
Noname manuscript No.
(will be inserted by the editor)

A Model-based approach for the synthesis of
software to firmware adapters for use with
autogenerated components.

Marco Di Natale · David Perillo ·
Francesco Chirico · Andrea Sindico ·
Alberto Sangiovanni-Vincentelli

Received: date / Accepted: date

Abstract This paper presents the MDE process in use at Elettronica SpA
(ELT) for the development of complex embedded systems integrating software
and firmware systems. The process is based on the adoption of SysML as the
system-level modeling language and the use of Simulink for the refinement
of selected subsystems. Implementations are generated automatically for both
the software (C++ code) and firmware parts, and communication adapters
are automatically generated from SysML using a dedicated profile and open
source tools for modeling and code generation.

The process start from a SysML system model, developed according to the
platform-based design (PBD) paradigm, in which a functional model of the
system is paired to a model of the execution platform. Subsystems are refined
as Simulink models or hand coded in C++. An implementation for Simulink
models is generated as software code or firmware on FPGA. Based on the
SysML system architecture specification, our framework drives the generation
of Simulink models with consistent interfaces, allows the automatic genera-
tion of the communication code among all subsystems (including the HW-FW
interface code). In addition, it provides for the automatic generation of con-
nectors for system-level simulation and of test harnesses and mockups to ease
the integration and verification stage. We provide early results on the time
savings obtained by using these technologies in the development process.

M. Di Natale
Scuola Superiore S. Anna, TeCIP institute
Tel.: +39 050 882020
E-mail: marco@sssup.it

D. Perillo, F. Chirico and A. Sindico
Elettronica S.p.A.
E-mail: David.Perillo francesco.chirico andrea.sindico@elt.it

A. Sangiovanni-Vincentelli
University of California at Berkeley
E-mail: alberto@berkeley.edu

2 M. Di Natale et al.

Keywords System Engineering · Model-Driven Architecture · Model-Based
Design · Platform-Based Design · Automatic Code Generation

1 Introduction

The methodology and the process in use at Elettronica SpA for the devel-
opment of complex distributed Electronic Defence systems [1] benefits from
the complementary strengths of domain-specific modeling languages, Model-
Driven Architecture (MDA) [4] and Model-Based Development (MBD) [6] and
leverages automatic code generation to support the system-level simulation us-
ing virtual platforms, the integration of software and firmware on the target
and the exchange of test vectors.

Starting from requirement capture, the approach follows the tenets of
Platform-Based Design (PBD)[2]. In the architecture design, the SysML mod-
els of the system and the subsystems are defined according to the PBD paradigm,
separating the functional model from the model of the execution platform. A
third model represents the deployment of the functional subsystems onto the
computation and communication infrastructure and the HW devices. To define
the execution platform and the mapping relationships between the functions
and the platform (which defines the model of the software tasks and the net-
work messages, among others) domain-specific SysML extensions are required.

In this work, we focus on several tools and techniques used for the integra-
tion, simulation and automatic generation of communication adapters between
handwritten C++ components and components generated from Simulink mod-
els and implemented in software or firmware (extending the work in [5]).

An example target application is a high speed radar processing system, in
which a stream of PDMs (Pulse Descriptor Messages), obtained by sampling
RF signals are processed to discover and classify the emitters. To give an
idea about the real-time challenges that are typical of these systems, PDM
sequences arrive at a rate of 106 messages per second and to produce the results
within the time constraints, the early processing is partitioned in an FPGA
front processor doing frequency analysis and classification and a deinterleaver
and supervisor control implemented in SW. The front-processor is controlled
by and feeds data to the supervisor.

A general outline of the process stages using the methods and tools pre-
sented in this paper is shown in Figure 1 (black arrows represent the way ac-
tivities are organized in the time domain, gray arrows the data dependencies).
The starting point is an architecture-level SysML model of the functions of the
system and its component subsystems, derived from the system requirements.
The definition of the SysML models is central to our methodology. Following
the functional model, another model defines the execution architecture (the
hardware and basic software layers, including the OS and the communication
protocols), and a third model represents the deployment of the functional sub-
systems onto the computation and communication infrastructure and the HW

A Model-based approach for the synthesis of SW to FW adapters. 3

devices (these models are defined in the open source tool Papyrus [37] using
profiles, as defined in Section 4).

driver code

(Section 6)

in SysML

(using profiles of Sec. 4)

(Section 9)

Generate interface

(Section 8)

Generate Simulink

Define behavior of

(Section 7)

(Section 5)

Simics VPs
Validation using

Virtual Platforms

in Simics

Unit testing of

Integration on target

Chages required

manual code implementation
iterate on SysML model or

Chages required
iterate on SysML model or
manual code implementation

code for target

from DOORS

Produce manual code

subsystems

for Simics simulations

Generate FPGA Generate Test stubs

Create System models

Subsystems Interface

Simulink subsystems

Generate code impl. of

Configuration of

manual and autocode

implementations

Import Requirements

Simulink subsystems

Generate interface code

implementation of some

workflow dependencies

input−output dependencies

Fig. 1 The process stages supported by the methods and tools in this paper

The SysML models are the reference for manual development of code, or
the source of model to code transformations (using the Acceleo open tool under
Eclipse) that are aimed at improving the quality and efficiency of the following
activities.

– Validation of the functional architecture and the algorithms by virtual
prototyping using the Simics platform by Windriver (Section 5)

– Refinement of functionality in Simulink and automatic generation of im-
plementations from Simulink models (Section 7).

4 M. Di Natale et al.

– Automatic generation of test stubs based on the SysML specifications (Sec-
tion 9).

– Automatic generation of the FPGA device drivers and of the communica-
tion code for the embedded target (Sections 6 and 8)
As shown in Figure 1, some of the functional subsystems are refined, simu-

lated and prototyped using the Simulink environment [11]. These subsystems
execute according to the Simulink (synchronous reactive) semantics. Domain-
specific SysML [7] extensions define the execution platform and the mapping
relationships between the functions and the platform (which defines the model
of the software tasks and the FPGA implementation, among others), the map-
ping of ports into the programmable HW registers, and the mapping of func-
tional code (including the code generated from Simulink) onto a model of
threads and processes and the conditions that trigger the reaction of FPGA-
implemented behavior.

Figure 2 depicts the reference SysML project structure used to organize
and relate the model elements used in the system design process.
– a SystemRequirements package contains a SysML model of the require-

ments imported from DOORS;
– an InterfaceDataTypes package contains the SysML description of the Data

Types and Interfaces that are provided and required by the system and its
parts.

– a System Functional Architecture package contains the functional archi-
tecture model, defined as a network of subsystems exchanging data signals.

– an Execution Platform package contains the model of the execution plat-
form with the HW and basic software components, including boards, mem-
ories, processing units (cores), network connections, but also device drivers,
operating system(s) and middleware.

– a Mapping package contains a SysML model that describes how functional
components and behaviors are mapped onto the execution platform, gener-
ating the software architecture of tasks and messages. In addition, it defines
the mapping of the parameters of the reaction functions implemented in
FPGA and the registers of the FPGA. To guarantee independence and
reusability as well as visibility of the design entities involved in the map-
ping, the mapping model imports both the functional and platform models.

– a Test package containing a SysML model defining all the tests by means
of which the system requirements shall be verified

The Functional, Platform and Mapping models use stereotypes that extend
the standard MARTE profile [8] for real-time and embedded systems. This
organization enables the reuse of Interfaces and Data Types and according to
the PBD paradigm, allows deploying (by mapping) the same functional model
into different platforms of execution.

Leveraging the availability of SysML models developed on the open-source
and Eclipse-based Papyrus platform, model-to-text transformations are used
to support several stages in the development flow.

A Model-based approach for the synthesis of SW to FW adapters. 5

Fig. 2 The structure of SysML projects in ELT

In the early stages of development, when a SW/HW partitioning is eval-
uated, the models and tools support the automatic generation of interface
code for the simulation of the integration of SW and FW using the Simics
full-system simulator.

Next, the same models are used to produce the interface specification (ports
and port types) of the subsystems to be refined in Simulink. The subsystem
is then refined as a Simulink model, validated by simulation, and an imple-
mentation for it is generated. For functionality deployed onto a SW thread,
a SW implementation is generated (a dedicated C++ class, with an interface
defined by the Simulink Coder/Embedded Coder [11] standards). An FPGA
implementation is automatically generated for components mapped onto pro-
grammable HW.

Our framework generates the communication code that sends and receives
data to and from the automatically generated subsystems and those subsys-
tems for which a manual implementation is required. This is done by creating
an abstraction layer around each component, with a standard interface that
is defined and implemented leveraging the SysML DataFlow port definitions.
The (internal) connections between the standard wrapper abstractions and
the internal implementations are defined using:

– A standard interface for reading and writing ports for handwritten code.
– A layer that remaps to the standard interface defined by the Mathworks

software code generator (for subsystems implemented in Simulink and au-
tomatically refined in software).

– A translation to a standard driver interface for reading/writing from/to
FPGA registers in the case of an (automatic) firmware implementation.

The (external) connections among the wrapper code abstractions are real-
ized in a different way according to where the component functions (and the
wrappers) are allocated for execution.

Finally, when integrating manually coded subsystems and automatically
generated subsystems, there is the problem of using a consistent set of test

6 M. Di Natale et al.

vectors in both environments (Simulink models and C++ code). To support
this stage, we automatically generate test harnesses to be used in Simulink
simulations (as custom blocks) and when the code is integrated (as C++
stubs) with an XML format for recording, playing and comparing traces on
both sides (in the simulation environment, or during code-level unit testing
and system integration).

In summary, the main contributions of our work are the following:

– The definition of a SysML profiles that extends MARTE to specify the
realization of embedded functionality as software or firmware components.
Our profile extensions focus on the specification of a synchronous reactive
behavior, the definition of register interfaces for using the FW-implemented
functionality, and the mapping relationships that are needed to associate
operation parameters to FPGA registers.

– An environment for the generation of communication wrappers towards the
automatic generation of implementations from the Simulink environment
with deployment onto FPGA (in this case a driver layer is also generated)
or in SW. This avoids the need to program code that is mostly tedious,
consisting of data marshalling, and automatically selects the mechanisms
for data consistency when needed.

– The generation of additional code to help in the simulation of the func-
tionality using the Simics platform and the automatic generation of test
stubs that support the exchange of test vectors between the Simulink en-
vironment and the code integration stages.

– An implementation that is entirely based on open source tools and standard
languages (except, of course, for the integrated Simulink models and the
code generated from those).

The main contributions of this new revised version with respect to the work
presented at the 2014 MODELS Conference [5] are:

– An extended and improved description of the process, the profiles, and the
code generators with additional examples

– A new section describing the generation of code for the simulation of soft-
ware/firmware integrated functionality under Simics

– A new section describing the automatic generation of Simulink subsystems
as a refinement of SysML blocks

– A new section describing the automatic generation of test stubs to exchange
test vectors between the Simulink simulation environment and the C++
integration stage.

– A new section describing the impact of the technology described in the
paper on the industrial processes.

The organization of the paper is the following. Section 2 provides a quick
reference to the technologies, methods, languages and tools that are used in our
framework and then an outline to our methods, tools and models for the gen-
eration of the adapters (at runtime and for simulation). Section 3 outlines the
relationships (and provides a comparison) with previous work in this context.

A Model-based approach for the synthesis of SW to FW adapters. 7

Section 4 defines all the stereotypes and metamodels used in our development
process to represent the design of the system components and the generation
of the code for interfacing the SW components with the programmable HW.
Secion 5 contains the description of the code generation process for simula-
tion on Virtual Platforms, and Section 6 outlines the generation process for
FPGA drivers. Section 7 provides the details of methods and tools for the
integration of Simulink components. Section 8 discusses the generation of the
communication code, and Section 9 discusses the creation of the support for
testing. A discussion on the lessons learnt and the impact from the use of the
methodology in the industrial processes are discussed in Section 10. Finally,
Section 11 provides the conclusions.

2 Outline of the Process, Models and Code Generation

The main objective of the models and tools presented in this paper is to
enforce the consistency of the developed components with respect to a SysML
system description and introduce automation in the generation of the code
that performs data communication and synchronization among the functional
subsystems.

The starting point for our methodology is a SysML model as in the left
side of Figure 3. The model is organized according to a layered structure (each
layer in a separate package [1]). The Functional description consists of a set of
SysML blocks communicating through standard and flow ports (top part of the
figure). Some of these blocks are identified as subsystems executing according
to a synchronous reactive semantics, refined and validated in Simulink.

A separate package in the SysML system model identifies the execution
platform for the system, including a model of the execution HW, with com-
puting nodes, boards, cores and FPGAs (bottom-left part of the figure). Each
core is associated with the operating system managing the execution of the
software processes and threads residing on it. Finally, a third package defines
the allocation of the functional subsystems onto the execution platform. This
layer defines the model of the software threads and processes, of the communi-
cation messages and the allocation of functionality onto threads (for software
implementations) or programmable HW.

Following the system-level architecture description in SysML, components
are designed, refined, and implemented using different methods and technolo-
gies. Components that define complex algorithms or control laws are modeled,
simulated, and verified as Simulink models. For these components, an im-
plementation path making use of automatic generation tools is used. Other
components are designed in UML and then refined as manually written C++
code.

Two software layers, generated automatically from the SysML model de-
scription provide for the interaction between the subsystem functionality and

8 M. Di Natale et al.

Fig. 3 The generated wrappers provide for the communication among subsystems

the FPGA implementations (access to the HW platform, as described in Sec-
tion 6) and for the communication and interactions among functional compo-
nents. The communication among the data ports of all functional subsystems
is realized through code automatically generated from the SysML Mapping
layer and consisting of a number of software wrappers that provide an API for
accessing the data ports specified in SysML with the correct type information
(shown in light color, in Figure 3). These wrappers translate from a standard
interface for the access to ports (directly used by hand-written components)
to the standard interface to the SW functions automatically generated by
Simulink and/or the driver functions automatically generated for the access

A Model-based approach for the synthesis of SW to FW adapters. 9

to FPGA functionality in the case of functionality mapped onto programmable
HW.

For all the subsystems to be refined in Simulink, a Simulink subsystem
boundary specification is automatically generated from the SysML model (as
described in [18] and outlined in Section 7). The subsystem is refined, with the
model of its internal behavior, validated, and finally an implementation for it is
generated. For subsystems executing as software on a core, the corresponding
code is produced (top-right side of Figure 3) by the Simulink Coder/Embedded
coder tools. For firmware implementations, the Mathworks tools generate an
RTL (Register Transfer Language) description for programming the FPGA.

The first layer of generated SW consists of a high-level FPGA driver, cre-
ated from the SysML model of the FPGA interface, as described in Section
6. This driver-level code provides functions for accessing FPGA-implemented
functionality with input and output ports defined on complex data objects
(rather than individual registers) and provides for buffering and synchroniza-
tion. This layer operates on top of a lower-level driver which is manually
written and implementing an interface of simple RAM-mapped register reads
and writes.

SW implem.

low−level Driver

manual

Simulink coder API

API

manual code

code

autogen

3

2

1

high−level Driver

FPGA implementation

Fig. 4 The generated wrappers provide for the communication among subsystems

The communication among the data ports of all functional subsystems is
realized through additional code, automatically generated from the SysML
Mapping layer. The generated code consists of a number of software wrap-
pers that provide an API for accessing the data ports specified in SysML with
the correct type information (shown in Figure 4). These wrappers translate
from a standard interface for the access to ports (that is directly used by
hand-written components) to the standard interface to the SW functions au-
tomatically generated by Simulink and/or the driver functions automatically
generated for the access to FPGA functionality in the case of functionality
mapped onto programmable HW.

10 M. Di Natale et al.

3 Related work

The match of a functional and execution architecture is advocated by many
in the academic community (examples are the Y-cycle [13] and the Platform-
Based Design PBD [2]) and in the industry (the AUTOSAR automotive stan-
dard is probably the most relevant recent example) as a way of obtaining mod-
ularity and separation of concerns between functional specifications and their
implementation on a target platform. The OMG [3] and the MDE similarly
propose a staged development in which a PIM is transformed into a Platform
Specific Model (PSM) by means of a Platform Definition Model (PDM) [14].

The development of a platform model for (possibly large and distributed)
embedded systems and the modeling of concurrent systems with resource man-
agers (schedulers) requires domain-specific concepts. The OMG MARTE [8]
standard is very general, rooted on UML/SysML and supported by several
tools. MARTE has been applied to several use cases, most recently on auto-
motive projects [16]. However, because of the complexity and the variety of
modeling concepts it has to support, MARTE can still be considered work in
progress, being constantly evaluated [15] and subject to future extensions. In
particular, MARTE does not provide enough detail for the description of the
HW interface registers that provide access to IO features or to the functional-
ity of programmable HW, and surely does not provde enough detail to allow
for the automatic generation of driver or communication code. This was the
motivation for our proposed SysML language extensions.

Several other domain-specific languages and architecture description lan-
guages of course exist, such as, for example EAST-ADL [31] and the DoD
Architectural Framework (DoDAF) [32]. For the details of the HW register in-
terfaces, several languages exist, including the widespread SystemC [39]. Also,
domain-specific languages have been proposed for this purpose (one example
in [40]). However, we are not interested in the proposal for yet another DSL,
but rather to enable the modeling of low-level HW features in the SysML
language and in connection with open source tools (such as Papyrus). Also,
we want to easily bridge the gap with high-level architecture descriptions and
Simulink models, which we believe is easier done in SysML rather than, for
example, in SystemC.

Several other authors [20] acknowledge that future trends in model en-
gineering will encompass the definition of integrated design flows exploiting
complementarities between UML or SysML and Matlab/Simulink, although
the combination of the two models is affected by the fact that Simulink lacks
a publicly accessible meta-model [20]. Work on the integration of UML and
synchronous reactive languages [21] has been performed in the context of the
Esterel language (supported by the commercial SCADE tool), for which trans-
formation rules and specialized profiles have been proposed to ease integration
with UML models [22]. With respect to the general subject of model-to-model
transformations and heterogeneous models integration, several approaches,
methods, tools and case studies have been proposed. Some proposed meth-

A Model-based approach for the synthesis of SW to FW adapters. 11

ods, such as the GME framework [23] and Metropolis [24]) consist of the use
of a general meta-model as an intermediate target for the model integration.

Our work spans also other topics, including the modeling of FPGA (in-
terfaces) and the automatic generation of stubs for simulation and testing.
However, our models are not aimed at the definition of the FPGA behavior
for the purpose of performance evaluation or the selection of implementation
alternatives (such as, for example in [28] or [29]), but rather at enabling the
automatic generation of driver and communication code starting from stan-
dard SysML models (we do not use Domain Specific Languages, or DSLs) and
using open source tools.

A large number of works deal with the general subject of integration of het-
erogeneous models. Examples are the CyPhy/META Toolchain at Vanderbilt
[19] and the work on multiparadigm modeling (a general discussion in [17]).
In both cases, emphasis is placed on the role of domain-specific languages and
model transformations in the general context of large and distributed Cyber-
Physical systems. With respect to model-to-model transformations, our aim
is very focused to the translation of SysML models into driver code or com-
munication code that is suitable for connection with automatically generated
Simulink components.

Other groups and projects [25] have developed the concept of studying the
conditions for the interface compatibility between heterogeneous models. Ex-
amples of formalisms developed to study compatibility conditions between dif-
ferent Models of Computation are the Interface Automata [26] and the Tagged
Signal Language [27]. In our case, we are not trying to cover a large set of pos-
sible models of computation, but we are only interested in supporting a con-
nection with a restriction of the synchronous reactive behavior that is allowed
by Simulink/Stateflow models [41] [42].

Other efforts have been dedicated to the objective of providing automa-
tion for the integration of heterogeneous models and components for simula-
tion. An approach for the automatic synthesis of adapters for simulation units
developed with heterogeneous tools and languages is described in [30]. The
approach makes use of custom DSLs. More recently, the FMI/FMU interoper-
ability standard [33] aims at obtaining the same objective by providing for a
standardized code-level API. The FMU standard is very promising for the pur-
pose of cosimulation of large CPS systems, but is today mostly aimed at the
modeling of physical systems, rether than the modeling and simulation of HW
implemented functionality. In addition, we are mostly concerned about the
automatic generation of glue code, and this objective is currently not within
the scope of the FMU/FMI standard.

4 SysML Profiles for PBD

We defined SysML profiles to express concepts that are required for our scope
(and of general use to specify resources and complex embedded systems de-

12 M. Di Natale et al.

signs). Overall, the stereotype definitions contained in these profiles follow the
general organization of Functional, Platform and Mapping models.

4.1 Functional modeling

The functional model contains the definition of the subsystems, at some level
of refinement of the system functional architecture. Each subsystem processes
input signals and produces outputs, according to a port-based interface. The
profiles that apply to the functional model must support the code genera-
tion stage allowing the identification of the subsystems with a synchronous
execution semantics. The profile FunctionalModels defines the stereotypes.
<<FunctionalSystem>> applies to Block, and identifies the root block (or
system) in the functional model.
<<SRSubsystem>> applies to Block and defines a subsystem that processes sig-
nals according to a synchronous reactive semantics, that is where the functional
behavior consists of a single processing stage or activity (typically activated
on a periodic time base), which synchronously samples all inputs, reads the
internal state and updates the subsystem state and its output. In the case
of a firmware implementation, the reaction can also be triggered by a signal,
stereotyped as <<SRReact>>. A synchronous subsystem should have one oper-
ation stereotyped as <<SRStep>>. This is the public operation take computes
the system reaction (update of the outputs and internal state).
<<SimulinkSubsystem>> specializes SRSubsystem and defines a subsystem
that is modelled and defined according to the Simulink semantics.

4.2 Platform modeling

The execution platform and the mapping models define the structure of the
HW and SW architecture that supports the execution of the functional model.

The execution platform is defined in a package called PlatformModels.
Blocks represent hardware components at different levels of granularity, but
also classes of basic software, including device drivers, middleware classes and
operating system modules.

The MARTE profile provides several concepts that can be leveraged for
the definition of the hardware and software platform. For our code generation,
we need to identify what subsystems are implemented in SW, running on
a core and using services provided by a given operating system, and what
subsystems are implemented on programmable HW (FPGA). Also, we need
a model describing the register interface of the FPGA, offering not only the
register abstraction but also a higher level description of a hardware ”port”.

For the definition of processors, MARTE offers the stereotype definition
of «HwProcessor» and the stereotype «HwPLD» for the definition of FPGAs
and FPGA interface registers. The modeling elements to specify the register

A Model-based approach for the synthesis of SW to FW adapters. 13

Fig. 5 A SysML profile for the description of Interfaces to programmable HW

interface of an FPGA, however, are not easily found. For this reason, we de-
fined our taxonomy of stereotypes for FPGA components and interfaces. Pro-
grammable hardware components are derived as a refinement of the MARTE
«HwPLD» (Figure 5). The hardware interface is represented by a stereotype
«HwFPGAInterface». The registers in the addressing space can be grouped in
contiguous sets intended to be accessed for a homogeneous set of data/infor-
mation and called «HwFPGAPort». The stereotyped definition of FPGA Port
objects is obtained from the SysML Block (not the SysML port, because it is
itself the composition of other objects and the Port entity in SysML cannot be
a composite of other ports). A Hardware interface block typically consists of a
number of FPGA Ports, in turn composed by atomic data items denominated
FPGA Physical Field.
The main stereotypes with their properties (Figure 5) are:
<<HwFPGA>> refines «HwPLD» and defines an FPGA component.
<<HwFPGAInterface>> refines the MARTE stereotypes «HwBus» (to define
address and data bus widths), «HwEndPoint» and «HwRAM» (for address-
ing modes, memory size), which in turn apply to Block. It is used for the
description of the Interface to a programmable HW component (the compo-
nent itself is identified by its interface). It uses the MARTE properties

addressWidth (from «HwBus», representing the address bus width).
wordWidth (from «HwBus», representing the data bus width). In both cases,

legal values are 8, 16, 32, and 64.

and defines the additional property

memoryOffset a long representing the physical address of the first word in
the programmable HW address space.

<<HwFPGAPort>> refines «HwEndPoint» and «HwRAM» (which apply to Block),
from which the property memorySize defining the port size (the number of bits

14 M. Di Natale et al.

required for storing the information carried by the entire Port) is inherited.
It is used to identify structured information that the programmable hardware
will read or write as a whole and includes the properties

index an unsigned integer representing the position of the port among those
in the set of the HW Interface.

defaultValue if the Port does not contain any PhysicalField, the property
contains the default value associated with the information.

isReadOnly a boolean: true in case the information cannot be modified.
endianness an enumeration.
isSigned a boolean: true if the information is to be interpreted as a 2’s

complement.

<<HwFPGAPhysicalField>> refines «HwRAM». It defines a hardware register
representing a field of information in a Port. It includes the properties

offsetBits the address offset for the first word in the PhysicalField.
defaultValue the default value for the corresponding information.

For the software part of the platform, we are interested in defining the Op-
erating system running on a given Processor. In this case, MARTE states that
”Operating systems may be represented through properties of the execution
platform or, requiring significantly more detail, modeled as software compo-
nents”. For the second option, however, no stereotypes are offered. Therefore,
we defined our own stereotype <<SwOperatingSystem>>, which only has an
enumerated property with the OS name. In our code generation (described
in the next section) the operating system information is only used to check
whether a communication implementation using the boost library is possible.

4.3 Mapping model

The profile Mapping defines the stereotypes of general use for the mapping
of functions onto a platform, including the stereotypes for the mapping of
functions onto a SW architecture of processes and threads and the messaging.

For our code generation, we are interested in knowing whether the commu-
nication between two functional subsystems is implemented as intrathread, in-
terthread, interprocess or remote. Therefore, we need to identify Processes and
Threads in the software implementation model. MARTE provides the stereo-
type SwConcurrentResource, which is cumbersome and possibly confusing. The
<<SwSchedulableResource>> stereotype is recommended for the well-known
concepts of Process (which should also inherit from <<MemoryPartition>>),
Thread, or Task and comes with 39(!) stereotype attributes defining each and
every aspect related to its management.
Our mapping profile contains the definition of the following stereotypes:
<<MappedSystem>>, applies to Block, and identifies the root block of the map-
ping model. The Mapping model includes a functional model, a platform
model, a process model and a message model.

A Model-based approach for the synthesis of SW to FW adapters. 15

<<ProcessModel>> applies to Block, and identifies the root block of the model
of all the processes in the system. A ProcessModel can recursively contain a
ProcessModel or a set of Processes
<<Process>> applies to Block and identifies a Process or a SW application. A
Process may (should) contain Threads.
<<Thread>> applies to Block and identifies a concurrent unit of execution.

In addition, we had to define deployment relations. We built on the MARTE
«Allocation» stereotype to define an implementation mapping between the
functional layer subsystems and the platform. The provided stereotypes are:
<<SWdeployment>> refines Allocation to specify an implementation of a func-
tional subsystem (all the operations and actions in it) by a thread.
<<FPGAdeployment>> refines Allocation to specify an Implementation of a
functional subsystem (all operations and actions in it) by an FPGA.
<<AutoGenerated>> defines a deployment (an implementation) for which au-
tomatic generation is supported.
<<ManagingOS>> refines Allocation to specify a mapping relationship between
a process and the real-time operating system managing it.

4.4 An Example

Figure shows the BDD and IBD views (Block Definition Diagram and Internal
Block Diagram, standard SysML views) of a very simple example of functional
model, with three subsystems communicating through SysML flow ports: a
Configurator, a Detector and a Receiver. The functional model is defined in the
package FunctionalModels. The types that apply to the flow ports are defined
in the package InterfaceDataTypes. The model is only meant to provide an
example of communication scenarios and is void of any functional content.

The example is only for describing the role of each stereotype in the defi-
nition of the models and the mapping of functionality onto platform. A more
concrete snapshot of (a portion of) the actual application is shown in Figure
7.

The sample platform model for the functional example is shown in Figure
8, with a single node containing a CPU and an FPGA, which has in turn one
interface with three ports. For one of the ports, the details of its physical fields
are provided. Finally, the mapping model defines how the functional model is
realized on the execution platform. This mapping information is in the package
MappingModels to allow full independence and reusability of the functional
and platform parts.

The mapping model information for our example is represented in an IBD
diagram as in Figure 9. The Detector and Configurator subsystem instances
in the functional system model are deployed as software implementations onto

16 M. Di Natale et al.

Fig. 6 The ibd showing the port connections for the a sample model

two threads (Thread1, and Thread2, defined in a Process model package, which
is part of the mapping model), which are in turn part of a Process Process1,
executing on the CPU of our node. The Receiver part is mapped as an FPGA
deployment onto the node FPGA. The interface ports of this block are im-
plemented on an FPGA interface. The mapping between ports with primitive
types on the functional side and implemented by a single register (no physical
field) on the hardware side can be defined directly. For ports with structured
types, each single field of the port type must be mapped onto a register (phys-
ical field) of the FPGA. This is performed by exposing the internal properties
of the structured type (the imported reference to the port type) and build-
ing mapping relationships between each type property and a physical field.
All mapping relationships (except those originating from the process/thread
model) are defined through a stereotyped constraint, which is itself part of
the mapping model. This allows to keep the functional and platform mod-
els completely independent, while at the same time, providing the necessary
information for the code generation stage.

A Model-based approach for the synthesis of SW to FW adapters. 17

Fig. 7 A portion of the Internal Block Diagram of the EW Integrated System.

5 Interface code generation for the integration of functionality in
Simics simulations

To ease the detection of interface issues and to verify the integration of the
software and firmware functionality before the final execution architecture is
available, the Simics full-system simulator by WindRiver [38] is used in ELT.

18 M. Di Natale et al.

Fig. 8 The platform model for the example

Simics allows to verify the execution of the system software on a virtual plat-
form simulated on a workstation. The platform components can be COTS
components (processors, buses, memories) extracted from the Simics library,
or custom components defined by means of an interface and behavior specifica-
tion. When a custom (programmable HW) component is defined, the interface
specification defines the registers that are used to communicate with the cus-
tom component, with their memory addresses on the bus as base address plus
offset. The behavioral part describes the computation or reaction that is im-
plemented in hardware or firmware and modifies the content of the interface
registers (as the result of the computation) and, possibly, the internal state of
the device.

In Simics, the interface model is typically defined in DML (short for Device
Modeling Language). In DML the user specifies a register interface with the
width, address and offset of all the register fields. Figure 10 shows a simple
example of a DML specification that models a memory-mapped device with a
single 32-bit (4-byte) register at offset 0, which upon a read access will return
the value 42 as the result of the operation. The device is loaded in a memory
space at a specific address from the Simics console.

In the example of the figure, the behavior is represented as a DML function
that is invoked upon a read opration and returns the value that is going to
be read at simulation time by the software from the register at offset 0x0000.
Simics allows to define callbacks upon read and/or write operations on the set
of interface registers. These callbacks can be implemented not only in DML,
but also in C or SystemC.

The read/write callback mechanism is used in our framework to define a
pattern for the integration of software and firmware with automatically gen-

A Model-based approach for the synthesis of SW to FW adapters. 19

Fig. 9 The mapping model for the example

bank b {
parameter function = 0;
register r0 size 4 @0x0000 {

method read() -> (result) {
result = 42;

}
}

}

Fig. 10 An example DML code for the specification of a register interface and firmware
behavior

erated adapters according to the SysML specification. The functionality to be
realized in firmware is implemented as an equivalent C function, according to
a reaction pattern. This code needs to be handwritten, or produced by means
of automatic generation by third party tools (such as Simulink).

The (unique) reaction function to be implemented in firmware is identified
in the functional model by a the stereotype <<SRStep>>. The parameters of

20 M. Di Natale et al.

the operation are mapped onto the interface registers specified in the platform
model. In addition, the functional model contains the specification of a signal
that triggers the execution of the function. This signal is mapped onto the set
of FPGA registers by means of a specification block that defines the register
write sequence that triggers the execution of the firmware behavior.

Based on the SysML specification, a set of Acceleo templates generates:

– the DML code for the specification of the register interface according to the
SysML platform model. For each input register that appears in the trigger
signal specification, a write callback is defined that invokes a predefined
condition checker function.

– the body of the condition checker according to the constraint block specifi-
cation. The code of the function verifies the content of all the interface reg-
isters and conditionally invokes the reaction function for the block mapped
on the programmable HW.

The reaction function is written by hand and needs to comply with the
signature in the functional model. This framework allows to perform the sim-
ulations by reusing all the program code that is deployed on the actual target,
including the code possibly automatically generated from Simulink and the
code for the device drivers that are writing into and reading from the interface
registers (as explained in the following sections).

6 Generation of the FPGA driver code

The communication with a functionality implemented by programmable HW is
structured in layers. The firmware function is accessed through a set of control
and data registers implemented on the FPGA and mapped in the memory
space. Access to the FPGA registers is provided by a low-level driver, which
is manually developed and provides basic read and write functions, according
to an interface defined as IBusAccess and used by the upper layers. Read and
write operations are overloaded according to the width of the data bus. For
example, for a 64-bit data bus the functions are simply:
Read(char*address, unsigned long &in)
Write(char*address, unsigned long &in)

On top of this driver, an upper layer with set of higher-level operations
is automatically generated. This layer maps application objects with struc-
tured data types onto elementary (bus-width) data registers and provides for
caching, fragmentation and reassembly, notification of events and endianness
conversions.

This higher-level layer is automatically generated from the SysML model of
the FPGA Interface with a model-to-text transformation, from the Platform
model into a set of C++ classes.

The generated code has the following structure. Two classes (in a pair of
.ccp and .h files) are generated for the device.

A Model-based approach for the synthesis of SW to FW adapters. 21

A class called NAME HW INTERFACECacheddriver implementing a cache
for all FPGA registers. The purpose of the cache class is to save time upon
reading and writing into the HW only when values change (commands are
requested).
A class NAME HW INTERFACEdriver providing port-level access functions
for reads and writes. for each port the following operations are generated:

Get(&tNOME PORT x values), to read values from the Port (registers).
Set(&tNOME PORT x values), to write value into all the HW registers

associated with the port.
ResetNOME PORT x () to reset the values of all the registers associated

with the port to their default values.

In addition, a class constructor is generated, with a reference to the low-level
driver functions implementing the reads and writes on the physical registers.

NAME HW INTERFACEdriver (IBusAccess* bit8,
IBusAccess* bit16, IBusAccess* bit24, IBusAccess* bit32,
IBusAccess* bit64, unsigned int offset = 0)

A file NAME HW INTERFACETypes.h is created with the definition of all
the structured types that are required for the Ports.

7 Refinement of Simulink Subsystems

A top-down development flow makes use of transformations from the SysML
<<SRSubsystem>> block into the specification of a Simulink Subsystem, com-
plete with its ports and datatype specifications as Bus Objects (the tool-specific
type/class declarations). The Simulink subsystem is then further developed in
the Mathworks environment by modeling its internal behavior. More often,
however, the functionality to be developed has already been prototyped in
Simulink and a reverse transformation generates a SysML block. In this case,
a MATLAB script generates an XML file compliant with an Ecore metamodel
developed ad hoc for the representation of Simulink subsystems in EMF. A
QVT model-to-model transformation then generates the SysML block from
the Ecore model.

An Acceleo module transforms the SysML block and generates a Matlab
script SubsystemName Simulink types.m that creates in the Matlab environ-
ment a set of Bus Object specifications mirroring the definitions of the data
types in the SysML model; one or more files with name EnumeratedTypeName.m
for each enumerated type in the SysML type specifications that apply to the
subsystem ports; and a script SubsystemName Simulink.m that generates the
boundary of the subsystem with its ports (as described in [12], an example is
shown in Figure 11). The subsystem is then defined internally and simulated,
until its behavior is defined in a satisfactory way.

22 M. Di Natale et al.

Fig. 11 Generating simulink subsystems and types from SysML

The generated FPGA implementation communicates with the other sub-
systems using a set of memory-mapped registers, accessed using the drivers
described in the previous section. The C++ generated code follows the con-
ventions of the code generator: for each subsystem, a class is generated with
name SubsystemNameModelClass. The class has operations for the subsys-
tem initialization and (if required) termination, and a step operation for the
runtime evaluation of the block outputs given the inputs and the state. The
Simulink Coder conventions define how the interface ports translate into ar-
guments of the step and allows to define the data types in an external (user
provided) file. Listing 1 shows the code generated for the Receiver subsystem
in our example.

Listing 1 Code generated for the Receiver subsystem
class ReceiverModelClass {

public :
void initialize (); /* model initialize function */
/* model step function */
void step(const ReceiverType &arg_In1 ,

const RFParameters &arg_In2 ,
Threat * arg_Out1);

ReceiverModelClass (); /* Constructor */
˜ ReceiverModelClass (); /* Destructor */

}

A Model-based approach for the synthesis of SW to FW adapters. 23

8 Subsystem deployment and communication code generation

Some of the subsystems defined in the SysML functional model are refined in
Simulink and an implementation is automatically generated for them. Other
subsystems are developed as hand-written code or implemented by purposely
designed HW or firmware. The software infrastructure that provides communi-
cation and synchronization among blocks, and realized as port and subsystem
wrappers is automatically generated from the SysML model using Acceleo
transformations that create application-specific classes (and objects) refining
library classes. For the communication between hand-written C++ code imple-
menting functional subsystems and subsystems generated in SW from Simulink
model, Acceleo scripts automatically generate the wrappers that provide the
marshalling of parameters to the variables implementing the input ports and
retrieving the data from the output port variables. The Step function imple-
menting the subsystem runtime behavior is invoked in the context of a software
thread executing at the appropriate rate.

For the case of communication between firmware (FPGA) implementations
and software subsystems, the read and write interface operating on the shared
registers and memory locations is automatically generated based on the infor-
mation provided in the SysML mapping model, defining the position of data
signals in memory and/or HW registers.

Fig. 12 Hierarchy of classes for subsystems ports.

The class hierarchy defining the subsystem wrappers is simple. A virtual
base class SubsystemWrapper is at the root of the hierarchy. Two classes are de-
rived from it: SubsystemSimulinkWrapper, the base class for subsystems mod-
elled by Simulink, and SubsystemCppWrapper, the base class for subsystems
developed in C++ by hand (FPGA-implemented components do not have a
wrapper). These classes are statically defined in a library. The Acceleo scripts
define subsystem-specific classes derived from them. The communication be-
tween subsystems takes place through instances of port classes, whose hierar-
chy is depicted in Figure 12. The following template classes are defined:
OutputPort<Message> (base class for output ports): a concrete class imple-

menting the following methods:

24 M. Di Natale et al.

Send(Message), to send data (at runtime) to the connected blocks,
Connect(IReceiver), invoked at initialization time to connect the port

to an instance of the IReceiver class in a corresponding input port or
stub (for interprocess communication).

IInputPort<Message> (base class for input ports): an abstract class defining
the method:
Read(Message), to read the data received on the port from the subsystem

methods.
IReceiver<Message>: an abstract class defining the method:

Receive(Message), to receive data from an OutputPort.

Listing 2 shows the code of the OutputPort class. The Send method for-
wards the data to all connected IReceiver(s) that provide the data buffers. Con-
crete instances of input ports inherit from IInputPort. They also inherit from
IReceiver when connected to output ports in the same process. IntraThreadIn-
putPort and InterThreadInputPort inherit from the abstract interfaces IInput-
Port and IReceiver, allowing direct transmission of the Message data between
different subsystems in the same process. Both store the Message data in an
instance variable upon reception. The class InterThreadInputPort provides
thread-safe access to its internal buffer using the protection method provided
by the OS on the CPU hosting the process (currently only boost mutexes are
supported).

Listing 2 Code of the Output port class
template < typename Message >
class OutputPort
{
public :

OutputPort () {}
virtual ˜ OutputPort () {}
virtual void Send(const Message & message) {

for (typename ReceiversVector :: const_iterator
i= receivers_ . begin ();
i != receivers_ .end (); ++i)

(*i)-> Receive (message); }
virtual void Connect (IReceiver <Message > * receiver) {

receivers_ . push_back (receiver); }
protected :

typedef std :: vector <IReceiver <Message >*> ReceiversVector ;
ReceiversVector receivers_ ;

};

The separation between IReceiver and IInputPort is necessary when the
output port and the connected input port belong to components mapped into
different processes.

A Model-based approach for the synthesis of SW to FW adapters. 25

In this case, the OutputPort instance will be connected to a proxy object
derived from IReceiver (living in the same process), which will then imple-
ment a (currently socket-based) inter-process communication to send data to
the matching IInputPort instance on the other process. In Figure 12, this
is represented by the classes InterProcessInputPort, derived from IInputPort,
and Proxy, derived from IReceiver. This allows the users to ignore the details
of specific implementations and only rely on the Send/Received methods with
maximum portability.

8.1 C++ wrapper

The classes generated for the communication of C++ hand-written sub-
systems inherit from SubsystemCppWrapper and provide only the concrete
definition of the communication ports and read/write operations for accessing
them. The behavior of the subsystem is then manually coded (the listing of the
generated code is quite straightforward and omitted for space reasons). Listing
3 shows the code generated for our example C++ subsystem Configurator.

Listing 3 Code generated for the Configurator subsystem
class SubsystemConfigurator : public SubsystemCppWrapper {
public :

SubsystemConfigurator ();
OutputPort < ReceiverType > * getReceivertype ();
OutputPort < RFParameters > * getConfigure_RF ();
OutputPort <Integer > * getDetect_setup ();

private :
OutputPort < ReceiverType > receivertype_ ;
OutputPort < RFParameters > configure_RF_ ;
OutputPort <Integer > detect_setup_ ;

};

8.2 Simulink wrapper

The Simulink wrapper instantiates the ports to communicate with the other
subsystems and provides two methods Init and Step, that encapsulate the
corresponding automatically generated methods.

The SubsystemReceiver class generates for our example (shown in List-
ing 4) defines the parameters and set type ports. These ports receive input
from the Configurator subsystem, which is mapped to another thread. Hence,
their implementation is thread-safe. The user has the responsibility of writing

26 M. Di Natale et al.

Listing 4 Code generated for the Receiver subsystem (of Simulink type)
class SubsystemReceiver : public SubsystemSimulinkWrapper {
public :

SubsystemReceiver ();
virtual void Init ();
virtual void Step ();
InterThreadInputPort < ReceiverType > * getSet_type ();
InterThreadInputPort < RFParameters > * getParameters ();
OutputPort <Threat > * getThreats ();

private :
InterThreadInputPort < ReceiverType > set_type_ ;
InterThreadInputPort < RFParameters > parameters_ ;
OutputPort <Threat > threats_ ;
ReceiverModelClass simulink_receiver_ ;

};
...
void SubsystemReceiver :: Init (){

simulink_receiver_ . initialize ();
}
void SubsystemReceiver :: Step () {

ReceiverType input1 = set_type_ .Read ();
RFParameters input2 = parameters_ .Read ();
Threat output1 ;
simulink_receiver_ .step(input1 , input2 , & output1);
threats_ .Send(output1);

}

the periodic thread that invokes the Step method of the generated subsys-
tem wrapper class after the Send methods are called for all the output ports
connected to the input ports of the subsystem block.

8.3 FPGA port wrapper

The FPGA communication code consists of port and receiver wrappers
that encapsulate the high level driver functions and connect to the input and
output ports of the components communicating with an FPGA subsystem
(Listing 5). The library code consists of a base class FPGAInputPort used to
derive the Acceleo-generated classes implementing the input ports of a SW
component connected to an FPGA subsystem output port.

When reading, the Read operation forwards the request to a Get operation
from the FPGA driver port. For FPGA input ports, a dedicated Receiver is
provided. A Send to a port connected to an FPGA input results in a Set on
the FPGA driver. In both cases, the Acceleo-generated code mainly consists in
overriding the definition of the Convert operation, translating the fields of the
data port type into the PhysicalFields of the FPGA physical port, according
to the mapping specified in the SysML model.

A Model-based approach for the synthesis of SW to FW adapters. 27

Listing 5 library classes for FPGA ports and receivers
template < typename Message , class Driver , typename PortData >
class FPGAInputPort : public IInputPort <Message > {
public :

FPGAInputPort (Driver * driver) : driver_ (driver) {}
virtual Message Read () {

PortData data; Message message ; driver_ ->Get(data);
Convert (data , message);
return message ;

}
protected :

virtual void Convert (const PortData &data , Message &msg)=0;
private :

Driver * driver_ ;
};
...
template < typename Message , class Driver , typename PortData >
class FPGAPortReceiver : public IReceiver <Message > {
public :

explicit FPGAPortReceiver (Driver * driver): driver_ (driver) {}
void Receive (const Message & message) {

PortData data; Convert (message , data);
driver_ ->Set(data);

}
... };

8.4 Initialization code and port connections

Finally, an additional code section is generated for each process to perform the
initialization of all the components in the threads/processes and connecting
their ports. A reference to the FPGA driver managing the FPGA registers
accessed by the subsystems in the process is passed to the reading components
and a receiver class is defined for each input FPGA port. The following Listing
6 shows (part of) the initialization code for our example.

9 Shared testing environment

Another set of Acceleo scripts (reusing many templates from the previous
code generation stage) is used to automatically generate two testing stubs for
each subsystem to be refined in Simulink and two wrappers to be used on the
generated code (in the software integration stage). The two stubs are used
as the code implementation of two custom blocks that are used in Simulink
simulation runs, one acting as a gateway on the input data, the other on the
output data (as shown in Figure 13). The two code wrappers/stubs are used
in a C++ programming environment to test the code implementation of the
SUT.

28 M. Di Natale et al.

Listing 6 Initialization code for the example
class ThreatsReceiver : public FPGAPortReceiver <Threat , DetectorFPGACacheddriver ,
tThreatPortData >{
public :

explicit ThreatsReceiver (DetectorFPGACacheddriver * driver) :
FPGAPortReceiver (driver) {}
protected :

void Convert (const Threat &message , tThreatPortData &data) {
data.setX(message .BBox.x); data.setY(message .BBox.y);
data. setType (message . THType); data.setZ(message .BBox.z);

}
};
...
SystemProc1 :: SystemProc1 (DetectorFPGACacheddriver * DetectorFPGA){

DetectorFPGA_ = DetectorFPGA ;
configReceiver_ = new ConfigReceiver (DetectorFPGA_);
threatsReceiver_ = new ThreatsReceiver (DetectorFPGA_);
configurator_ . getReceivertype ()-> Connect (receiver_ . getSet_type ());
configurator_ . getConfigure_RF ()-> Connect (receiver_ . getParameters ());
configurator_ . getDetect_setup ()-> Connect (configReceiver_);
receiver_ . getThreats ()-> Connect (threatsReceiver_);

}

The stubs generated for the C++ implementation act in a similar fashion,
intercepting the input and output flows in the C++ (integration) environment.
The four stubs share a similar format for storing the trace data and reading
from the trace files. This allows to record traces and exchange test cases (and
compare outputs) between the two environments.

In Simulink, the input and output stubs have their inputs and outputs
defined according to the port specifications of the module under test and
will perform the save and compare of the simulation traces in the Simulink
environment. These stubs will make use of the BusObject type definitions
generated in the previous Matlab file and provide the internal code for creating
two Simulink custom blocks, to be connected as pass-throughs at simulation-
time to the Simulink subsystem under-test (as in Figure 13). These custom
blocks are defined as follows.

The input block has as many inputs and outputs ports as the input ports
of the SUT, with types matching the corresponding types for the input ports
of the SUT. In addition, the input stub has a Boolean input port. The Boolean
input configures the operation of the input stub. If the corresponding input
value is true, the stub operates in record trace mode. When the simulation
is run, the values arriving as input to the SUT are recorded in an XML file.
The same values are passed through, unaltered, to the output ports. When
the Boolean input is false, the block operates in playout mode. It ignores the
values on its input ports and puts on its output ports the trace values that
are read from the trace file.

The output stub has as many input and output ports as the output ports
of the SUT. In addition, it has a Boolean input and a Boolean output. When
the Boolean input is set to true, the output stub works in record trace mode:
When the simulation is run, the values produced as output by the SUT are
recorded in an XML file. The same values are passed through, untouched to the
output ports for use by the other subsystem in the simulation. The additional
Boolean output is ignored. When the input Boolean port is set to false, the
block operates in compare mode. It compares the values produced by the SUT

A Model-based approach for the synthesis of SW to FW adapters. 29

at simulation time with the trace data stored in a trace file. The XML files
are managed using a lightweight XML parser library available as open source
in C++: rapidxml (http://rapidxml.sourceforge.net/).

Fig. 13 Test proxys in Simulink

The stubs to be used in the code integration stage work in a similar way.
They intercept the invocation of the step function that is generated to perform
the reaction of the block in C++. In addition, they allow to record the inputs
of a test run or playback the XML file that recorded the inputs of a run in the
Simulink environment.

This allows to exchange test input vectors by simply exchanging the XML
file of the recorded input traces between the two environments.

10 Impact on industrial processes and lessons learnt

The automatic generation of implementations from SysML specification is cur-
rently in use in an increasing number of projects at ELT. As of the end of 2015,
10 projects are using the automatic generation of software-firmware adapters
or stubs for simulation. The ten projects share three different types of pro-
grammable hardware, for a total of 160,000 lines of code that are automati-
cally generated for the drivers (not including the simulation code and the test

30 M. Di Natale et al.

stubs). 19 other projects are using similar generation facilities to automate the
implementation of messaging, for an additional 70,000 lines of code.

To provide an initial assessment of the costs and benefits, at present time,
the creation of SysML models for the representation at system level of all
the interfaces (starting from the interface requirements specification stage and
carried over to the design stages), required considerable more time in the mod-
els, as opposed to the traditional set of documents. This additional effort is
estimated in 90 additional man-hours of work on average for each HW-SW
interface in a project (3 vs. 1 man/months for the description of the approxi-
mately 900 locations that are used for each project), and produced savings for
75 hours in the development of the detailed design (this is because the design
can be obtained by refining the SymML models instead of starting from textual
requirements) and savings for additional 700 man-hours for the development
and testing of interface code. Also, the development of the interface drivers
benefits from an average of 2400 lines of code automatically generated for each
driver, with an expected saving of 4 months of development time (from cocomo
estimates) These numbers refer to the average for each interface, considered
for projects that have on average 5 such interfaces (with commonalities across
the projects).

In addition, the same SysML models, are used to drive other simulation and
testing stages, with additional automation and savings. The use of automatic
document generation tools (DocGen2) allows to tradeoff the document creation
time for modeling time. Although this required an initial effort for the training
of personnel in the use of the SysML Papyrus modeling tool, the time that is
currently needed to create an interface specification in SysML is practically
the same as the time that was needed to create the corresponding specification
document (in Word), approximately 1 day for each average size interface (a
protocol of 10 messages).

In addition, for the abovementioned 10 projects, models are also used for
the automatic generation of configurators of Wireshark dissectors [34] that
are used to test subsystems interactions over a network, and stubs for the
automatic generation of messages at testing time. The expected savings from
these automatic dissectors and message generators is of 1.5 man/months for
the simplest dissectors (testing 10 messages). Message generators for testing
more complex communications require approximately 70.000 lines of code and
5 man/months (Cocomo II estimates) that are now completely generated from
specifications, with better quality and reduced maintenance and bug fixing.

Finally, automatic generation from SysML specifications guarantees that
documentation, models, target code, simulation and testing tools (including
dissectors) are always aligned and consistent.
Lessons learned

The experience with the modeling and generation framework presented in
this paper clearly indicates that:

– open source tools for modeling and code generation have a level of maturity
that is adequate for supporting industrial processes;

A Model-based approach for the synthesis of SW to FW adapters. 31

– automatic code generation allows to achieve significant savings in the de-
velopment times provided that it operates on models that are produced
as part of the standard development flow (no additional artifacts are re-
quired). In addition, the development of software components for commu-
nication, testing and simulation reduces the coding effort for development
that are tedious and repetitive;

– the introduction of models and MDA tools and techniques can and should
be leveraged for as many process steps as possible (documentation, simu-
lation, coding, test) in order to reduce the impact of the nonrecurring cost
of creating the SysML models.

With respect to the last point, the introduction of a model-based flow is
not painless. The current savings have been achieved at the price of develop-
ments for 28 man/months (m/m). In detail, the generators described in this
document took 17 m/m of development for the HW/FW interfaces (reusing
4m/m of previous generators from DSLs, 4m/m for the SysML porting, the
updates that were required on the code generation templates, and the testing
infrastructure), 3 m/m for the integration into eclipse (including the develop-
ment of plugins, customizations, 6 m/m for the integration of the Eclipse-based
framework in the process, and corrective and incremental maintenance), plus
1 m/m for the document generation templates and 10 m/m for the support to
the simulation activities.

In our experience at ELT, we believed firmly in the opportunity offered by
open source tools (see also [35]) and the Eclipse environment, but the final
configuration of the framework required backtracking and redoing develop-
ments a few times. For example, the initial selected tool was Topcased [36]
and only later we selected the Papyrus tool as the SysML modeler. Also, the
initial definition of HW/SW interfaces made use of a custom metamodel and
only later we decided to avoid the use of DSLs and instead providing a defi-
nition of the hardware platform components as stereotyped SysML elements.
The need to involve the firmware designers in the creation of the models (and
their limited expertise/knowledge of the UML language and tools) required
the development of several OCL constraints and customizations, to ensure the
correctness of the produced models and ease the use of the tool. Finally, the
need to share models, profiles and libraries required the development of several
eclipse plugins.

11 Conclusions and Future Work

We presented the flow and related tools (mostly open source, the backbone
is provided by the open source Eclipse Modeling Framework (EMF) [9] and
its metamodeling, model-to-model and model-to-code transformation capabil-
ities) used for the automatic generation of communication adapters to software
and firmware components that are generated from Simulink or hand-coded.
The generated adapters guarantee conformance with a SysML specification
and adherence to the Simulink execution semantics and conformance with a

32 M. Di Natale et al.

generic model of an FPGA driver interface, which alleviates the tedious pro-
gramming of selecting and coding the appropriate data passing pattern. Future
work includes the full extension to adapters for networked (distributed) com-
munication on heterogeneous stacks and an extension of the simulation and
test capabilities, to allow the automatic generation of boundary and robustness
tests.

References

1. A. Sindico, M. Di Natale, A. Sangiovanni-Vincentelli, ”An Industrial Application of a
System Engineering Process Integrating Model-Driven Architecture and Model Based
Design”, ACM/IEEE 15th MODELS Conference, Innsbruck, Austria.

2. Sangiovanni-Vincentelli, A., ”Quo Vadis, SLD? Reasoning About the Trends and Chal-
lenges of System Level Design”, Proceedings of the IEEE, Vol. 95, No. 3, pp. 467-506,
Mar. 2007.

3. The Object Management Group: http://www.omg.org
4. Mukerji,J.,Miller,J., ”Overview and Guide to OMG’s Architecture”,

http://www.omg.org/cgi-bin/doc?omg/03-06-01
5. M. Di Natale, F. Chirico, A. Sindico, and A. Sangiovanni-Vincentelli, ”An MDA Ap-

proach for the Generation of Communication Adapters Integrating SW and FW Com-
ponents from Simulink”, Proceedings of the Models Conference 2014, Valencia, Sept.
2014

6. Paterno,F. ”Model-Based Design and Evaluation of Interactive Applications, Springer-
Verlag”, London, 1999

7. The System Modeling Language: http://www.sysml.org/docs/specs/OMGSysML-v1.1-
08-11-01.pdf

8. Modeling Analysis of Real Time Embedded Systems (MARTE) profile:
http://www.omg.org/spec/MARTE/1.0/PDF/

9. The Eclipse Modeling Framework: http://www.eclipse.org/modeling/emf/
10. Acceleo: http://www.acceleo.org/pages/home/en
11. SIMULINK: http://www.mathworks.it/products/simulink/
12. Sindico, A., Di Natale, M., Panci, G., ”Integrating SysML With SIMULINK Using Open

Source Model Transformations”, SIMULTECH 2011: 45-56
13. B. Kienhuis, E. F. Deprettere, P. v. d. Wolf, and K. A. Vissers, “A methodology to

design programmable embedded systems - the y-chart approach,” in Embedded Proces-
sor Design Challenges: Systems, Architectures, Modeling, and Simulation - SAMOS.
London, UK, UK: Springer-Verlag, 2002, pp. 18–37.

14. Stephen J. Mellor, Scott Kendall, Axel Uhl, Dirk Weise, MDA Distilled Addison Wesley
Longman Publishing Co., Inc. Redwood City, CA, USA, 2004

15. Ali Koudri, Arnaud Cuccuru, Sebastien Gerard, Francois Terrier Designing Heteroge-
neous Component Based Systems: Evaluation of MARTE Standard and Enhancement
Proposal. Proceedings of the MODELS Conference 2011, pages 243-257

16. Ernest Wozniak, Chokri Mraidha, Sebastien Gerard, Francois Terrier: A Guidance
Framework for the Generation of Implementation Models in the Automotive Domain.
EUROMICRO-SEAA 2011: 468-476

17. Pieter J. Mosterman and Hans Vangheluwe. Computer Automated Multi-Paradigm
Modeling: An Introduction. Simulation, in Transactions of the Society for Modeling and
Simulation International, 80(9):433-450, September 2004. Special Issue: Grand Chal-
lenges for Modeling and Simulation.

18. Sindico, A., Di Natale, M., Panci, G., ”Integrating SysML With SIMULINK Using Open
Source Model Transformations”, SIMULTECH 2011: 45-56

19. Janos Sztipanovits, Xenofon Koutsoukos, Gabor Karsai, Nicholas Kottenstette, Panos
Antsaklis, Vijay Gupta, Bill Goodwine, John Baras, and Shige Wang, Towards a Science
of Cyber-Physical System Integration, in Proceedings of the IEEE, Special Issue on
Cyber-Physical Systems, 100(1), 29-44, January 2012

A Model-based approach for the synthesis of SW to FW adapters. 33

20. Y. Vanderperren and W. Dehaene, “From uml/sysml to matlab/simulink: current state
and future perspectives,” in Proceedings of the conference on Design, automation and
test in Europe, DATE ’06 Leuven, Belgium.

21. A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone,
“The synchronous languages 12 years later,” Proceedings of the IEEE, vol. 91, no. 1,
Jan. 2003.

22. G. Berry and G. Gonthier. The synchronous programming language ESTEREL: Design,
semantics, implementation. Science of Computer Programming, 19(2), 1992.

23. G. Karsai, M. Maroti, A. Ledeczi, J. Gray, and J. Sztipanovits, “Composition and
cloning in modeling and meta-modeling,” IEEE Transactions on Control System Tech-
nology (special issue on Computer Automated Multi-Paradigm Modeling, vol. 12, pp.
263–278, 2004.

24. F. Balarin, L. Lavagno, C. Passerone, and Y. Watanabe, “Processes, interfaces and
platforms. embedded software modeling in metropolis,” in Proceedings of the Second
International Conference on Embedded Software, ser. EMSOFT ’02. London, UK:
Springer-Verlag, 2002, pp. 407–416.

25. J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs,
Y. Xiong, ”Taming Heterogeneity—the Ptolemy Approach,” Proceedings of the IEEE,
v.91, No. 2, January 2003.

26. L. de Alfaro and T. Henzinger, Interface automata, Proc. of the 8th European software
engineering conference held jointly with 9th ACM SIGSOFT international Symposium
on Foundations of software engineering, Vienna, Austria, 2001

27. E. Lee and A. Sangiovanni-Vincentelli, ”A Unified Framework for Comparing Models
of Computation”, IEEE Trans. on Computer Aided Design of Integrated Circuits and
Systems, Vol. 17, No. 12, pp. 1217-1229, Dec. 1998.

28. S. Mohanty and V. K. Prasanna, A Model-Based Extensible Framework for Efficient Ap-
plication Design Using FPGA ACM Transactions on Design Automation of Electronic
Systems, Vol. 12, No. 2, Article 13, Publication date: April 2007.

29. M. Areno, B. Eames, A. Dasu. An automated Micro-architecture design tool for FPGAs,
Proc. of the 2007 Reconfigurable Summer Systems Institute (RSSI), pp.1-10, July 2007.

30. G Hemingway, H Neema, H Nine, J Sztipanovits Rapid synthesis of high-level
architecture-based heterogeneous simulation: a model-based integration approach Sim-
ulation, SAGE Journal, October 2012.

31. The EAST-ADL Association, Consortium web page (Dec 2015) “http://www.east-
adl.info/.

32. The DoD Architecture Framework Version 2.02. Web page available at (Dec 2015)
“http://dodcio.defense.gov/Portals/0/Documents/DODAF/DoDAF˙v2-02˙web.pdf

33. Functional Mockup Interface standard, available at (Dec 2015) “https://www.fmi-
standard.org/.

34. The Wireshark project web page. Available at (Dec 2015) “https://www.wireshark.org/.
35. F. Bordeleau, Future of MBE/MDE/MDD in the Industry âĂŤ Open Source is the Only

Solution!, Keynote speech at the MODELS 2014 Conference, Valencia, Sept. 2014, slides
available at “http://models2014.webs.upv.es/index2˙htm˙files/Keynote2.pdf.

36. The Topcased project web page (Dec. 2015) “https://www.polarsys.org/topcased.
37. The Papyrus project web page (Dec. 2015) “https://eclipse.org/papyrus/.
38. Windriver, Simics Full System Simulator. Product web page (Dec 2015).

“http://www.windriver.com/products/simics/
39. IEEE Standard SystemC Language Reference Manual, IEEE Computer Society, 1666-

2005, 31 March, 2006.
40. F. Schirrmeister, M. Meindl and S. Krolikoski Hardware/Software Interfaces Design for

SoC, Embedded Systems Handbook, Second Edition: Embedded Systems Design and
Verification

41. N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi Defining and translating
a ”safe” subset of Simulink/Stateflow into Lustre. 4th ACM International Conference
on Embedded Software (EMSOFTâĂŹ04), Pisa, Italy, September 2004.

42. Guoqiang Wang, Marco Di Natale, and Alberto L. Sangiovanni-Vincentelli. “Optimal
synthesis of communication procedures in real-time synchronous reactive models.” in
IEEE Trans. Industrial Informatics, 6(4): 729–743,2010.

43. M. Di Natale and V. Pappalardo. Buffer optimization in multitask implementations of
simulink models. in ACM Trans. Embed. Comput. Syst., 7(3):1–32, 2008.

