
Frame Rate Upscaling with
Deep Neural Networks

Ted Xiao
Machine Learning at Berkeley

Email: tx@berkeley.edu

Raul Puri
Machine Learning at Berkeley
Email: raulpuric@berkeley.edu

Gautham Kesineni
Machine Learning at Berkeley
Email: gkesineni@berkeley.edu

Keywords—Frame rate, interpolation, computer vision, video,
Convolutional Neural Networks, Generative Adversarial Networks

I. INTRODUCTION

Frame interpolation is a computer vision task that is largely
performed on real world video data to increase the number of
frames per second. Video streaming could benefit greatly from
this technique, as it could allow for streaming of lower frame
rate video that could then be interpolated to generate more
frames and produce smoother high-framerate video. Currently
approaches leave a lot to be desired in that the images produced
are blurry and look like simple averages of already existing
frames due to linear interpolation techniques. This is passable
in real video (non-animated), as the blurry image helps evoke
a sense of motion. However, 2D animated videos have sharp,
defined individual frames; blurry interpolated images do not
fit with the overall style of the videos, and are easily detected
by the human eye.

Furthermore, enhancing these techniques to photorealistic
levels could have huge potential in animation. By computing
the surrounding frames and interpolating the middle ones,
computational effort to produce both live and pre-rendered
animations could be greatly reduced. What we attempt to
achieve in this project is to use deep learning to enhance
the quality of interpolated frames. We want to develop a
robust algorithm for both real world and 2D video frame rate
upscaling.

II. PREVIOUS WORK

Traditional frame interpolation usually separates the image
into components to measure the motion vectors of the image.
These vectors are used to find the location of different blocks
at different points in time. This generally works well but is
not ideal. The algorithm knows nothing about the way objects
move in the real world and assumes all motion is linear. When
frame rates are very low, the artifacts of this method start
appearing. For this reason, we believe there is great promise
in deep learning (DL) methods for this problem.

Proper frame interpolation requires an understanding of
the subjects and the motion of the subjects within frames.
Deep Convolutional Neural Networks have shown promise
in numerous computer vision (CV) tasks, and shows similar
promise in this task. They have been used previously for
this task on real world video and with basic success on 2D
animation in [1], whose work we hope to extend and improve
upon.

III. DATASET

There is no shortage of data for this problem, which is a
common issue for many domains. Since this project focuses
on a generative application of Deep Learning, we were able
to leverage existing videos from YouTube as training data. For
a given video V with n frames, we are able to generate a
training dataset of size n − 2, where the input features are
frames i, i + 2 with label frame i + 1 for i ∈ [1, n − 2]. We
scraped 3 videos from YouTube to train, resulting in roughly
3500 frames.

Specifically, we scraped two animated videos and one real-
life video. They are:

1) ”Moving Circles”: https://www.youtube.com/watch?v=FTFHaZmGYMA
2) ”Lion King”: https://www.youtube.com/watch?v=K5lEJlbEgz4
3) ”Obama Interview”:

https://www.youtube.com/watch?v=xXH5agV7skw

IV. PREPROCESSING

We followed two avenues of preprocessing. First, we
experimented with using both grayscale and RGB frames as
input to measure performance for both. Since the grayscale
preprocessing is a simpler input format, we expected to see
better performance; our goal was to get performance on RGB
to the same standard. We also normalized all pixel values by
dividing by 255 as is standard.

Second, we utilized a sliding window approach to gen-
erate data. First, we split up a video into two halves
such that frame Xi, Xi+2, Xi+4, xi+6, .. is our input and
Xi+1, Xi+3, Xi+5, Xi+7, .. are our labels.

For a window of size n = 4, where n is always an
even integer, we would try to predict frame Xi+3 from Xi,
Xi+2, Xi+4, Xi+6.

V. AREAS OF INQUIRY AND PRIOR WORK

We have identified three axes of experimentation for this
project: loss functions, type of neural net model, and image
super-resolution (eliminating blur effects).

A. Loss Functions

Initially we planned on experimenting with the following
four functions: L1 norm, L2 norm (MSE), Peak Signal to Noise
Ratio (PSNR), and Structural Similarity Index Measurement
(SSIM). These loss functions are based on work from [1] and
[2].



PSNR(Y, Y ′) = 20 log(s)10 log(MSE(Y, Y ′))

SSIM(Y, Y ′) =
(2µY ′µY + c1)(2σY Y ′ + c1)

(µ2
Y ; + µ2

Y + c1)(σ2
Y ′ + σ2

Y + c2)

Finding an appropriate loss function is critical to training
deconvolutional networks. However, due to time constraints
we narrowed the scope of our inquiry to just mean squared
error (MSE).

B. Model Goals

Based on our analysis of past work, there are three high
level goals for our net to achieve with regards to frame input:

1) How to overcome a Neural Network’s inherent inabil-
ity for stochastic prediction (nets tend to be better at
performing averages)

2) How to keep pertinent information from the input for
that stochastic prediction

3) How to best capture, learn, and utilize optical flow
information to perform our frame generations

With regards to the first goal one could modify the input
block in the architecture of [1]. Instead of simply processing
two input data points and combining the processed output
as input into the convolutional block of our autoencoder-like
structure, one could leverage a sliding window RNN/LSTM
component in order to mitigate behavior resulting in summa-
tion/averaging of input information which the current architec-
ture utilizes.

With regards to the second goal: prior work in [1] and
[3] indicate that utilization of residual connections can help
preserve key information about the input frames to be utilized
during generation.

Lastly, prior work in [2] shows that use of a VAE, a.k.a.
Variational Autoencoder, (with or without residual connec-
tions) can help learn a representation of information from the
input frames, along with pertinent information about observ-
able optical flow, to help predict the transition frame between
the two input frames.

However, for the scope of our experiments, we focused
primarily on the last goal and how to best utilize techniques
like the VAE without residual connections for capturing infor-
mation about optical flow and generating transition frames.

C. Image Super-Resolution/ De-blurring Motion

Another avenue in producing crisp, upscaled videos is to
eliminate blur by leveraging existing work in image super-
resolution ([2], [3], [4] ). There are two separate techniques on
this front. After taking output imagery from the convolution (or
deconvolution in the case of a VAE) block one could achieve
superior image generation by refining the image with the use
of either Multi-frame Super-resolution (MFSR) or with the use
of Generative Adversarial Networks (GANs), as introduced in
[5].

For MFSR, one can take the generated output image
frame and the original input images all concatenated into one

featurization and then feed it into an MFSR block to get the
final output image.

Regarding GANs, we can use them as an adversarial
component to the specified network. By attaching an adver-
sarial convolution component to the end of our model that
distinguishes interpolated and real frames, we can hope to train
the network to remove artifacts created in the interpolation
process. Through this additional step, one can achieve better
accuracy in the realism of predicted frames.

Another avenue for exploration in this realm is to train a
deconvolution component adversarially on a encoding block
of frozen pre-trained classification networks such as VGG.
This will create a strong deconvolution component that works
well within the pre-trained space. If the convolutional/encoding
network is made of pre-trained components, we expect this
deconvolution network to work very well in conjunction.

For the scope of our experiments we focus mainly on
GANs as a new avenue of exploration, as prior work has
established the success of producing crisp frames given a series
of surrounding frames.

VI. EVALUATION

With our MSE loss function found that the loss function
allowed our neural networks to generalize well to multiple
videos and upscale a wide corpus of test videos. We used
existing evaluation methods (for instance, as seen in [1]) to
evaluate the success of our different models. Specifically, we
attempted to use main evaluation measure was Interpolation
Error (IE), defined as the root-mean-square (RMS) difference
between the ground-truth image and the estimated interpolated
image:

IE =

 1

N

∑
(x,y)

(I(x, y)− IGT (x, y))2
 1

2

In addition, we also used qualitative measures of deter-
mining the success of different models, as we found that the
human eye discerned interpolation results as well as if not
better than many error metrics. We find this due to the visual
nature of computer vision tasks, especially as applied to frame
interpolation. This is standard practice in other similar fields
of study such as image stylization, where the quality of the
intended result can’t solely be expressed in a mathematical
value.

VII. MODELS

We tried several methods in our approach: Simple Convolu-
tion (Baseline), Deep Convolution, Variational AutoEncoders,
and GANs. More details on these along with the results can be
found in this poster. Below is the loss over time while training
each of these models.



A. Baseline Model

Our baseline model was a simple 3-layer convolution.

A convolution layer applies several learned convolutions to
each input image. A convolutional neural network stacks these
layers so that later convolutions learn on the outputs of earlier
layers. Although these are typically used for image recog-
nition because of their ability to ignore spatial information
(convolutions slide over the input), they can also be applied
to other tasks. Because convolutions allow for translations, the
network should intuitively be able to learn the movement of
static objects in video.

The biggest change we made here from a standard 3-
layer convolutional neural network was to use tanh instead of
ReLu activation at the last layer and to normalize the inputs
as described in the preprocessing section; however, these are
all pretty standard techniques for generating images via deep
learning.

B. Deep Convolution Model

This was an extension of our first model. We increased
the number of layers to 6. The biggest change is that
we swapped the tanh activations with ReLu and used
a linear activation for our last layer. We found that
tanh would favor the values at 1 or −1 while a linear
activation would treat all equally, as pixel values should be.

We only applied 6 layers because we were limited by the
amount of memory available on our hardware. Deeper
models should perform better at this task and capture faster
movement. Given more time and stronger hardware, we would
have explored even deeper convolutional models.

C. VAE Model

Variational AutoEncoders (VAEs) consist of an encoding
block made of convolution layers to learn feature representa-
tion (encoding) of the image, and then a deconvolution (decod-
ing) block to take the feature representation and generate an
image from it. VAEs force the inputs to go through a bottleneck
of a lower dimensional latent space so that the model learns
to abstract information. Ideally, the image would learn motion
in its latent space and use that to interpolate the appropriate
frame in its decoding block.

We tried using Variational AutoEncoders (VAEs) in our
experiments. We focused on a simpler implementation of VAEs
that do not rely on residual connections as that was natively
supported within Keras. We attempted to also apply residual
connections but were not fruitful in our efforts for various
reasons. Due to the compressive nature of VAEs our results
generally ended up being rather blurry as shown in the results
section.

D. GAN Model

Generative Adversarial Networks are typically composed
of two parts: the generator and discriminator. The generator
takes as input random numbers that represent a lower di-
mensional latent space and use them to create an image that
fools the discriminator. The discriminator, on the other hand,
will receive images made by the generator and real images.
It attempts to find which images are real and which were
generated. These two networks train adversarially so a good



indicator that the system is working is that the losses of both
networks remain close.

The Generative Adversarial Network (GAN) model is an
extension of our Deep Convolution Model. We adopt the
Generator-Discriminator architecture introduced in [5]. How-
ever, unlike typical GANs, we supply the input as the before
and after frames and attach a normal discriminator component.
We applied both MSE and GAN updates to the generator
component to converge faster.

The Discriminator architecture is shown above. The
generator architecture is exactly the same as our Deep
Convolution Model in earlier sections. The GAN network
saw a disproportionate convergence for the Discriminator
and Generator components. This is not ideal but we
were unable to improve the results in our experiments.

VIII. RESULTS

The results of the different models can be seen on the
next page. Qualitatively, we do indeed find that our models
interpolate successfully to some degree. Additionally, the vi-
sual performance of the various models match the plotted loss
history seen in Section VII.

For a video demonstration of our Deep Convolution Model

upscaling these videos from 10FPS to 20FPS, view our demon-
stration at:

https://www.youtube.com/watch?v=8HtA6iyJkHo

The results of the models can still be understood from
single static frames, as shown on the next page. A general note
is that the Baseline 3-Layer Convolution Model has grayscale
preprocessing, as discussed in Section IV; thus, a perfect
reconstruction of the expected RGB image is not possible, but
general trends can still be observed.

We see that for the ”Moving Circles” video (shown in the
first row), the Baseline, Deep Convolution, and GAN models
all generate an image similar to the expected frame. The Deep
Convolution generated image is a little sharper than the GAN
generated image, while the baseline model seems to have
some kind of averaging and edge detection artifacts. The VAE
generated image has a circle in the center, which may be a
remnant of training, where a circle would often be in the center
of the frame.

For the ”Lion King” video (shown in the second row), the
Baseline, Deep Conv, and GAN models generate an image
roughly similar to the expected frame. Again, the Deep Conv
image is the sharpest generated image. The generated GAN
image is fairly blurry, both for the foreground and background
of the image. The VAE generated image is extremely blurry
and has a significant amount of uncertainty, shown visually as
noise.

Finally, for the ”Obama” video (shown in the third row),
the Deep Conv and GAN models all generate images roughly
similar to the expected image. However, the moving parts of
the video (Obama’s hands) are not correctly interpolated - we
see some kind of averaging/overlay instead of a prediction of
the intermediate hand position. These models do fair better
than the VAE however, which generates a very downsampled
zoomed-in image of Obama’s face. This is because the VAE
is trained on the corpus of the entire interview, during which
many frames are of a zoomed in focus shot of Obama’s face.
The VAE seeks to reconstruct the video by simply memorizing
various frames during the compression step, resulting in very
inaccurate generated images on most frames.

Across the various test frames, we find that the Deep
Convolution Model performs the best. The GAN performs
well, but is blurrier than the Deep Convolution Model. We hy-
pothesize that the GAN’s Discriminator requires more tuning,
as it did not successfully discriminate generated images from
real images; if it had discriminated better, there would have
been significantly less blur in the generated images. Another
possible explanation for this behavior is that the downsampling
(maxpool) component of the discriminator causes it to lose
information about the generated image; thus, allowing blurry
images to pass as real images since they have similar fea-
ture maps after the 2x2 maxpool layer. The baseline model
is essentially performing grayscale linear interpolation, with
some interesting learned features (such as learning filters for
edge detection). We suspect that the baseline model performed
worse than the Deep Convolution Model because there simply
weren’t enough layers; the network was deep enough for
interesting filters to be learned, but it was not complex enough
to fully learn the representation of a generated image.



IX. TOOLS

We used Keras to implement our neural networks, allowing
us to including support for Theano and TensorFlow as a core
framework for applying our models. We ran our experiments
on a variety of hardware, but most significantly we utilized a
cluster of 8 NVIDIA K-80s.

X. LESSONS LEARNED

1) Make sure all data sets are reproduced on all ma-
chines - As we transitioned in between the multiple
team members’ machines we worked on we occa-
sionally would find a similar, but incorrect YouTube
video. This would lead to misleading MSE plots,
making it harder to debug experiments.

2) Version control is crucial - we ran into some issues
with not saving older models but thanks to version
control, we were able to roll back on those problems.

3) Utilize coarse-grain search for hyper-parameters - test
many different hyper-parameter configurations before
committing to a few and training for a long time.
Testing numerous hyper-parameters this way allows
you to get a general sense of what works, and what
doesn’t, much sooner.

XI. CONCLUSION

The task attempted in this project was ambitious: perfect
frame rate upscaling via frame interpolation is a task that has
proven difficult to generalize to all types of video (such as
animation), especially with traditionally available techniques
of signal processing. Through the tools used, successes expe-
rienced, and failures experienced we believe that attaining a



general deep learning framework for frame rate upscaling is
feasible.

Through the remaining areas of exploration (detailed in the
following section) we intend to continue pursuing this project,
so that one day their might be a powerful and effective frame
rate upscaling tool that generalizes to the entire corpus of
publicly available video.

XII. FUTURE WORK

In section V, Areas of Inquiry and Prior Work, we detail
several axes of experimentation and several possible exper-
iments. However, for the sake of this project we limited the
scope of our inquiry for each of these axes of experimentation.
Based on the performance of our models the two areas we be-
lieve are most crucial for improving performance and ensuring
our models generalize better are adding residual connections
to our VAEs, and utilizing MFSR to enhance the quality of
our output images.

As we saw empirically in our results, the VAE resulted in
either extremely blurry images or missed key features of the
images. The issue of blurriness is due to the fact that each
deconvolution block has upsampling, which causes the last
layers to result in blurry images. Using residual connections
between convolutional and deconvolution blocks will allow us
to convey information from earlier layers in the net before the
information was ever downsampled to the dimensions of the
deconvolution layer in question. This should allow the VAE to
generate crisp results.

Most of the related work we saw heavily used VAEs, so
we were disappointed to see that it only generated results
based on a few key features of the entire video set (eg. always
generate Obama’s face given any input frames with him in
it). However, this problem is highly related to the problem
of information loss in VAEs. Because of this we believe
that residual connections will also help alleviate this issue in
addition to the problem of blurry VAE-generated images.

The second area for improving performance is related to
the flickering effect in our results video. In the video, one
can notice a distinctive flickering effect in the upscaled video
during the ”Lion King” segment. This is due to the fact that
the generated images all tend to have some tint or distortion
compared to the real images, leading to the flickering effect
observed between generated and real images. This type of
problem is perfect for MFSR to tackle, as it will leverage
information from adjacent frames in the input stream to to
help correct things like hue and make them similar across the
input and output images.

We hypothesize that the generated images are, as a dis-
tribution, considered to be fairly realistic when viewing them
from a Generative-Adversarial lens. However, when compared
with real images, there are still artifacts from the generation
step that aren’t captured through the loss functions or the
Discriminator Network. We propose postprecessing steps to
overcome this: we supply more temporal information to the
discriminator network (to better penalize tinted images), con-
sider KullbackLeibler divergence between generated images
and real images, as well as attempt super-resolution methods
seen in [6].

XIII. TEAM CONTRIBUTIONS

All three members of the team contributed equally (33%
each) but in different ways. We’ve highlighted what each
person worked on below, but we did have lot of overlap.
The amount of time spent on something did not always equal
the amount contributed, as would be expected in a research
environment.

The team shared the burden of researching previous works,
writing the final paper, creating the presentations, drafting the
poster, and presenting during the midpoint and final.

Gautham focused on implementing and experimenting with
different models, solely using what Keras provides. He trained
and tuned several of the models on his local machine. He
produced many of the results found in the midpoint and the
deep convolution model and GAN in the final presentation.
He also created the demonstration video used in the poster
session.

Ted focused on theory, fine tuning models, and synthesizing
the generated videos and metrics from the models. Initially,
Ted worked on extending prior work and the theoretical op-
portunities for improvement. Then, Ted worked on optimizing
the various models to scale up training data on external
clusters. He produced many of the results found in the final
presentation, focusing on the baseline, deep convolution, and
VAE models.

Raul focused on building upon Keras to make more com-
plex models that the platform does not natively support. In
addition, Raul worked on the preprocessing generator to extract
training datasets from YouTube videos, a crucial part of the
project. His pipeline allowed us to do initial, though unsuc-
cessful, experimentation with residual connections, pretrained
networks, and LSTMS.

ACKNOWLEDGMENT

The authors would like to thank Professor John Canny and
the staff of CS294 Designing, Visualizing and Understanding
Deep Neural Networks for an incredible learning experience
this semester.

REFERENCES

[1] Gucan Long, Laurent Kneip, Jose M. Alvarez, and Hongdong Li.
Learning Image Matching by Simply Watching Video. Arxiv, pages 1–18,
2016.

[2] Alex Greaves and Hanna Winter. Multi-Frame Video Super-Resolution
Using Convolutional Neural Networks. 2016.

[3] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang.
Image Super-Resolution Using Deep Convolutional Networks.
arXiv:1501.00092v2, pages 1–14, 2015.

[4] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual Losses
Supplementary. Arxiv, pages 1–5, 2016.

[5] Ian J. Goodfellow, Jean Pouget-Abadie, and Mehdi Mirza. Generative
Adversarial Networks. arXiv preprint arXiv: . . . , pages 1–9, 2014.

[6] Daniel Glasner, Shai Bagon, and Michal Irani. Super-Resolution from a
Single Image. page 9, 2009.


