 

In the previous two sections we discussed how probabilistic decision trees and naïve Bayes 
classifiers implement categories that are defined by typically shared properties and similarity. 
Both are examples of supervised learning because they need correctly classified examples as 
training data, and they learn the categories they are taught. 

In contrast, clustering techniques are unsupervised; they analyze a collection of resources to 
discover statistical regularities or structure among the items.  These techniques create a set of 
categories without any labeled training data. 

Clustering techniques are used to create meaningful categories from a collection of items whose 
properties are hard to directly perceive and evaluate. In this situation category membership 
cannot easily be reduced to specific property tests and instead must be based on similarity. For 
example, with large sets of documents or behavioral data, clustering techniques can find 
categories of documents with the same topics, genre, or sentiment, or categories of people with 
similar habits and preferences. 

Because clustering techniques are unsupervised, they create categories based on calculations of 
similarity between resources, maximizing the similarity of resources within a category and 
maximizing the differences between them. These statistically-learned categories are not always 
meaningful ones that can be named and used by people. Some clustering techniques for text 
resources suggest names for the clusters based on the important words in documents at the center 
of each cluster. However, unless there is a labeled set of resources from the same domain that 
can be used as a check to see if the clustering discovered the same categories, it is up to the data 
analyst or information scientist to make sense of the discovered clusters or topics. 

There are many different distance-based clustering techniques, but they share three basic 
methods. 

• The first shared method is that clustering techniques start with an initially uncategorized 
set of items or documents that are represented in ways that enable measures of inter-item 
similarity can be calculated. This representation is most often a vector of property values 
or the probabilities of different properties, so that items can be represented in a 
multidimensional space and similarity calculated using a distance function like those 
described in §7.3.6.2, “Geometric Models of Similarity”. The choice of properties and the 
methods for calculating similarity can result in very different numbers and types of 
categories 

• The second shared method is that categories are created by putting items that are most 
similar into the same category. Hierarchical clustering approaches start with every item in 
its own category. Other approaches, notably one called “K-means clustering,” start with a 
fixed number of K categories initialized with a randomly chosen item or document from 
the complete set. 

• The third shared method is refining the system of categories by iterative similarity 
recalculation each time an item is added to a category. Approaches that start with every 
item in its own category create a hierarchical system of categories by merging the two 



most similar categories, re-computing the similarity between the new category and the 
remaining ones, and repeating this process until all the categories are merged into a single 
category at the root of a category tree. Techniques that start with a fixed number of 
categories do not create new ones but instead repeatedly recalculate the “centroid” of the 
category by adjusting its property representation to the average of all its members after a 
new member is added. 

7.5.3.4. Neural networks 

Among the best performing classifiers for categorizing by similarity and probabilistic 
membership are those implemented using neural networks, and especially those employing deep 
learning techniques. Deep learning algorithms can learn categories from labeled training data or 
by using autoencoding, an unsupervised learning technique that trains a neural network to 
reconstruct its input data. However, instead of using the properties that are defined in the data, 
deep learning algorithms devise a very large number of features in hidden hierarchical layers, 
which makes them uninterpretable by people. The key idea that made deep learning possible is 
the use of “backpropagation” to adjust the weights on features by working backwards from the 
output (the object classification produced by the network) all the way back to the input.  

7.5.4. Implementing Goal-Based Categories 

Goal-based categories are highly individualized, and are often used just once in a very specific 
context. However, it is useful to consider that we could implement model goal-derived categories 
as rule-based decision trees by ordering the decisions to ensure that any sub-goals are satisfied 
according to their priority. We could understand the category “Things to take from a burning 
house” by first asking the question “Are there living things in the house?” because that might be 
the most important sub-goal. If the answer to that question is “yes,” we might proceed along a 
different path than if the answer is “no.” Similarly, we might put a higher priority on things that 
cannot be replaced (Grandma’s photos) than those that can (passport). 

7.5.5. Implementing Theory-Based Categories 

Theory-based categories arise in domains in which the items to be categorized are characterized 
by abstract or complex relationships with their features and with each other. With this model an 
entity need not be understood as inherently possessing features shared in common with another 
entity. Rather, people project features from one thing to another in a search for congruities 
between things. 

Theory-based categories are created as cognitive constructs when we use analogies and classify, 
because things brought together by analogy have abstract rather than literal similarity. The most 
influential model of analogical processing is Structure Mapping, whose development and 
application has been guided by Dedre Gentner for over three decades.  

The key insight in Structure Mapping is that an analogy “a T is like B” is created by matching 
relational structures and not properties between the base domain B and a target domain T. We 
take any two things, analyze the relational structures they contain, and align them to find 



correspondences between them. The properties of objects in the two domains need not match, 
and in fact, if too many properties match, analogy goes away and we have literal similarity:  

• Analogy: The hydrogen atom is like our solar system  
• Literal Similarity: The X12 star system in the Andromeda galaxy is like our solar system 

7.6. Key Points in Chapter Seven 
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