
6
When Models Don’t Match:
The Interoperability Challenge

6.0 INTRODUCTION 172

6.1 THE INTEROPERABILITY CHALLENGE 175

6.2 CONTENT CONFLICTS 181

6.3 ENCODING CONFLICTS 184

6.4 STRUCTURAL CONFLICTS 187

6.5 SEMANTIC CONFLICTS 193

6.6 MOTIVATING THE DOCUMENT ENGINEERING APPROACH 200

6.7 KEY POINTS IN CHAPTER SIX 203

172

Web services and other technologies for service oriented architectures promise a
future in which businesses will be able to discover each other, exchange electronic
documents, and conduct transactions with or without prior agreement. This is the
vision of extended or “virtual” enterprises composed from a variety of business serv-
ices, including many provided by small and medium-sized enterprises or those from
developing countries who were previously excluded from automated business rela-
tionships due to cost or technical barriers. New and more cost-effective and capable
technologies will enable a seamless or “plug-and-play” business Internet in which
loosely coupled document exchanges are the foundation for flexible, adaptive, and
on-demand business models.

But not quite yet.

The most basic requirement for two businesses
to conduct business is that their business

systems interoperate

The most basic requirement for two businesses to conduct business is that their busi-
ness systems interoperate. Interoperability doesn’t require that two systems be iden-
tical in design or implementation, only that they can exchange information and use
the information they exchange. Interoperability requires that the information being
exchanged is conceptually equivalent; once this equivalence is established, trans-
forming different implementations to a common exchange format is a necessary but
often trivial thing to do. Interoperability is an easy goal to express but hard to
achieve, especially if you want to avoid the overhead of expensive customized or
hand-crafted integration solutions.

In this chapter we will explain why interoperability is a challenging goal by studying
the types of conflicts that can arise when two enterprises try to exchange informa-
tion. Of course, before enterprises can exchange information they must also under-
stand and agree on the appropriateness of the exchange and on their respective
responsibilities, roles, and commercial processes in the exchange. We’ll return to

6.0
INTRODUCTION

DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

173

these contextual issues in Chapter 8, but for now let’s assume two enterprises have
come to these agreements and are beginning to exchange information.

The information exchanged might not match because of syntactic or encoding con-
flicts, because of structural or assembly conflicts, or because of conflicts in meaning
or semantics. Some of these conflicts can be remedied or worked around, but others
reflect basic incompatibilities in how the businesses understand their information
and prevent interoperability from being achieved.

We can identify four different ways in which exchanges of information can be mis-
understood. These are based on various combinations of content, syntax, structure,
and semantic conflicts that can occur in any single document exchange. These cate-
gories are best explained by the following examples. As a simple case Figure 6-1
describes the ways in which we might communicate a value of 100 U.S. dollars:

Differences in Content:
• option a. <A>USD 100
• option b. <A>One Hundred US Dollars
• option c. <A>$US100

Differences in Encoding:
• option a. <Amount>USD 100</Amount>
• option b. USD,100
• option c. CUR:USD|AMT:100

Differences in Structure:
• option a. <Amount>USD 100</Amount>
• option b. <Currency>USD</Currency><Amount>100</Amount>
• option c. <Amount>100<Currency>USD</Currency></Amount>

Differences in Semantics:
• option a. <Amount>USD 100</Amount>
• option b. <PreTaxAmount>USD90</PreTaxAmount><Tax>USD10</Tax>
• option c. <Price>USD 100</Price>

Figure 6-1. Four Ways to Misunderstand a Document Component

WHEN MODELS DON’T MATCH: THE INTEROPERABILITY CHALLENGE

174

Each of these categories contains alternative ways to express the value of 100 U.S.
dollars; the options in each case illustrate the meaning of the category. In most cases
what is expressed might mean something to a person, but that’s not what is at issue
here. What matters is whether a business system can understand these different
expressions to mean the same thing.

To better understand the conflict categories we will work backward from the physi-
cal to the conceptual view of our document models. We start with the information
value itself, the content carried in a document instance. Every information compo-
nent in the document follows some form of constraints on its possible values that
defines its data type. For example, a value might be alphabetic text, integers, deci-
mal, a specific pattern like those for dates and times, or one of a set of possible val-
ues, such as a coded list of countries or airports. The business system of the party
receiving the document must know how to interpret these values, and it uses the
explicit or implicit information about data types to do that.

In the first category of examples, the recipient’s business system is more likely to be
able to process “USD 100” than “One Hundred US Dollars” because the former fol-
lows a more prescribed data format than the latter, which appears to be informal
words of text. We call this a problem in content.

We next consider the language used to describe the information. When two business-
es make different choices in the implementation phase of their project, they might
introduce conflicts in encoding.

XML, EDI, and structured text offer different languages for implementing document
components. So we need to understand how these different implementation models
influence interoperability.

We then need to recognize that similar syntax does not guarantee equivalent docu-
ment or component structures. For example, all the components may be present but
not in the expected arrangement. These are called structural conflicts.

Finally we need to examine the most serious conflicts, the ones that occur when com-
ponent models diverge semantically because they are not defining the same things in
the same context. These may reflect different requirements or choices made in the
earliest phases of analysis and modeling.

DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

175

We began this book with a comparison between buying a book in a bookstore and
buying one online at GMBooks.com. Now let’s imagine that GMBooks.com wants to
accept electronic orders from affiliated booksellers that come via documents rather
than from people browsing its website.1

Making this happen seems simple: GMBooks.com publishes its requirements for the
information that electronic orders must contain and the protocols it uses to receive
messages.

Some of its partners can easily program or configure their business systems to send
electronic orders that conform to the GMBooks.com specification. But others might
not be able or willing to do so, and those are the situations that we’ll discuss in this
chapter.

Figure 6-2 illustrates this idea using the document exchanges among the various par-
ticipants in the GMBooks.com virtual enterprise. The <BuyersID> in the message
sent by the Affiliate Bookseller identifies the buyer, but when this information about
the buyer appears in the Purchase Order, Shipping Note, and Transaction Advice
documents it has a different meaning, name, or data format. These different docu-
ments must work together to carry out the drop shipment process using the overlap-
ping information that flows between them, but unless these differences are resolved,
the messages can’t interoperate.

WHEN MODELS DON’T MATCH: THE INTEROPERABILITY CHALLENGE

6.1
THE INTEROPERABILITY CHALLENGE

176

Figure 6-2. The Interoperability Challenge

Let us assume that the information GMBooks.com needs for its order system is sen-
sible, the buyer’s name and address along with details about the ordered books. The
conceptual model for the required order is shown in Figure 6-3 as a class diagram.

DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

6.1.1
THE INTEROPERABILITY TARGET

177

Figure 6-3. Conceptual Model for Orders

GMBooks.com may publish its specification for accepting electronic orders as the
document implementation model expressed by the XML schema in Figure 6-4.2

<?xml version=“1.0” encoding=“UTF-8”?>
<xs:schema xmlns:xs=“http://www.w3.org/2001/XMLSchema”
elementFormDefault=“qualified”>

<xs:element name=“Order” type=“OrderType”/>
<xs:complexType name=“OrderType”>

<xs:sequence>
<xs:element name=“BuyersID” type=“xs:string”/>

WHEN MODELS DON’T MATCH: THE INTEROPERABILITY CHALLENGE

178

<xs:element name=“BuyerParty” type=“PartyType”/>
<xs:element name=“OrderLine” type=“OrderLineType”
MaxOccurs=“unbounded”/>

</xs:sequence>
</xs:complexType>
<xs:complexType name=“PartyType”>

<xs:sequence>
<xs:element name=“ID” type=“xs:string”/>
<xs:element name=“PartyName” type=“PartyNameType”/>

<xs:element name=“Address” type=“AddressType”/>
</xs:sequence>

</xs:complexType>
<xs:complexType name=“PartyNameType”>

<xs:sequence>
<xs:element name=“Name” type=“xs:string” minOccurs=“0”/>

</xs:sequence>
</xs:complexType>
<xs:complexType name=“AddressType”>

<xs:sequence>
<xs:element name=“Room” type=“xs:string”/>
<xs:element name=“BuildingNumber” type=“xs:string”/>
<xs:element name=“StreetName” type=“xs:string”/>
<xs:element name=“CityName” type=“xs:string”/>
<xs:element name=“PostalZone” type=“xs:string”/>
<xs:element name=“CountrySubentity” type=“xs:string”/>
<xs:element name=“Country” type=“xs:string”/>

</xs:sequence>
</xs:complexType>
<xs:complexType name=“OrderLineType”>

<xs:sequence>
<xs:element name=“LineItem” type=“LineItemType”/>

</xs:sequence>
</xs:complexType>
<xs:complexType name=“LineItemType”>

<xs:sequence>
<xs:element name=“BookItem” type=“BookItemType”/>
<xs:element name=“BasePrice” type=“xs:decimal”/>

DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

179

<xs:element name=“Quantity” type=“xs:int”/>
</xs:sequence>

</xs:complexType>
<xs:complexType name=“BookItemType”>

<xs:sequence>
<xs:element name=“Title” type=“xs:string”/>
<xs:element name=“Author” type=“xs:string”/>
<xs:element name=“ISBN” type=“xs:string”/>

</xs:sequence>
</xs:complexType>

</xs:schema>

Figure 6-4. Document Implementation Model (XML Schema) for Orders

A typical instance of an order that conforms to this schema might look like Figure 6-5.

<?xml version=“1.0” encoding=“UTF-8”?>
<Order>

<BuyersID>GMB91604</BuyersID>
<BuyerParty>

<ID>KEEN</ID>
<PartyName>

<Name>Maynard James Keenan</Name>
</PartyName>
<Address>

<Room>505</Room>
<BuildingNumber>11271</BuildingNumber>
<StreetName>Ventura Blvd.</StreetName>
<CityName>Studio City</CityName>
<PostalZone>91604</PostalZone>
<CountrySubentity>California</CountrySubentity>
<Country>USA</Country>

</Address>
</BuyerParty>
<OrderLine>

<LineItem>
<BookItem>

WHEN MODELS DON’T MATCH: THE INTEROPERABILITY CHALLENGE

180

<Title>Document Engineering</Title>
<Author>Glushko and McGrath</Author>
<ISBN>0262072610</ISBN>

</BookItem>
<BasePrice>99.95</BasePrice>
<Quantity>300</Quantity>

</LineItem>
</OrderLine>
</Order>

Figure 6-5. Instance of an Order Document

We might assume that any affiliate would be able to send this simple document. But
experience has taught us that this is not the case. Variations in strategies, technolo-
gy platforms, legacy applications, business processes, and terminology make it diffi-
cult or impossible for some firms to satisfy the requirements.

Variations in strategies, technology platforms, legacy
applications, business processes, and terminology

make it difficult to use compatible documents

If GMBooks.com were the dominant bookseller on the Web, it might try to compel its
affiliates to comply with its process and information requirements as a condition of
doing business, but this strategy is rarely successful because it does not encourage
loyalty. In most cases, GMBooks.com would adopt the practical approach of trying
to accept orders in whatever form they are sent. In this situation, GMBooks.com
needs to assess whether it can extract the information it needs from what it receives.
So the challenge GMBooks.com faces when it reviews order documents is determin-
ing whether they conform to their information requirements; that is, to recognize
equivalence.

Initially GMBooks.com might test every incoming order document against its schema
in Figure 6-4 and simply reject any order that isn’t well-formed XML or a valid

DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

6.1.2
RECOGNIZING EQUIVALENCE

181

instance of their document schema (see Section 2.6). But this assessment is more dif-
ficult than it might seem. If an incoming invalid message contains elements or attrib-
utes whose names match those that are expected, it would be tempting to extract
them and rearrange them to conform to the target schema. However, the same names
don’t necessarily imply that the meanings are the same. Or the names might not
match but the underlying concepts might be identical. To establish semantic equiv-
alence, we need to compare conceptual representations and determine whether the
different physical models (such as schemas) relate to the required conceptual ones.

Unfortunately most documents don’t arrive with an associated conceptual represen-
tation that unambiguously defines the meaning encoded in the physical model. We
need to apply Document Engineering techniques to determine whether the required
information can be extracted and transformed from the incoming message.

In this case, we might think, “What’s so hard to understand about names, address-
es, and books?” We hope the examples in this chapter will explain that things are not
always as obvious as they seem. In Chapters 11 and 12, “Analyzing Documents” and
“Analyzing Document Components,” we will introduce some techniques for encour-
aging semantic clarity in conceptual models.

Certain conflicts can arise if two business systems use different data types for the
content of the same component. Take, for instance, the following snippet of an order
in Figure 6-6:

WHEN MODELS DON’T MATCH: THE INTEROPERABILITY CHALLENGE

6.2
CONTENT CONFLICTS

182

<LineItem>
<BookItem>

<Title>Document Engineering</Title>
<Author>Glushko and McGrath</Author>
<ISBN>0262072610</ISBN>

</BookItem>
<BasePrice>$99.95</BasePrice>
<Quantity>300</Quantity>

</LineItem>

Figure 6-6. Order Fragment with Base Price Content Conflict

In this order example the base price for the book contains a $ symbol. This creates
a data type conflict in the content of the component. In Figure 6-4 we can see that
GMBooks.com has defined BasePrice in its XML schema as a decimal (meaning a
positive or negative number with a decimal point) and this does not allow a curren-
cy code or symbol.3 The $ symbol in the base price value sent by the affiliate may
cause it to be rejected by the GMBooks.com order system, even though the meaning,
structure, and syntax of the value provided by the affiliate are correct. The content
value provided does not satisfy the possible character set specified in the
GMBooks.com definition.

Content conflicts occur when two parties use different sets
of values for the same components

Content conflicts often happen when the possible values for instances of a compo-
nent must be conformant to a specified pattern or to a set of otherwise arbitrary
codes or identifiers. The latter are commonplace in business documents where using
a fixed set of possible values allows for precise identification. For example, many
enterprises use an identification scheme for countries, usually the ISO 3166-1 alpha-
2 codes that have values like US for United States of America and CN for China.
When possible values are taken from external standards agencies, such as the ISO,
they are called external codes to emphasize that they are not under the enterprise’s
control.

DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

183

Precise identification by each side of an exchange using some set of legal values isn’t
sufficient in itself. The trading parties need to agree on the set of values or the pat-
terns that define acceptable values.

<Address>
<Room>505</Room>
<BuildingNumber>11271</BuildingNumber>
<StreetName>Ventura Blvd.</StreetName>
<CityName>Studio City</CityName>
<PostalZone>91604-3136</PostalZone>
<CountrySubentity>California</CountrySubentity>
<Country>USA</Country>

</Address>

Figure 6-7. Order Fragment with Postal Zone Content Conflict

In Figure 6-7 the GMBooks.com affiliate provides a value for the postal zone using
the U.S. Postal Services nine-digit Zip+4 coding scheme. However the example we
saw in Figure 6-5 uses the less specific five-digit Zip code. Both of these external cod-
ing schemes are acceptable to postal services, but the former may be a content con-
flict for GMBooks.com.

At other times possible values are internally defined by a single enterprise for its own
use. Some examples of internal sets of possible values can be seen in our
GMBooks.com document models (Figures 6-3 and 6-4). First, a BuyerPartyID, the
value that uniquely identifies each buyer, would probably be assigned by
GMBooks.com to each customer when the parties establish a business arrangement.
Secondly, a BuyersID may be issued by affiliates to identify their orders. The rules or
sets of the values for each of these will be controlled by the originating party.

Content conflicts occur when two parties use the same
sets of values for different components

These internal sets of values can often be the cause of content conflicts because both
parties may be using the same or overlapping sets for different components. We fur-
ther discuss the analysis and encoding of sets of possible values in Section 12.1.8.

WHEN MODELS DON’T MATCH: THE INTEROPERABILITY CHALLENGE

184

A more obvious way in which information exchanges can conflict is at the level of
encoding—that is, the language chosen for implementing the exchange or the way
information is represented by the language’s syntax.

The most apparent differences in encoding occur when two different languages are
chosen. For example, Figure 6-8 denotes an order document using the UN/EDIFACT
(ISO 9735) standard.

UNH+0GMB91604004600001+ORDERS:1:911:UN+362910 04061815???:15’
BGM+120+362910+9’
DTM+4:040618:101’
NAD+BY+KEEN::91++MAYNARD JAMES KEENAN’
NAD+VN+GMBOOKS.COM::92++GM BOOKS LTD’
UNS+D’
LIN+1’
PIA+1+0262072610:IS’
IMD+F+2+:::DOCUMENT ENGINEERING BY GLUSHKO AND MCGRATH’
QTY+21:300.0000:EA’
PRI+CON:99.95’
UNS+S’
CNT+2:2’
UNT+23+000091604004600001’

Figure 6-8. Order Encoded in UN/EDIFACT

Clearly this is not immediately compatible with the order example in Figure 6-4. But
as UN/EDIFACT is the only internationally recognized standard for electronic order
documents, the affiliate might be annoyed to be told by GMBooks.com that it is using
an unacceptable format.

DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

6.3.1
LANGUAGE CONFLICTS

6.3
ENCODING CONFLICTS

185

There is also a popular EDI language developed by the American National Standards
Institute known as ANSI ASC X12. During the 1990s this standard was increasing-
ly adopted by U.S. publishers and booksellers and built into their order processing
systems. In such cases an aff i l i a t e ’s order document might look like that in Figure 6-9.

ST*850*000820
BEG*00*SA*820**040605
N1*ST*KEEN*92*GMB91604
PO1*1*1*EA***EN*0262072610
PID*F****Document Engineering GLUSHKO MCGRATH
PO4**300*EA
CTT*2
SE*56*000820

Figure 6-9. Order Encoded in ANSI ASC X12

About 20 years before the development of standard EDI languages in the 1980s, the
Book Industry Study Group developed a format known as BISAC for ordering books.
Many small and medium-sized booksellers might still use specialized sales manage-
ment software that can produce only BISAC formatted orders. In such cases the order
document might look like Figure 6-10.

00000018800868 GMB91604 946305INTERNET.BSC F039000178
1000002820 8800868 9230178 040605000000Y 000000001N00020000000
4000003820 Y000000000262072610000030000000000000000000000041000000
4200004820 Document Engineering GLUSHKO and McGRATH
5000037820 0000200000000170000000029
90000380000000000017000010000000029000010000100000000000001700001000000000000000

Figure 6-10. Order Encoded in BISAC

We can also imagine a small and technologically unsophisticated affiliate bookseller
who keeps records in a spreadsheet. An XML application interface might seem
daunting to this partner, and the only way they can export and import orders is in
comma-separated files. In such cases the order document might look like Figure 6-11.

WHEN MODELS DON’T MATCH: THE INTEROPERABILITY CHALLENGE

186

KEEN91604,Dr.,Maynard,James,Keenan,11271 Ventura Blvd. #505,Studio
City,California,91604
Document Engineering,Glushko & McGrath,0262072610,99.95,300

Figure 6-11. Order Encoded in Comma-separated Syntax

A comparison of the documents in Figures 6-8 to 6-11 with the conceptual model of
the order depicted in Figure 6-3 reveals that each is based on similar concepts and
each appears to convey information suitable for GMBooks.com requirements.

However, the components of all of them require mapping or transforming into their
GMBooks.com counterpart. For example, we would need to know that in the
UN/EDIFACT order, NAD+BY+ indicates the GMBooks.com Order/Buyer/ID, or
that for any rows starting with the code number 42 in the BISAC document, columns
21 to 50 contain the OrderLine/LineItem/BookItem/Title.

A one-to-one mapping of document components
is not always achievable

As you can imagine from the above examples, one-to-one mapping is not always
achievable. Numerous mapping or translation tools exist to convert EDI and other
formats to XML (and vice versa), but most of them work near the surface of the mes-
sage to relate parts of one message to the other and don’t provide much support for
understanding or reusing the models below the surface.4

Even if both parties encode their models using the same language, differences in
applying the grammar of the language can prevent their documents from interoper-
ating.

Many XML encoding conflicts result from different uses of the element and attribute
constructs.5 For example, GMBooks.com might have an affiliate whose order system
generates XML instances that look like Figure 6-12.

DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

6.3.2
GRAMMATICAL CONFLICTS

187

<BuyerParty ID=“KEEN” Name=“Maynard James Keenan” Room=“505”
BuildingNumber=“11271” StreetName=“Ventura Blvd.” City=“Studio City”
State=“California” PostalCode=“91604”>

<Item Title=“Document Engineering” Author=“Glushko & McGrath”
ISBN=“0262072610” BasePrice=“99.95” Quantity=“300”/>

Figure 6-12. Order Encoded Using XML “Attribute-Value” Style

In contrast to the XML document that GMBooks.com expects, this partner’s XML
instance encodes almost everything as attributes to minimize the size of the docu-
ment. The GMBooks.com order system will not immediately be able to accept this
instance. However, a comparison of the XML document in Figure 6-12 with the con-
ceptual model of the order depicted in Figure 6-3 reveals that the conceptual mod-
els are essentially the same. Only the XML naming and design rules are different.

As a result, these sorts of encoding conflicts between XML documents are quite easy
to resolve using XSLT and XPath (Section 2.7.2).

Encoding conflicts can be resolved if the underlying
semantics and structures are compatible

Encoding conflicts are generally resolvable if the underlying semantics and structures
are compatible because encoding a conceptual model as a physical one is the last
phase before implementation (see Figure 3-1). If two parties have been creating
models for the same business context, they will have similar conceptual models and
assemblies of structures, any different choices at the encoding phase should be easy
to diagnose and reconcile. We revisit issues of encoding rules in Chapters 7 and 15.

Another category of conflicts arises when the models of documents or their compo-
nents have different structures. Even when both parties use the same encoding rules,
structural conflicts can cause interoperability problems.

WHEN MODELS DON’T MATCH: THE INTEROPERABILITY CHALLENGE

6.4
STRUCTURAL CONFLICTS

188

In the GMBooks.com business process, an affiliate might model customer informa-
tion and order information the same way that GMBooks.com does but might produce
two documents like those in figures 6-13a and 6-13b.

<?xml version=“1.0” encoding=“UTF-8”?>
<BuyerParty>

<ID>KEEN</ID>
<PartyName>

<Name>Maynard James Keenan</Name>
</PartyName>
<Address>

<Room>505</Room>
<BuildingNumber>11271</BuildingNumber>
<StreetName>Ventura Blvd.</StreetName>
<CityName>Studio City</CityName>
<PostalZone>91604</PostalZone>
<CountrySubentity>California</CountrySubentity>
<Country>USA</Country>

</Address>
</BuyerParty>

Figure 6-13a. Buyer Information Document

<?xml version=“1.0” encoding=“UTF-8”?>
<Order>

<BuyersID>GMB91604</BuyersID>
<BuyerParty>

<ID>KEEN</ID>
</BuyerParty>
<OrderLine>

<LineItem>
<BookItem>

<Title>Document Engineering</Title>

DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

6.4.1
DOCUMENT ASSEMBLY CONFLICTS

189

<Author>Glushko & McGrath</Author>
<ISBN>0262072610</ISBN>

</BookItem>
<BasePrice>99.95</BasePrice>
<Quantity>300</Quantity>

</LineItem>
</OrderLine>

</Order>

Figure 6-13b. Order Information Document

Because the document instances can be linked by the Buyer’s ID number, these two
documents can easily be merged to create the order needed by GMBooks.com, and
because each document conforms to the expected structure for its part, no addition-
al transformation is required.

A more serious problem occurs when the two parties have assembled components
into structures in incompatible ways. This may happen when they view some of the
components in a different context. For example, GMBooks.com might have an affil-
iate who consolidates orders for smaller retailers and submits one order on behalf of
several buyers. This business model naturally results in an item-centric view of the
information rather than the customer-centric view expected by GMBooks.com. Such
an item-centric order might look like Figure 6-14.

<?xml version=“1.0” encoding=“UTF-8”?>
<Order>

<OrderLine>
<LineItem>

<BookItem>
<Title>Document Engineering</Title>
<Author>Glushko & McGrath</Author>
<ISBN>0262072610</ISBN>

</BookItem>

WHEN MODELS DON’T MATCH: THE INTEROPERABILITY CHALLENGE

6.4.2
COMPONENT ASSEMBLY CONFLICTS

190

<BasePrice>99.95</BasePrice>
<Quantity>300</Quantity>

</LineItem>
<BuyersID>91604</BuyersID>
<BuyerParty>

<ID>KEEN</ID>
<PartyName>

<Name>Maynard James Keenan</Name>
</PartyName>
<Address>

<Room>505</Room>
<BuildingNumber>11271</BuildingNumber>
<StreetName>Ventura Blvd.</StreetName>
<CityName>Studio City</CityName>
<PostalZone>91604</PostalZone>
<CountrySubentity>California</CountrySubentity>
<Country>USA</Country>

</Address>
</BuyerParty>

</OrderLine>
</Order>

Figure 6-14. Item-Centric Order Document

Even though they have the same models for names, addresses, and other components
in isolation, the differences in how they are put together results in different hierar-
chies and different documents.

More significantly, the position of components in the hierarchy affects their meaning.
For example, the component BuyersID in Figure 6-14 is not necessarily the same
component used in the schema in Figure 6-4. We cannot ascertain whether it means
the identifier used by the buyer for the item or for the whole order.

In another example we could consider two types of event calendars: One is date-cen-
tric, listing for each date the events that take place; another, which might be more
appropriate when most dates don’t have events scheduled, is event-centric, listing

DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

191

events and for each the date or dates on which they take place. In the former type of
event calendar, every scheduled occurrence of an event is explicit. In the latter type,
it would be reasonable to specify a start date and end date for events that span mul-
tiple dates, making the list of occurrences implicit.

In this situation it might be technically possible to transform event-centric calendars
into date-centric calendars by interpolating the implicit occurrence of dates in the
former, and most of the time the transformation would be semantically correct. But
in some cases the transformation might require other information, like whether the
event is something that takes place only during weekdays and whether holidays are
excluded, information that is explicit in the date-centric calendar.6 We will expand
on this event calendar modeling project as our case study in Chapters 8 through 15.

The earlier in the modeling process that two parties
make different decisions, the greater the possibilities

for their models to be incompatible

Such assembly conflicts represent a more serious set of interoperability problems
than the simpler encoding conflicts, because assembly occurs before encoding in the
modeling process. Put another way, the earlier in the modeling process that two par-
ties make different decisions, the greater the possibilities for their models to be
incompatible.

We might also encounter conflicts that derive from identifying components in differ-
ent levels of detail—these are issues about the granularity of structure in a compo-
nent. These kinds of interoperability challenges are illustrated in the order fragments
shown in figures 6-15a and 6-15b.

WHEN MODELS DON’T MATCH: THE INTEROPERABILITY CHALLENGE

6.4.3
COMPONENT GRANULARITY CONFLICTS

192

<BuyerParty>
<ID>KEEN</ID>
<PartyName>

<Name>Maynard James Keenan</Name>
</PartyName>
<Address>

<StreetAddress>11271 Ventura Blvd. #505</StreetAddress>
<City>Studio City 91604</City>
<CountrySubentity>California</CountrySubentity>
<Country>USA</Country>

</Address>
</BuyerParty>

Figure 6-15a. BuyerParty Fragment with Underspecified Granularity

<BuyerParty>
<ID>KEEN</ID>
<PartyName>

<FamilyName>Keenan</FamilyName>
<MiddleName>James</MiddleName>
<FirstName>Maynard</FirstName>

</PartyName>
<Address>

<Room>505</Room>
<BuildingNumber>11271</BuildingNumber>
<StreetName>Ventura Blvd.</StreetName>
<CityName>Studio City</CityName>
<PostalZone>91604</PostalZone>
<CountrySubentity>California</CountrySubentity>
<Country>USA</Country>

</Address>
</BuyerParty>

Figure 6-15b. BuyerParty Fragment with Overspecified Granularity

DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

193

In Figure 6-15a, the information components for Room, BuildingNumber, and
StreetName from the GMBooks.com conceptual model have been combined into a
StreetAddress component.

In Figure 6-15b, the components that make up the Name of the Party in the
GMBooks.com model have been more precisely expressed as separate components for
FamilyName, MiddleName, and FirstName.

These granularity differences result in one-way interoperability; a more granular
model can be transformed into a less granular model, but not vice versa. A transfor-
mation could be written that would take the values of Room, BuildingNumber, and
StreetName from Figure 6-15b and combine them into StreetAddress to produce the
desired instance. But we would not reliably be able to decompose the StreetAddress
from Figure 6-15a into the Room, BuildingNumber, and StreetName components
required for the GMBooks.com target document.7

A more granular model can be transformed into a less
granular model, but not vice versa

We won’t belabor this argument by showing that the granularity transformation
challenge is equally severe when it comes to personal names, dates, telephone num-
bers and many common document components. We can all imagine how scrambled
computer-addressed mail might be for Dr. Jean-Pierre Paul van Gogh-Shakespeare
III, Esq.

We will explain our approach for aggregating components and creating document
assembly models from a component model in Chapters 12, 13, and 14.

By far the most complex issues affecting interoperability in document exchange are
the result of semantic conflicts. Even if we resolve the encoding and structural con-
flicts, we have a long way to go to ensure meaningful communication of information.

WHEN MODELS DON’T MATCH: THE INTEROPERABILITY CHALLENGE

6.5
SEMANTIC CONFLICTS

194

Even if we resolve the encoding and structural conflicts,
we have a long way to go to ensure meaningful

communication of information

Suppose an affiliate of GMBooks.com submits the order shown in Figure 6-16.

<OrderLine>
<LineItem>

<BookItem>
<ISBN>0262072610</ISBN>
<BasePrice>99.95</BasePrice>

</BookItem>
<Quantity>300</Quantity>

</LineItem>
</OrderLine>

Figure 6-16. Fragment of an Order Document Lacking Book Titles and Authors

This fragment of an order document omits the book title and author from the item
information.

We need to consider why the order might have been designed in such a way. We begin
by referring to the GMBooks.com conceptual model for the LineItem in Figure 6-3,
which consists of five information components. The modelers at GMBooks.com
apparently concluded that title, author, and ISBN (the elements contained in
BookItem) are a group of information components that together logically describe a
book. We say they are functionally dependent.

By comparison, the components known as BasePrice and Quantity only modify the
properties of a book when it appears on a line item within an order. Each order may
have a different quantity or price for a book so they are not functionally dependent
on the book itself.

DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

6.5.1
FUNCTIONAL DEPENDENCY CONFLICTS

195

However, the designers of the affiliate’s documents appear to have decided that there
will only be a single price for a book and this information component logically
belongs to a BookItem.

Having different views of the dependency relationships
mean business rules and semantics

are interpreted differently

This is a design conflict based on different views of the dependency relationships
between the information components. The business rules and therefore the seman-
tics are interpreted differently. The two parties use different models for how infor-
mation components associate with each other. In these situations, the resulting doc-
uments may be incompatible. We will explore the formation of assemblies of compo-
nents based on their dependencies in Chapter 13.

When we looked at encoding conflicts in Section 6.3, we discussed the language and
grammar of the implementation. But when we talk about semantics we need to
examine the vocabulary. We use this vocabulary to convey the semantics of compo-
nents, including the names we give them. And the way we implement these names
also involves syntax considerations, such as with naming tags in XML documents.

WHEN MODELS DON’T MATCH: THE INTEROPERABILITY CHALLENGE

6.5.2
VOCABULARY CONFLICTS

XML Tag Names

When encoding document models, the creators of an XML vocabulary sometimes
seek to avoid problems and disputes by automatically generating tag names that
have no equivalent in any natural language. For example, one proposal to create
XML versions of the standard UN/EDIFACT messages suggested five-letter “UN-
XML” tags like <HFKDR>, <BBBTS>, and <RTFDS>8 whose meaning would be
specified by the mapping of the tag to items in the standard UN/EDIFACT data
dictionary.

196

Choosing the terms used for naming is often a difficult and contentious activity.
Everyone naturally wants to create names in his or her native language, but even in
the same language or family of dialects, the same concepts have multiple words or
even different spellings for the same word (consider, for example, the bewildering
d i ff e rences among the numerous varieties of English). Even when describing exactly the
same document component, chances are very good that two developers or two teams of
data modelers will choose diff e rent names for it.9 In Section 7.5.2 we’ll mention two pos-
sible solutions: controlled vocabularies, a closed set of defining terms, and formal ontolo-
gies, which define the meaning of terms using a formal or logic-based language.

Two modelers will often choose different names
for the same component

Given this difficulty, GMBooks.com might encounter an affiliate with the instance in
Figure 6-17 that has the correct conceptual model but not the expected tag names:

<Customer>
<Number>KEEN</Number>
<Name>

<BusinessName>Maynard James Keenan</BusinessName>
</Name>
<Location>

<Unit>505</Unit>
<StreetNumber>11271</StreetNumber>
<Street>Ventura Blvd.</Street>
<City>Studio City</City>
<ZipCode>91604</ZipCode>
<State>California</State>

DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

To some extent, we applaud the use of arbitrary tag names because it further
rebuts the notion that XML is somehow “self-describing” and that schemas are
optional (see Section 2.5.3). And we appreciate the desire to avoid bias. But we
are convinced that generating meaningless tag names is a bad idea. It would be
better to start with names that help business analysts, programmers, and other
users of the vocabulary to do their jobs. It’s easy enough to then transform the
names for anyone who doesn’t like them or who needs a different set.

197

<Country>USA</Country>
</Location>

</Customer>

Figure 6-17. Buyer Party with Different Tag Names

This also applies when using different languages. For example, GMBooks.com might
receive an order with components such as those in Figure 6-18 from a French affiliate.

<Acheteur>
<ID>KEEN</ID>
<Nom>

<NomCommercial>Maynard James Keenan</NomCommercial>
</Nom>
<Addresse>

<Appartment>505</Appartment>
<Bâtiment>11271</Bâtiment>
<Rue>Ventura Blvd.</Rue>
<Ville>Studio City</Ville>
<CodePostal>91604</CodePostal>
<Etat>California</Etat>
<Pays>USA</Pays>

</Addresse>
</Acheteur>

Figure 6-18. Buyer Party with Tag Names in French

Both these document’s components conform to the conceptual model in Figure 6-3
and only the names are different. In other words, Buyer Party, Customer, and
Acheteur all refer to the same concept, that is, the party purchasing the goods.

XML is not self-describing

This reemphasizes that XML is not self-describing and confirms that the names we
assign to tags are only a small part of defining the meaning of the information they
contain.

WHEN MODELS DON’T MATCH: THE INTEROPERABILITY CHALLENGE

198

But even if two separate modelers are unlikely to employ an identical set of compo-
nent names, each single modeling effort should have a system for keeping names log-
ical and consistent. Guidelines for naming conventions are discussed further in
Sections 7.6.2 and 12.1.11.

The names of components are only a small part of
their semantic definition

Imagine that when GMBooks.com developed their order system, they were taking
orders only from the North America. Later they decided to branch out into interna-
tional orders, and they received an order from Japan. Part of this order is shown in
Figure 6-19:

<Buyer>
<ID>KEEN91604</ID>
<FullName>

<Title>Dr.</Title>
<FirstName>Maynard</FirstName>
<MiddleName>James</MiddleName>
<LastName>Keenan</LastName>

</FullName>
<Address>

<PostalCode>170-3293</PostalCode>
<Prefecture>Tokyo</Prefecture>
<Ward>Chuo</Ward>
<Subarea>Ginza</Subarea>
<SubareaNumber>5</SubareaNumber>
<BlockNumber>2</BlockNumber>
<HouseNumber>1</HouseNumber>

</Address>
</Buyer>

Figure 6-19. Order Fragment with Incompatible Postal Address

DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

6.5.3
CONTEXTUAL CONFLICTS

199

This is a perfectly reasonable postal address model in Japan, but it is conceptually
incompatible with the postal address model expected by GMBooks.com. In Japan,
streets are not all named and addresses are designated by ever-smaller subdivisions
of a city. There is simply no way to transform a Japanese address into the desired
instance. If GMBooks.com wants to fulfill this order and do business with Japanese
customers, it needs to redesign its system to handle Japanese orders. This re q u i res a sep-
arate model for Japanese addresses or changes to the existing model to accommodate it.
The semantic conflict here resulted from a limited understanding of what constitut-
ed an address. The sample of documents or information sources that were analyzed
to produce the original address model was too narrow. Perhaps GMBooks.com looked
only at examples of American and Canadian addresses or decided that Japanese
orders were unlikely. On the other hand, the affiliate in Japan was basing its model
on a sample of addresses that seemed representative to it. Both parties thought they
were designing for the same business context of online bookselling, but they chose
only local sources to obtain their information requirements.

Different document samples can lead to incompatible models

The decision about what information sources to analyze when developing a model—
the inventory and sampling phase—occurs early in the modeling process. So if dif-
ferent parties begin with different samples, their context of use can diverge at a very
early stage and chances are that the resulting models will be incompatible. We dis-
cuss the techniques for collecting the inventory of sources and choosing an appropri-
ate sample in Section 7.5 and Chapter 11. The inventory will include information
sources that are not in the form of traditional documents, such as databases, spread-
sheets, web pages, and the people who create and use them.

Finally, an even more extreme case of incompatibility can be seen in the order snip-
pet in Figure 6-20:

WHEN MODELS DON’T MATCH: THE INTEROPERABILITY CHALLENGE

200

<BuyerParty>
<ID>KEEN</ID>
<PartyName>

<Name>Maynard James Keenan</Name>
</PartyName>
<Address>

<Latitude direction=“N”>37.871</Latitude>
<Longitude direction=“W”>-122.271</Longitude>

</Address>
</BuyerParty>

Figure 6-20. Order Fragment with an Address That Isn’t Postal

This (admittedly a bit contrived) document fragment might result if someone want-
ed to order books to be delivered to an offshore oil platform in the Yellow Sea.10 But
in this case, the location designation is not a postal address in any sense. As a set of
coordinates, it is wholly outside the context of the Address model designed by
GMBooks.com. This is a case of semantic mismatch. While GMBooks.com defined
Address in their model to accommodate locations recognizable to postal services, this
example concerns locations in a different context. As such, the meaning of the two
component models differs, and no interoperability can really be expected.

Semantic conflicts should be resolved when the context
of use is being defined

This is a difficult conflict to resolve, and it can be dealt with only at the very first
step in the modeling process when the context is being defined. In Section 7.3, we
explore in more detail the activities involved in determining the modeling context,
including the identification of patterns, requirements, and business processes that
must be supported.

Interoperability is a desirable goal but not one that is easily achieved. Using what
may have seemed at the outset to be a simple order document, we have identified a

DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

6.6 MOTIVATING THE DOCUMENT
ENGINEERING APPROACH

201

range of potential conflicts when two parties conceptualize, organize, or implement
their models of names, addresses, and books differently. Some types of conflicts are
minor and can be easily resolved, while others require case-by-case analysis or may
be impossible to resolve (See SIDEBAR).

Many of the claims about web services and a “plug-and-play”
business are exaggerated and naïve

The variety of ways in which two models might not match should make it obvious
that many of the claims about web services and a seamless or “plug-and-play” busi-
ness Internet are exaggerated and naïve. Likewise, even though extraction, mapping,
and transformation technology continues to improve, fixing problems when two
models don’t match is likely to remain a labor-intensive activity.

WHEN MODELS DON’T MATCH: THE INTEROPERABILITY CHALLENGE

Automatic Resolution of Interoperability Conflicts
Applications can be written to have very precise expectations about the input they
receive and to reject any input that doesn’t conform. This is generally a bad
approach from both technical and business standpoints. While it is good for an
application to be conservative in what it sends, it should try to be liberal in what
it accepts and be programmed with the philosophy that unexpected inputs may
represent new requirements that it should be able to handle.

Nevertheless, being open and extensible for new input requirements doesn’t mean
that the application should automatically try to accept nonconforming messages.
As we’ve seen in this chapter, a mismatch in physical implementations may or may
not imply a mismatch in conceptual models, and most of the time it takes a person
rather than a program to decide. Automated programs can propose classifications
or diagnoses of the nonconforming messages, but ultimately the decision about
whether to accept a message and try to make use of its contents should be made
by someone who understands interoperability from a broad business and techni-
cal perspective in the specific context in which the message is received.

Once we understand the meaning of the input, some kinds of conflicts are relative-
ly superficial, and we can write general-purpose data extraction and transforma-
tion programs to resolve them. From then on any messages with those conflicts can
be automatically processed. Other kinds of conflicts are deeper, and while we
might be able to work around them with custom programming, we need to be con-
cerned that the differences in conceptual models might cause problems elsewhere
in our business systems.

202

But it is worthwhile studying how things can go wrong only if we use what we learn
to make things go right. Each way in which documents can fail to interoperate—each
problem or conflict we encounter—can be turned around to motivate a Document
Engineering activity to remedy or prevent such problems. Modeling is difficult, but
we can and should study good modelers and good models to learn skills and princi-
ples to use when we do it. This makes a good model a significant intellectual achieve-
ment that deserves to be reused. Starting with Chapter 7, we introduce a Document
Engineering approach that emphasizes careful modeling and the reuse of models
whenever possible.

DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

203

• The most basic requirement for two businesses to conduct business
is that their business systems interoperate.

• Many of the claims about web services and a “plug-and-play” business
are exaggerated.

• Variations in strategies, technology platforms, legacy applications,
business processes, and terminology make it difficult to use compatible
documents.

• The earlier in the modeling process that two parties make different
decisions, the greater the possibilities for their models to be incompatible.

• If projects begin with different samples, their models can diverge and the
resulting models will be incompatible.

• A one-to-one mapping of document components is not always
achievable.

• Content conflicts occur when two parties use different sets of values for
the same components.

• Content conflicts also occur when two parties use the same sets of
values for different components.

• Encoding conflicts can be resolved if the underlying semantics and
structures are compatible.

• A more granular model can be transformed into a less granular model,
but not vice versa.

WHEN MODELS DON’T MATCH: THE INTEROPERABILITY CHALLENGE

6.7
KEY POINTS IN CHAPTER SIX

204

• Even if we resolve the encoding and structural conflicts, we have a long
way to go to ensure meaningful communication of information.

• Semantic conflicts should be resolved when the context of use is being
defined.

• Having different views of dependency relationships creates different
contexts of use.

• Two modelers will often choose different names for the same component.

• The names we assign to components are only a small part of defining their
m e a n i n g .

DOCUMENT ENGINEERING ANALYZING AND DESIGNING DOCUMENTS FOR BUSINESS INFORMATICS & WEB SERVICES

