EE106A Lab 4: Image Manipulation, Camera Calibration
& AR Tags *

September 17, 2014

Goals

By the end of this lab you should be able to:

Use roslaunch to run multple ROS nodes
Be familiar with ROS webcam interfaces and OpenCV image display tools
Use NumPy to calculate homography information

Be familiar with AR Tags

Relevant Tutorials and Documentation:

roslaunch: http://wiki.ros.org/roslaunch
usb_cam: http://wiki.ros.org/usb_cam
image_view: http://wiki.ros.org/image_view
cv_bridge: http://wiki.ros.org/cv_bridge

OpenCV:http://docs.opencv.org/trunk/doc/py_tutorials/py_gui/py_image_display/
py_image_display.html

NumPy: http://www.sam.math.ethz.ch/~raoulb/teaching/PythonTutorial/intro_numpy.
html

ar_track_alvar: http://wiki.ros.org/ar_track_alvar

Contents

1 Introduction 2
1.1 Roslaunch e 2
1.2 Webcams, ROS, and OpenCV e e 2

*Developed by Austin Buchan and Aaron Bestick, concept modified from Fall 2012, Nikhil Naikal and Victor Shia

2 Floor Plane Calibration 3

3 Mapping Pixels to Floor Coordinates 5
4 AR Tags 6
4.1 Webcam Tracking Setup L e 6
4.2 Visualizingresults L e 7

1 Introduction

In this lab, we will learn how to interface with a simple webcam in ROS, read in images, convert them to OpenCV
images, perform some basic image processing, compensate for the perspective change between the floor of the lab
and the camera thereby calibrating it, and, lastly, use the camera calibration to compute distances on the floor just by
taking an image. We will introduce the new ROS tool roslaunch to run multiple nodes with specified parameters
and topic renaming. This tool will help a lot to reduce the number of terminals you have open to run ROS applications.

To get started, download and unzip the Lab 4 resources file to your ros_workspaces directory. Run catkin_make
there, and modify your ~/.bashrc file so that it sources the 1ab4/devel/setup.bash script. Remove any
other /labx/devel/setup.bash lines from your .bashrc file, since only one catkin workspace can be in use
at a given time.

1.1 Roslaunch

Examine the file run_cam. launch in the launch directory of the package Lab4_cam. This is an XML file that
specifies several nodes for ROS to launch, with various parameters and topic renaming directions. Initially several
commands are commented out (anything between <!—-- —->). Leave these for now, and run this launch file using
the command:

roslaunch lab4_cam run_cam.launch

Initially, all that the launch file does is start roscore and a node usb_cam. Verify that this node is publishing
image information with rostopic.
Next run an instance of the image_view node with the following command:

rosrun image_view image_view image:=/usb_cam/image_raw

You should now see a window with the video stream from the webcam on top of the monitor. This com-
mand shows an example of renaming the topic “image” (which is what image_view subscribes to by default)
to “/usb_cam/image_raw” (which is what usb_cam publishes to). Use rgqt_graph to verify that these nodes
are connected via a topic.

Now kill all running processes with a Ctrl-C command in each terminal. Edit run_cam. launch to uncomment
the first block of code that deals with image_view. Save the file, and launch it again with the command above.
This should produce the same behavior as running the image_view node with rosrun, with the addition that the
window is now autosized. Is anything different about the rqt _graph?

1.2 Webcams, ROS, and OpenCV

Now we are ready to extract some useful information from the webcam stream. For the purposes of this lab we want
to be able to adjust the webcam to be aligned with the floor, and select points on a still frame. To facilitate this, we’ve
included a node camera_srv.py which provides a single image over a ROS service when the user presses enter.
Examine src/camera_srv.py, srv/ImageSrv.srv,and the CMakeLists.txt inthe l1ab4_cam package
to see how this service is provided, and how to make sure that the service definition is generated. We’ve provided a

Figure 1: Sample image of floor plane.

skeleton implementation of a node that uses the service in image_process.py. This node also handles a lot of
conversions between ROS, OpenCV, and NumPy array information. The comments and documentation above should
help you figure out what each of the lines does if you are curious.

To use these nodes, edit run_cam. launch once more to remove the comments around the camera_srv.py
and image_process.py node tags. Now when you launch the file, you should see a prompt to press enter in the
terminal after the image_view window pops up. After adjusting the camera to point where you want, you can hit
enter in the terminal to capture a single frame and display it in a second window. This window will wait for you to
click 4 times on the image, displaying the pixel coordinates of the click in the terminal window. Finally this script will
display homography information (that you will calculate later) in a third window until the user presses a key while the
third window is selected. Run through this whole process of capturing, clicking, and displaying homography a few
times to familiarize yourself with the flow. For the most stable results, you should kill these processes after capturing
the single frame.

2 Floor Plane Calibration

We will now consider the problem of calibrating the camera pixels corresponding to the floor of the lab. The objective
is to determine a projective transform H € R3*3 that transforms the ground plane to camera pixels. This mapping
is bijective and can also map pixels in the camera back to floor coordinates. For this part of the lab, you will need to
capture an image like the one in Figure 1 that shows an empty rectangular region on the floor.

Let us consider a point on the lab floor given by X = [7,y]T € R In order to keep the transformations linear
(instead of dealing with affine projections), we will use homogeneous coordinates, where we append a ”’1” to the
coordinates of X as,

nd xr
X:{X}: y | e R
1

We are trying to determine the linear transform H € R3*3 that maps the point X to the pixel Y = [u v 1]T €
R3. This transform is called a homography and takes on the form,

hit hi2 hisz
H:=| har ha haz |. @)
hat hz 1

Notice that the last element of the homography is 1. This means that only 8 parameters of the matrix need to be
estimated. Once the matrix is estimated, the pixel coordinates, Y = (u,v) can be determined using the following
equations,

~ huw + higy + his _ horx + hooy + hos

u =) v = ‘ 2
ha1z 4 hagy + 1 ha1x + haoy + 1 @

These 2 equations can be rewritten in linear form as,

hi1
hi2
hi3
0 —u-xz —u-y ho1 U

1 —v-x —v-y}. hoo []
has
ha1
hsa

3

8 O

o8
ow
O =
< o

Since Eqn. 3 has 8 unknowns, in order to uniquely determine the unknowns, we will need N > 4 floor point >
image pixel pairs. With these N points, the equation becomes,

A - x=b, @)
where,
[T Y1 1 0 0 0 —Ur - T —Uui - Y 1 _ _ i Ul i
0 0 0 29 y1. 1 —vi-293 —v1-y1 hi1 U1
T2 Y2 1 0 0 0 —U2 * X2 —Uu2 Y2 h12 u2
0 0 0 z2 yo 1 —wvo-z2 —V2-%2 his U2
A=|23 y3 1 0 0 0 —ug-x3 —uz-ys | c RIS ha1 ERS, b=| us | e RN,
0 0 0 =3 y3 1 —v3-x3 —v3-Y3 has U3
e Yo 1 0 0 0 —ug-xy —ug-yy has Uy
0 0 0 x4 ya 1 —wva-Ts4 —Vs-Ys ha1 V4
- h32 -
]] I &)

note: [u,v]! are pixel coordinates and [z, y]* are ground coordinates with respect to the origin that you have defined.

Modify image_process.py to compute the homography matrix between the floor plane and the camera plane.
Define the [z, y] floor coordinates of the first point you click on to be [0,0]7. Calculate the [z, y]T coordinates of
the other 3 points you click on using the fact that the ground tiles are 30.48 cm (1ft) per side. (See Figure 2(a) for
reference.) Modify the code to create and solve the linear equations above for the values of H. (You can use the inv
function from the np.linalg module.) If you calculated the homography correctly, running this function should
draw black dots on the intersections of the tiles, as in Figure 2(b)

(b)

Figure 2: (a) Corner selection for ground plane (b) Calibrated image with projected grid.

Checkpoint 1
At this point you should be able to:

e Show a picture of the floor with black dots at the intersections of the tiles
e Explain how homography works

e Explain your create_homography function

3 Mapping Pixels to Floor Coordinates

Now that we have computed the homography to map points from the Floor coordinates to pixel coordinates, we will
consider the inverse mapping from pixel coordinates, [u, v, 1] back to floor coordinates [, y, 1]7. This can simply
be done by using the inverse of the homography matrix, H ~'. Let this matrix be,

q11 q12 Q13
H'=Q=| g1 @2 @3 |. (6)
q31 432 (¢33

With this inverse transform, the floor coordinates of any pixel can be computed as,

- g1 + q120 + 13 _ G21U + g22V + @23

q31U + 320 + g33 q31u + q320 + g33

Modify your code to compute the distance between two points on the floor when you click on them in the image.
Test your code by placing an object of known length on the floor and use your code to measure it. Try measuring the
length of an object that does not lie in the floor plane. Are the measurements still accurate? Why or why not?

Figure 3: Length between selected points

Checkpoint 2

Get a TA to check your work. At this point you should be able to:

e Place an object of known length on the floor and measure it by clicking on the ends of the object in the picture
from the webcam, recording the pixel points, and use the inverse homography to determine the length of the
object (See Figure 3. Compare the known length of the object with the length you measured using the inverse
homography. Are they the same? (If the object is lying directly on the floor, they should be very close.)

e Measure an object of known length that doesn’t lie in the plane of the floor. Compare the known length of this
object with the length you measured using the inverse homography. Are they the same? Why or why not?

4 AR Tags

Figure 4: Example AR Tags

AR (Augmented Reality) Tags have been used to support augmented reality applications to track the 3D position
of markers using camera images. An AR Tag is usually a square pattern printed on a flat surface, such as the patterns
in Figure 4. The corners of these tags are easy to identify from a single camera perspective, so that the homography to
the tag surface can be computed automatically. The center of the tag also contains a unique pattern to identify multiple
tags in an image. When the camera is calibrated and the size of the markers is known, the pose of the tag can be
computed in real-world distance units. There are several ROS packages that can produce pose information from AR
tags in an image, we will be using ar_track_alvar !. tutorial.

4.1 Webcam Tracking Setup

1. Download the package to the src directory of a ROS workspace with

git clone https://github.com/sniekum/ar_track_alvar.git

2. Download the AR Tag Resources zip file from the bCourses website, and unzip this to the 1aunch directory of
the ar_track_alvar package.

1http ://wiki.ros.org/ar_track_alvar

3. Edit webcam_track. launch the update the the camera_info_url parameter to have the full path to the
usb_cam.yml.

IMPORTANT NOTE: You need to leave the file:/// in front of the path to the yml file. The parameter is
expecting a web URL, but the file: /// tells it to look in the local file system.

pwd will print the full path to the current directory.

4. If any other parameters have changed, such as the name of the webcam, make sure they are consistent in the
launch file.

5. Run catkin_make from the workspace (this may take a while).

6. Find or print some AR Tags. There should be a class set of 4 in Cory 119 and SDH 133. Please only use these
for testing, and leave them unmodified so others can use them. The ar_track_alvar documentation has
instructions for printing more tags that you can use in your project.

4.2 Visualizing results

usb_cam

Jusb_cam/camera_info

Jar_track_alvar -

Jusb_cam/image_raw

Figure 5: RQT Graph using AR Tags

Once the tracking package is installed, and the camera calibration is complete, you can run tracking by launching
webcam_track.launch. You should see topics /visualization_marker and /ar_pose_marker being
published. They are only updated when a marker is visible, so you will need to have a marker in the field of view of
the camera to get messages.

Running rgt_graph at this point should produce something like Figure 5. As this graph shows, the tracking
node also updates the /t £ topic to have the positions of observed markers published in the TF Tree.

Figure 6: Tracking AR Tags with webcam

To get a sense of how this is all working, you can use RViz to overlay the tracked positions of markers with camera
imagery. With the camera and tracking node running, start RViz with:

rosrun rviz rviz

From the Displays panel in RViz, add a “Camera” display. Set the Image Topic of the Camera Display to the appro-
priate topic (/usb_cam/image_raw for the starter project), and set the Global Options Fixed Frame to usb_cam.
You should now see a separate docked window with the live feed of the webcam.

Finally, add a TF display to RViz. At this point, you should be able to hold up an AR Tag to the camera, and see
coordinate axes superimposed on the image of the tag in the camera display. Figure 6 shows several of these axes on
tags using the lab webcams. Making the marker scale smaller and disabling the Show Arrows option can make the
display more readable. This information is also display in the 3D view of RViz, which will help you debug spatial
relationships of markers for your project.

Alternatively, you can display the AR Tag positions in RViz by adding a Marker Display to RViz. This will draw
colored boxes representing the AR Tags.

Checkpoint 3

Get a TA to check your work. At this point you should be able to:

e Show you can track the position and orientation of an AR tag

